Details

Title

Microstructural Fracture Mechanism of Normalising Heat Treated Low-Alloy Cast Steels under Tensile Stress Conditions

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 3

Authors

Affiliation

Garbarz, B. : Łukasiewicz Research Network - Upper Silesian Institute of Technology, Gliwice, Poland ; Spiewok, W. : Łukasiewicz Research Network - Upper Silesian Institute of Technology, Gliwice, Poland

Keywords

Cast steels ; multiphase microstructure ; Crack nucleation ; Fracture mechanism

Divisions of PAS

Nauki Techniczne

Coverage

129-140

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Garbarz, B. (2018). Structure of continuously cast ingots of unalloyed and low alloy steels and its evolution as a result of hot working. Prace Instytutu Metalurgii Żelaza. 70(4), 2-23. (in Polish).
  • Mahomed, N. (2020). Shrinkage porosity in steel sand castings: formation, classification and inspection. In Z. Abdallah, N. Aldoumani (Eds.), Casting Processes and Modelling of Metallic Materials (pp. 133-151). DOI: 10.5772/intechopen.94392.
  • Kostryzhev, A.G., Morales-Cruz, E.U., Zuno-Silva, J., Cardoso-Legorreta E., Ruiz-Lopez I. & Pereloma, E.V. (2017). Vanadium Microalloyed 0.25 C Cast Steels Showing As-Forged Levels of Strength and Ductility. Steel Research International. 83(3), 1600166, 1-11. https://doi.org/10.1002/srin.201600166.
  • Herion, S., de Oliveira, J.C., Packer, J.A., Christopoulos, C. & Gray, M.G. (2010). Castings in tubular structures – the state of the art. Structures and Buildings. 163(6), 403-415. https://doi.org/10.1680/stbu.2010.163.6.403.
  • Hardin, R.A. & Beckermann, C. (2012). Integrated design of castings: effect of porosity on mechanical performance. IOP Conference Series: Materials Science and Engineering. 33(1), 012069, 1-8. DOI: 10.1088/1757-899X/33/1/012069.
  • Hardin, R.A. & Beckermann C. (2013). Effect of porosity on deformation, damage, and fracture of cast steel. Metallurgical and Materials Transactions A. 44(12), 5316-5332. https://doi.org/10.1007/s11661-013-1669-z.
  • Susan, D.F., Crenshaw, T.B. & J. S. Gearhart, J.S. (2015). The effects of casting porosity on the tensile behavior of investment cast 17-4PH stainless steel. Journal of Materials Engineering and Performance. 24, 2917-2924. https://doi.org/10.1007/s11665-015-1594-y.
  • Besson, J. (2010). Continuum models of ductile fracture - A review. International Journal of Damage Mechanics. 19(1), 3-52. https://doi.org/10.1177/1056789509103482.
  • Yan, H., Jin, H. & Yao, R. (2020). Prediction of the damage and fracture of cast steel containing pores. International Journal of Damage Mechanics. 29(1), 166-183. https://doi.org/10.1177/1056789519872000.
  • Wcislik, W. (2016). Experimental determination of critical void volume fraction fF for the Gurson Tvergaard Needleman (GTN) model. Procedia Structural Integrity. 2, 1676-1683. https://doi.org/10.1016/j.prostr.2016.06.212.
  • Lachowski, J. & Borowiecka-Jamrozek, J. (2021). Analysis of fracture mechanism of cast steel for different states of stress. Archives of Foundry Engineering. 21(2), 29-34. DOI: 10.24425/afe.2021.136094.
  • Kossakowski, P.G. (2017). Experimental determination of the void volume fraction for S235JR steel at failure in the range of high stress triaxialities. Archives of Metallurgy and Materials. 62(1), 167-172. DOI: 10.1515/amm-2017-0023.
  • Zhang, Y., Zheng, J., Shen, F., Li, D., Münstermann, S., Han, W., Huang, S. & Li, T. (2023). Ductile fracture prediction of HPDC aluminum alloy based on a shear-modified GTN damage model. Engineering Fracture Mechanics. 291, 109541, 1-21. https://doi.org/10.1016/j.engfracmech.2023.109541.
  • Bernauer, G., Brocks, W. & Schmitt, W. (1999). Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel. Engineering Fracture Mechanics. 64(3), 305-325. https://doi.org/10.1016/S0013-7944(99)00076-4.
  • Catel, E., Dahl, A., Lorentz, E., Besson, J. (2023). Coupling of a gradient-enhanced GTN model to the Beremin model for the simulation of ductile-to-brittle transition. In 15th International Conference on Fracture (ICF15), June 11-16 2023. Atlanta, GA USA.
