Szczegóły
Tytuł artykułu
Effect of Fe Amount on Microstructure and Fluidity of A356 AlloyTytuł czasopisma
Archives of Foundry EngineeringRocznik
2025Wolumin
vol. 25Numer
No 3Autorzy
Afiliacje
Durmus, M. : Necmettin Erbakan University, Turkey ; Dispinar, D. : SINTEF Industri, Metal Production and Processing, Trondheim, 7034, Norway ; Gavgali, M. : Necmettin Erbakan University, Turkey ; Colak, M. : Bayburt University, TurkeySłowa kluczowe
A356 ; Fe content ; Intermetallic ; Fluidity ; Fluidity indexWydział PAN
Nauki TechniczneZakres
189-194Wydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
- Stojаnović, B., Bukvic, М. & Epler, I. (2018). Application of aluminum and aluminum alloys in engineering. Applied Engineering Letters Journal of Engineering and Applied Sciences. 3(2), 52-62. https://doi.org/10.18485/aeletters.2018.3.2.2 .
- Kadhim, M.H., Latif, N.A., Harimon, M.A., Shamran, A.A. & Abbas, D.R. (2020). Effects of side‐groove and loading rate on the fracture properties of aluminium alloy AL‐6061. Materialwissenschaft und Werkstofftechnik. 51(6), 758-765. https://doi.org/10.1002/mawe.201900262.
- Pantelakis, S., Setsika, D., Chamos, A. & Zervaki, A. (2016). Corrosion damage evolution of the aircraft aluminum alloy 2024 T3. International Journal of Structural Integrity. 7(1), 25-46. https://doi.org/10.1108/IJSI-03-2014-0010.
- Gursoy, O., Nordmak, A., Syversten, F., Colak, M., Tur, K. & Dispinar, D. (2021). Role of metal quality and porosity formation in low pressure die casting of A356: experimental observations. Archives of Foundry Engineering. 21(1), 5-10. DOI: 10.24425/afe.2021.136071.
- Lu, G., Huang, P., Yan, Q., Xu, P., Pan, F., Zhan, H. & Chen, Y. (2020). Optimizing the microstructure and mechanical properties of vacuum counter-pressure casting ZL114A aluminum alloy via ultrasonic treatment. Materials. 13(19), 4232, 1-13. https://doi.org/10.3390/ma13194232.
- Yan, Q.S., Lu, G., Luo, G.M., Xiong, B. W. & Zheng, Q.Q. (2018). Effect of synergistic action of ultrasonic vibration and solidification pressure on tensile properties of vacuum counter-pressure casting aluminum alloy. China Foundry. 15, 411-417. https://doi.org/10.1007/s41230-018-8048-8.
- Zhang, B., Cockcroft, S.L., Maijer, D.M., Zhu, J.D. & Phillion, A.B. (2005). Casting defects in low-pressure die-cast aluminum alloy wheels. The Journal of The Minerals, Metals & Materials Society. 57, 36-43. https://doi.org/10.1007/s11837-005-0025-1.
- Chen, Y.J., Huang, L.W. & Shih, T.S. (2003). Diagnosis of oxide films by cavitation micro-jet impact. Materials Transactions. 44(2), 327-335. https://doi.org/10.2320/matertrans.44.327.
- Uslu, E., Dağ, M.M. & Çolak, M. (2023). Design and manufacturing of reduced pressure test machine for determination of liquid aluminum quality in casting. Turkish Journal of Electromechanics and Energy. 8(3), 85-89.
- Jakse, N. & Pasturel, A. (2013). Liquid aluminum: atomic diffusion and viscosity from ab initio molecular dynamics. Scientific reports. 3(1), 3135. https://doi.org/10.1038/srep03135.
- Li, L., Li, D., Feng, J., Zhang, Y. & Kang, Y. (2020). Effect of cooling rates on the microstructure and mechanical property of La modified Al7SiMg alloys processed by gravity die casting and semi-solid die casting. Metals. 10(4), 549, 1-13. https://doi.org/10.3390/met10040549.
- Linder, J., Arvidsson, A. & Kron, J. (2006). The influence of porosity on the fatigue strength of high‐pressure die cast aluminium. Fatigue & Fracture of Engineering Materials & Structures. 29(5), 357-363. https://doi.org/10.1111/j.1460-2695.2006.00997.x.
- Chen, C., Wang, J., Shu, D. & Sun, B. (2011). Removal of iron impurity from aluminum by electroslag refining. Materials transactions. 52(6), 1320-1323. https://doi.org/10.2320/matertrans.M2010435.
- Lu, L. & Dahle, A.K. (2005). Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys. Metallurgical and materials transactions A. 36, 819-835. https://doi.org/10.1007/s11661-005-0196-y.
- Saikrishnan, G., Jayakumari, L.S., Vijay, R. & Singaravelu, D.L. (2019). Influence of iron–aluminum alloy on the tribological performance of non-asbestos brake friction materials – a solution for copper replacement. Industrial Lubrication and Tribology. 72(1), 66-78. DOI: 10.1108/ILT-12-2018-0441.
- de Moraes, H.L., de Oliveira, J.R., Espinosa, D.C.R. & Tenório, J.A.S. (2006). Removal of iron from molten recycled aluminum through intermediate phase filtration. Materials transactions. 47(7), 1731-1736. https://doi.org/10.2320/matertrans.47.1731.
- Kasai, H., Morisada, Y. & Fujii, H. (2015). Dissimilar FSW of immiscible materials: steel/magnesium. Materials Science and Engineering: A. 624, 250-255. https://doi.org/10.1016/j.msea.2014.11.060.
- Zhang, L., Xiaoshu, K.A.N.G. & Zhong, B. (2020). Effects of Si content on microstructure and mechanical properties of 8079 aluminum alloy. Research and Application of Materials Science. 2(1). https://doi.org/10.33142/msra.v2i1.1978.
- Novák, P. & Nová, K. (2019). Oxidation behavior of Fe–Al, Fe–Si and Fe–Al–Si intermetallics. Materials. 12(11), 1748, 1-13. https://doi.org/10.3390/ma12111748.
- Erzi, E., Gürsoy, Ö., Yüksel, Ç., Colak, M. & Dispinar, D. (2019). Determination of acceptable quality limit for casting of A356 aluminium alloy: supplier’s quality index (SQI). Metals. 9(9), 957, 1-14. https://doi.org/10.3390/met9090957.
- Zhang, G., Wang, Z., Niu, J., Xu, H. & Ren, X. (2021). Enhanced fluidity of ZL205A alloy with the combined addition of Al–Ti–C and La. Materials. 14(20), 6169, 1-8. https://doi.org/10.3390/ma14206169.
- Durmuş, M., Dispinar, D., Gavgali, M., Uslu, E. & Çolak, M. (2024). Evaluation of Fe content on the fluidity of A356 aluminum alloy by new fluidity index. International Journal of Metalcasting. 1-15. https://doi.org/10.1007/s40962-024-01396-4.