Szczegóły
Tytuł artykułu
The Influence of Overheating Temperature on the Shape Change of Primary Silicon Crystals and the Mechanical Properties of AlSi17 AlloyTytuł czasopisma
Archives of Foundry EngineeringRocznik
2025Wolumin
vol. 25Numer
No 2Autorzy
Afiliacje
Hillebrandt-Szymańska, K.K. : Łódź University of Technology, Poland ; Piątkowski, J. : Silesian University of Technology, PolandSłowa kluczowe
Hypereutectic Al-Si alloy ; Overheating degree ; Primary silicon crystals ; Mechanical properties ; Microstructure of Al-Si alloysWydział PAN
Nauki TechniczneZakres
94-101Wydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
- Hu, Z., Huo, Q., Chen, Y., Liu, M. & Chen (2023). Improving mechanical property of hyper-eutectic Al-Si alloys via regulating the microstructure by rheo-die-casting. Metals. 968-982, 1-14. https://doi.org/10.3390/met13050968.
- Lee, J.A. (2023). Cast aluminum alloys for high temperature applications. The Minerals, Metals and Materials Society, Automotive Alloys. 1-8. https://ntrs.nasa.gov/api/citations/20030106070/downloads/20030106070.pdf.
- Kaufman, J.G. (2008). Properties of Aluminum Alloys. Materials Park, Ohio, USA: ASM International.
- Elmadagli, M., Perry, T. & Alpas, A.T. (2007). A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys. 262(1-2), 79-92. https://doi.org/10.1016/j.wear.2006.03.043.
- Dai, H.S. & Liu, X.F. (2008). Refinement performance and mechanism of an Al-50Si alloy. Materials Characterization. 59 (11), 1559-1563. https://doi.org/10.1016/j.matchar.2008.01.020.
- Gupta, M. & Ling, S. (1999). Microstructure and mechanical properties of hypohyper-eutectic Al-Si alloys synthesized using a near-net shape forming technique. Journal of Alloys and Compounds. 287(1-2), 284-294. https://doi.org/10.1016/S0925-8388(99)00062-6.
- Vijayan, V., Ravi, M. & Prabhu, K.N. (2021). Effect of Ni and Sr additions on the microstructure, mechanical properties, and coefficient of thermal expansion of Al-23%Si alloy. Materials Today Proceedings. 46(7), 2732-2736. https://doi.org/10.1016/j.matpr.2021.02.421.
- Xu, C.L. & Jiang, Q.C. (2006). Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate. Materials Science and Engineering A. 437(2), 451-455. https://org/10.1016/j.msea.2006.07.088.
- Xu, C.L., Wang, H.Y., Liu, C. & Jiang, Q.C. (2006). Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys. Journal of Crystal Growth. 291(2), 540-547. https://doi.org/10.1016/j.jcrysgro.2006.03.044.
- Chaus, A., Marukovich, E. & Sahul, M. (2020). Effect of Rapid Quenching on the Solidification Microstructure, Tensile Properties and Fracture of Secondary Hypereutectic Al-18%Si-2%Cu Alloy. 10(6), 819-828. https://doi.org/10.3390/met10060819.
- Wagner, C. & Laplanche, G. (2023). Effect of grain size on critical twinning stress and work hardening behavior in the equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Plasticity. 166. 103651, 1-20. https://doi.org/10.1016/j.ijplas.2023.103651.
- Hamilton, D.R. &Seidensticker, R.G. (1963). Growth mechanisms of germanium dendrites: kinetics and the nonisothermal interface. Journal of Applied Physics. 34(5), 1450-1460. https://doi.org/10.1063/1.1729599.
- Fredriksson, H. & Hillert, M. (1971). On the mechanism of feathery crystallisation of aluminium. Journal of Materials Science. 6, 1350-1354. https://doi.org/10.1007/BF00549679.
- Kobayashi, K.F. & Hogan, L.M. (1985). The crystal growth of silicon in Al-Si alloys. Journal of Materials Science. 20, 1961-1975. https://doi.org/10.1007/BF01112278.
- Wu, Y., Wang, S., Li, H., & Liu, X. (2009). A new technique to modify hypereutectic Al–24%Si alloys by a Si–P master alloy. Journal of Alloys and Compounds. 477(1-2), 139-144. https://doi.org/10.1016/j.jallcom.2008.10.015.
- Vijeesh, V.K., & Narayan Prabhu, K. (2014). Review of microstructure evolution in hypereutectic Al–Si alloys and its effect on wear properties. Transactions of the Indian Institute of Metals. 67(1), 1-18. https://doi.org/10.1007/s12666-013-0327-x.
- Xu, C.L., Yang, Y.F., Wang, H.Y., & Jiang, Q.C. (2007). Effects of modification and heat-treatment on the abrasive wear behavior of hypereutectic Al–Si alloys. Journal of Materials Science. 42, 6331-6338. https://doi.org/10.1007/s10853-006-1189-y.
- Jeon, J.H., Shin, J.H. & Bae, D.H. (2019). Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys. Materials Science and Engineering: A. 748, 367-370. https://doi.org/10.1016/j.msea.2019.01.119.
- Szajnar, J., Wróbel, T. & Jezierski, J. (2008). Inoculation of pure aluminum with an electromagnetic field. Journal of Manufacturing Processes. 10(2), 74-81. http://dx.doi.org/10.1016/j.jmapro.2009.03.003.
- Lu, D., Jiang, Y., Guan, G., Zhou, R., Li, Z. & Zhou, R. (2007). Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring. Journal of Materials Processing Technology. 189(1-3), 13-18. https://doi.org/10.1016/j.jmatprotec.2006.12.008.
- Wang, J., He, S., Sun, B., Guo, Q. & Nishio, M. (2003). Grain refinement of Al–Si alloy (A356) by melt thermal treatment. Journal of Materials Processing Technology. 141(1), 29-34.https://doi.org/10.1016/S0924-0136(02)01007-5.
- Wang, J., He, S., Sun, B., Li, K., Shu, D. & Zhou, Y. (2002). Effects of melt thermal treatment on hypoeutectic Al–Si alloys. Materials Science and Engineering: A. 338(1-2), 101-107. https://doi.org/10.1016/S0921-5093(02)00067-9.
- Da Silveira, A.F. & de Castro, W.B. (2004). Microstructure of under-cooled Sn–Bi and Al–Si alloys. Materials Science and Engineering: A. 375-377. 473-478. https://doi.org/10.1016/j.msea.2003.10.017.
- Piątkowski J. (2013). Physical and Chemical Phenomena Affecting Structure, Mechanical Properties and Technological Stability of Hypereutectic Al-Si Cast Alloys After Overheating. Silesian University of Technology. Gliwice. (in Polish).