  • Iza-Mendian, A. & Gutierrez, I. (2013). Generalization of the existing relations between microstructure and yield stress from ferrite–pearlite to high strength steels. Materials Science & Engineering A. 561, 40-51. https://doi.org/10.1016/j.msea.2012.10.012.
  • Pickering, F.B. (1978). Physical Metallurgy and the Design of Steels. London: Applied Science Publishers Ltd.
  • Bruce, D., Paradise, P., Saxena, A., Temes, S., Clark, R., Noe, C., Benedict, M., Broderick, T. & Bhate, D. (2022). A critical assessment of the Archimedes density method for thin-wall specimens in laser powder bed fusion: Measurement capability, process sensitivity and property correlation. Journal of Manufacturing Processes. 79, 185-192. https://doi.org/10.1016/j.jmapro.2022.04.059.
  • Hayu, R., Sutanto, H. & Ismail, Z. (2019). Accurate density measurement of stainless steel weights by hydrostatic weighing system. Measurement 131, 120-124. https://doi.org/10.1016/j.measurement.2018.08.033.
  • Park, J.J. (2018). Prediction of Void Closure in Metal Forming: One Cylindrical Through-hole. ISIJ International. 58(6), 1102-1107. http://dx.doi.org/10.2355/isijinternational.ISIJINT-2018-037.
  • Chen, F., Zhao, X., Chen, H. & Ren J. (2020). Void closure behavior during plastic deformation using the representative volume element model. Applied Physics A. 126, 685, 1-13. https://doi.org/10.1007/s00339-020-03881-z.
  • Zhang, M.X. & Kelly, P.M. (2009). The morphology and formation mechanism of pearlite in steels. Materials Characterization. 60(6), 545-554. https://doi.org/10.1016/j.matchar.2009.01.001.
  • Verhoeven, J.D. & Gibson, E.D. (1998). The divorced eutectoid transformation in steel. Metallurgical and Materials Transaction A. 29(4), 1181- 1189. https://doi.org/10.1007/s11661-998-0245-4.
  • Pandit, A.S. & Bhadeshia, H.K.D.H. (2012). Divorced pearlite in steels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 468(2145), 2767-2778. DOI: 10.1098/rspa.2012.0115.
  • Yasuda, T. & Nakada, N. (2021). Effect of carbon concentration in austenite on cementite morphology in pearlite. ISIJ International. 61(1), 372-379. https://doi.org/10.2355/isijinternational.ISIJINT-2020-325.
  • Andrews, K.W. (1965). Empirical formulae for the calculation of some transformation temperatures. Journal of the Iron and Steel Institute. 203, 721-727.
  • Kim, H., Inoue, J., Okada, M. & Nagata, K. (2017). Prediction of Ac3 and martensite start temperatures by a data-driven model selection approach. ISIJ International. 57(12), 2229-2236. https://doi.org/10.2355/isijinternational.ISIJINT-2017-212.
  • Wei, S. & Lu, S. (2012). Effects of multiple normalizing processes on the microstructure and mechanical properties of low carbon steel weld metal with and without Nb. Materials and Design. 35, 43-54. https://doi.org/10.1016/j.matdes.2011.09.065.
  • Senk, D., Engl, B., Siemon, O. & Stebner, G. (1999). Investigation of solidification and microsegregation of near-net-shape cast carbon steel. Steel Research. 70(8-9), 368-372. https://doi.org/10.1002/srin.199905655.
  • Ueshima, Y., Mizoguchi, S., Matsumiya, T. & Kajioka, H. (1986). Analysis of Solute Distribution in Dendrites of Carbon Steel with δ / γ Transformation during Solidification. Metallurgical Transactions B. 17, 845-859. https://doi.org/10.1007/BF02657148.
  • Garbarz, B. & Pickering, F.B. (1988). Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium. Materials Science and Technology. 4 (4), 328-334. https://doi.org/10.1179/mst.1988.4.4.328.
  • Naylor, J.P. (1979). The influence of the lath morphology on the yield stress and transition temperature of martensitic – bainitic steels. Metallurgical Transaction. 10A, 861-873. https://doi.org/10.1007/BF02658305.
  • Uthaisangsuk, V., Prahl, U. & Bleck, W. (2011). Modelling of damage and failure in multiphase high strength DP and TRIP steels. Engineering Fracture Mechanics. 78, 469-486. https://doi.org/10.1016/j.engfracmech.2010.08.017.
  • Lin, M, Yu, H., Ding, Y., Olden, V., Alvaro, A., He, J. & Zhang Z. (2022). Simulation of ductile-to-brittle transition combining complete Gurson model and CZM with application to hydrogen embrittlement. Engineering Fracture Mechanics. 268, 108511 1-16. https://doi.org/10.1016/j.engfracmech.2022.108511.

Date

23.07.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.155362
×