Details
Title
Research on Casting Process of Electrolytic Aluminum Anode Phosphorus Cast Iron and Carbon Block based on ProCASTJournal title
Archives of Foundry EngineeringYearbook
2025Volume
vol. 25Issue
No 3Authors
Affiliation
Zhang, Kun : Shenyang Aluminum & Magnesium Engineering & Research Institute Co., Ltd, China ; Li, Rong : School of Mechanical & Electrical Engineering, Guizhou Normal University, ChinaKeywords
Casting simulation ; Groove angle ; Phosphorus cast iron ; Grain orientation ; EBSDDivisions of PAS
Nauki TechniczneCoverage
53-64Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Hop, J., Store, A., Foosnaes, T. & Oye, H.A. (2005). Chemical and physical changes of cathode carbon by aluminium electrolysis. Mineral Processing and Extractive Metallurgy. 114(3), 181-187. https://doi.org/10.1179/037195505X63376.
- Senanu, S., Wang, Z., Ratvik, A.P. & Grande, T. (2020). Carbon cathode wear in aluminium electrolysis cells. The Journal of The Minerals, Metals & Materials Society. 72(1), 210-217. https://doi.org/10.1007/s11837-019-03717-z.
- Allard, F., Soucy, G., Rivoaland, L. & Désilets, M. (2015). Thermodynamic and thermochemical investigation of the deposits formed on the cathode surface of aluminum electrolysis cells. Journal of Thermal Analysis and Calorimetry. 119, 1303-1314. https://doi.org/10.1007/s10973-014-4288-z.
- Li, Q., Liang, J., Liu, B., Peng, Z. & Wang, Q. (2014). Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy. Applied Surface Science. 297, 176-181. https://doi.org/10.1016/j.apsusc.2014.01.120.
- Li, T.F., Tao, W.J., Wang, Z.W. & Liu, X.Z. (2020). Effects of the size of cast iron and stub on the physical field of anode in aluminium reduction cell. Journal of Northeastern University. 41(6), 828-834. https://doi.org/12068/j.issn.1005-3026.2020.06.012.
- Zhang, Y.H. & Ding, H.M. (2016). Optimization of cast iron casting process for the cathode carbon block. Light Metals. 4, 31-34,43. https://link.oversea.cnki.net/doi/10.13662/j.cnki.qjs.2016.04.008.
- Huang, Y.B., & Yuan, Z.H. (1998). Study on the composition of phosphorus iron for aluminum electrolysis. Light Metals, 2, 37-39. https://link.oversea.cnki.net/doi/10.13662/j.cnki.qjs.1998.02. 008.
- Dojka, R., Jezierski, J. & Campbell, J. (2018). Optimized gating system for steel castings. Journal of Materials Engineering and Performance. 27, 5152-5163. https://doi.org/10.1007/s11665-018-3497-1.
- Dojka, R., Jezierski, J. & Tiedje, N.S. (2019). Geometric Form of Gating System Elements and Its Influence on the Initial Filling Phase. Journal of Materials Engineering and Performance. 28, 3922-3928. https://doi.org/10.1007/s11665-019-03973-9.
- Dhisale, M., Vasavada, J. & Tewari, A. (2022). An approach to optimize cooling channel parameters of low pressure die casting process for reducing shrinkage porosity in aluminium alloy wheels. Materials Today: Proceedings. 62(6), 3189-3196. https://doi.org/10.1016/j.matpr.2022.03.478.
- Zhang, F., Kang, Y.L., Yang, L.Q. & Ding, R.H. (2010). Effects of pouring temperature on the cooling rules of alloy melts and the semi-solid microstructure. Chinese Journal of Engineering. 32(11), 1453-1458. https://doi.org/13374/j.issn1001-053x.2010.11.014.
- Qin, T. & Xu, N.B. (2012). Research on influence of pouring temperature on quality of rotor casting by using software ProCAST. Modern Cast Iron. 32(03), 74-77. https://doi.org/3969/j.issn.1003-8345.2012.03.014.
- Zheng, Q., Xiao, Y., Zhang, T., Zhu, P., Ma, W. & Liu, J. (2020). Numerical simulation of latent heat of solidification for low pressure casting of aluminum alloy wheels. Metals. 10(8), 1024, 1-12. https://doi.org/3390/met10081024.
- Vijayaram, T.R., Sulaiman, S., Hamouda, A.M.S. & Ahmad, M.H.M. (2006). Numerical simulation of casting solidification in permanent metallic molds. Journal of materials processing technology. 178(1-3), 29-33. https://doi.org/1016/j.jmatprotec.2005.09.025.
- Thompson, S., Cockcroft, S.L. & Wells, M.A. (2004). Advanced light metals casting development: solidification of aluminium alloy A356. Materials science and technology. 20(2), 194-200. https://doi.org/10.1179/026708304225011199.
- Liu, F., Ma, X.T., Liu Z.W. & Xie, H.M. (2023). Electron backscatter diffraction technology and its application in the study of micro-mechanical behavior. Mechanics and Practice. 45(6), 1321-1330. https://doi.org/6052/1000-0879-23-301.
- Radovic, Z. & Lalovic, M. (2005). Numerical simulation of steel ingot solidification process. Journal of Materials Processing Technology. 160(2), 156-159. https://doi.org/10.1016/j.jmatprotec.2004.07.094.
- Zhao, S. & Wang, S.J. (2025). Research progress in crystal plasticity deformation mechanisms and their numerical simulation methods. Manufacturing Technology & Machine Tool. 1-13. https://doi.org/10.19287/j.mtmt.1005-2402.2025.02.013.
- Wang, J.L., Lai, C.B., Wang F.M., Zhang J.M. & Ren, W. (2009). Mechanism and application of the CAFE model. Journal of Iron and Steel Research. 21(10), 4. https://doi.org/13228/j.boyuan.issn1001-0963.2009.10.004.
- Cramb, A.W. (2005). Solidification and steel casting. Fundamentals of Metallurgy. 399-452. https://doi.org/1533/9781845690946.2.399.
- Shen, Y., He, G.Q., Tian, D.D., Fan, K.L., Liu, X.S., & Mo, D.F. (2014). Effect of secondary dendrite arm spacing on tensile property and fatigue behavior ofa319 aluminum alloy. Journal of Materials Research. 28(8), 587-593. https://doi.org/10.11901/1005.3093.2014.117.
- Brust, A.F., Niezgoda, S.R., Yardley, V.A. & Payton, E.J. (2019). Analysis of misorientation relationships between austenite parents and twins. Metallurgical and Materials Transactions A. 50, 837-855. https://doi.org/1007/s11661-018-4977-5.
- Pan, C.C., Ma, C. & Xia, D.H. (2020). Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction. Journal of Chinese Society for Corrosion and protection. 39(6), 495-503. https://doi.org/11902/1005.4537.2019.232.