Details

Title

Effect of Casting Parameters on the Structure and Properties of CuZn39Pb

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 3

Authors

Affiliation

Jabłoński, M. : AGH University of Krakow, Poland

Keywords

Horizontal continuous casting process ; CuZn39Pb3 alloy ; Mechanical properties ; Microstructure of brass

Divisions of PAS

Nauki Techniczne

Coverage

116-123

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. 304(5669), 422-426. DOI: 10.1126/science.1092905.
  • Han, D., Kim, G.-H., Kim, J. & Ahn, B. (2020). Effect of Al/Cu weight fraction on the mechanical and electrical properties of Al-Cu conductors for overhead transmission lines. Archives of Metallurgy and Materials. 65(3), 1019- DOI: 10.24425/amm.2020.133210.
  • Hu, H., Yan, J., Sævik, S., Ye, N., Lu, Q. & Bu, Y. (2022). Nonlinear bending behavior of a multilayer copper conductor in a dynamic power cable. Ocean Engineering. 250, 110831, 1-11. DOI: 1016/j.oceaneng.2022.110831.
  • Piekoś, M., Garbacz-Klempka, A., Kozana, J. & Żak, P.L. (2020). Impact of Ti and Fe on the microstructure and properties of copper and copper alloys. Archives of Foundry Engineering. 20(4), 83-90. DOI: 10.24425/afe.2020.133352.
  • Rzadkosz, S., Garbacz-Klempka, A., Kozana, J., Piekoś, M. & Kranc, M. (2014). Structure and properties research of casts made with copper alloys matrix. Archives of Metallurgy and Materials. 59(2), 775-778. DOI: 10.2478/amm-2014-0131.
  • Kranc, M., Sikora, G., Górny, M. & Garbacz-Klempka, A. (2017). The influence of Mg additive on the structure and electrical conductivity of pure copper castings. Archives of Foundry Engineering. 17(4), 85-90. DOI: 10.1515/afe-2017-0135.
  • Krupińska, B., Chulist, R., Kondracki, M. & Labisz, K. (2023). Thermoplastic hardened Cu-Ni-Si-Ag alloy. Bulletin of the Polish Academy of Sciences. Technical Sciences. 71(2), 85-90. DOI: 10.24425/bpasts.2023.145683.
  • Stavroulakis, P., Toulfatzis, A.I., Pantazopoulos, G.A. & Paipetis, A.S. (2022). Machinable leaded and eco-friendly brass alloys for high performance manufacturing processes: A critical review. Metals. 12(2), 246, 1-31. DOI: 10.3390/met12020246.
  • Hsieh, C., Wang, J., Wu, P.T. & Wu, W. (2013). Microstructural development of brass alloys with various Bi and Pb additions. Metals and Materials International. 19, 1173-1179. DOI: 10.1007/s12540-013-6002-2.
  • Pantazopoulos, G. (2002). Leaded brass rods C38500 for automating machining operations: A technical report. Journal of Materials Engineering and Performance. 11(4), 402-407. DOI: 10.1361/105994902770343926.
  • Atsumi, H., Imai, H., Li, S., Kondoh, K., Kousaka, Y. & Kojima, A. (2012). Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle. Materials Chemistry and Physics. 135(2-3), 554-562. DOI: 10.1016/j.matchemphys.2012.05.025.
  • Biernat, S. & Bydałek, A.W. (2014). Optimization of the brass melting. Archives of Foundry Engineering. 14(3), 5-10. DOI: 10.2478/afe-2014-0051.
  • Kwapisiński, P., Lipnicki, Z., Ivanova, A.A. & Wolczyński, W. (2017). Role of the structural and thermal peclet numbers in the brass continuous casting. Archives of Foundry Engineering. 17(2), 49-54. DOI: 10.1515/afe-2017-0050.
  • Wolczyński, W., Lipnicki, Z., Bydałek, A.W. & Ivanova, A.A. (2016). Structural zones in large static ingot. Forecasts for continuously cast brass ingot. Archives of Foundry Engineering. 16(3), 141-146. DOI: 10.1515/afe-2016-0067.
  • Anakhov, S. & Fominykh, S. (1997). Effect of the cooling rate after remelting on the structure of antifriction brass. Metal Science and Heat Treatment. 39(6), 240-243. DOI: 10.1007/bf02467227.
  • Kwaśniewski, P., Najman, K., Wolczyński, W., Bydałek, A.W. & Schlafka, P. (2018). Determination of the technological parameters process for continuously cast brass ingot. Archives of Foundry Engineering. 18(10), 9-14. DOI: 10.24425/118803.
  • Chen, W., Jia, Y., Jiang, Y., Wang, M., Derby, B. & Lei, Q. (2017). Effect of addition of Ni and Si on the microstructure and mechanical properties of Cu–Zn alloys. Journal of Materials Research. 32(16), 3137-3145. DOI: 10.1557/jmr.2017.145.
  • Greß, T., Nardi, V.G., Mittler, T., Schmid, S., Buchberger, P., Tonn, B. & Volk, W. (2019). Interface formation and characterization of brass/aluminum compounds fabricated through die casting and semi-continuous casting. International Journal of Metalcasting. 14(2), 564-579. DOI: 10.1007/s40962-019-00387-0.
  • Wolczyński, W. (2018). Nature of segregation in the steel static and brass continuously cast ingots. Archives of Metallurgy and Materials. 63(4), 1915-1922. DOI: 10.24425/amm.2018.125124.
  • Bydałek, A.W., Kula, A., Błaż, L. & Najman, K. (2019). Analysis of the impact of modifiers on the formation of non-metallic inclusions during continuous casting of CuZn39Pb2 brass. Archives of Foundry Engineering. 19(3), 21-26. DOI: 10.24425/afe.2019.127132.
  • Jabłoński, M., Knych, T., Mamala, A. & Palczewski, M. (2015). Influence of casting velocity on structure and properties of AlFe0,5 alloy. Key Engineering Materials. 641, 56-62. DOI: 10.4028/www.scientific.net/kem.641.56.
  • Cottrell, A. (1953). LXXXVI. a note on the portevin-le chatelier effect. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 44(355), 829-832. DOI: 10.1080/14786440808520347.

Date

23.07.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.155360
×