Details

Title

Adsorptive removal of sulfamethoxazole from water using carbon-mineral composites

Journal title

Archives of Environmental Protection

Yearbook

2025

Volume

51

Issue

3

Authors

Affiliation

Słomkiewicz, Piotr : Jan Kochanowski University Kielce, Poland ; Szczepanik, Beata : Jan Kochanowski University Kielce, Poland ; Piekacz, Katarzyna : Jan Kochanowski University Kielce, Poland ; Gołombek, Klaudiusz : Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Poland ; Włodarczyk-Makuła, Maria : Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland

Keywords

carbon-mineral composites; ; new adsorbents; ; antibiotic sulfamethoxazole removal;

Divisions of PAS

Nauki Techniczne

Coverage

40-53

Publisher

Polish Academy of Sciences

Bibliography

  1. Anadao, P., Pajolli, I.L.R., Hildebrando, E.A. & Wiebeck, H. (2014). Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay, Advanced Powder Technology 25, pp. 926–932. DOI.10.1016/j.apt.2014.01.010
  2. Avisa,r D., Primor, O., Gozlan, I. & Mamane, H. (2010). Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay, Water, Air, & Soil Pollution, 209, pp.439–450. DOI:10.1007/s11270-009-0212-8
  3. Bakandritsos, A., Kouvelos, E., Steriotis, T. & Petridis, D. (2005). Aqueous and Gaseous Adsorption from Montmorillonite-Carbon Composites and from Derived Carbons, Langmuir, 21, pp. 2349–2355. DOI. 10.1021/la047495g
  4. Balarak, D., Baniasadi, M., Lee, S.M. & Shim, M.J. (2021). Ciprofloxacin adsorption onto azolla filiculoides activated carbon from aqueous solutions, Desalination and Water Treatment, 218, pp. 444–453. DOI.10.5004/dwt.2021.26986
  5. Bandura, L., Białoszewska, M., Leiviskä, T. & Franus, M. (2022). The role of zeolite structure in its -cyclodextrin modification and tetracycline adsorption from aqueous solution: charactersistics and sorption mechanism, Materials, 15, p. 6317. DOI.10.3390/ma15186317
  6. Bernal, V., Erto, A., Giraldo, L. & Moreno-Piraján, J.C. (2017). Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons, Molecules, 22, p. 1032. DOI.10.3390/molecules22071032
  7. Biancullo, F., Moreira, N.F.F., Ribeiro, A.R., Manaia, C.M., Faria, J.L., Nunes, O.C., Castro-Silva, S.M. & Silva, A.M.T. (2019). Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents, Chemical Engineering Journal, 367, p. 304. DOI.10.1016/j.cej.2019.02.012
  8. Chen, Y., Li, M., Gao, W., Guan, Y., Hao, Z. & Liu, J. (2024). Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters, Journal of Environmental Sciences, 146, pp. 251-263. DOI.10.1016/j.jes.2023.10.011
  9. Chen, L.-F., Liang, H.-W., Lu,Y., Cui, C.-H. & Yu, S.-H. (2011). Synthesis of an Attapulgite Clay@Carbon Nanocomposite Adsorbent by a Hydrothermal Carbonization Process and Their Application in the Removal of Toxic Metal Ions fromWater, Langmuir, 27, pp. 8998–9004. DOI.10.1021/la2017165
  10. Cheng, H., Frost, R.L., Yang, J., Liu, Q. & He, J. (2010). Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite, Spectrochimica Acta, Part A, 77, pp. 1014–1020. DOI.10.1016/j.saa.2010.08.039
  11. De Oliveira, T., Fernandez, E. L., Fougère, E., Destandau, M., Boussafir, M., Sohmiya, M., Sugahara, Y. & Guégan, R. (2018). Competitive Association of Antibiotics with a Clay Mineral and Organoclay Derivatives as a Control of Their Lifetimes in the Environment, ACS Omega, 3, pp. 15332-15342.
  12. Evers, M., Lange, R.-L., Heinz, E. & Wichern, M. (2022). Simultaneous powdered activated carbon dosage for micropollutant removal on a municipal wastewater treatment plant compared to the efficiency of a post treatment stage, Journal of Water Process Engineering, 47, p. 102755. DOI.10.1016/j.jwpe.2022.102755
  13. Freundlich, H.M.F. (1906). Over the adsorption in solution, Zeitschrift für Physikalische Chemie, 57, pp. 385–470.
  14. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, pp. 34–41. doi.org 10.24425/aep.2022.140764
  15. Gülenay Hacıosmanoğlu, G., Mejías, C., Martín, J., Santos, J. L., Aparicio, I. & Alonso, E. (2022). Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review, Journal of Environmental Management, 317, p. DOI.115397. 10.1016/j.jenvman.2022.115397
  16. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes, Process Biochemistry, 34, pp. 451–465. DOI.10.1016/S0032-9592(98)00112-5
  17. Hu, W., Niu, Y., Dong, K. & Wang, D. (2022). Removal of sulfamethoxazole from aqueous solution onto bagasse derived activated carbon: Response surface methodology, isotherm and kinetics studies, Journal of Molecular Liquids, 347, p. 11814. DOI.10.1016/j.molliq.2021.118141
  18. Jiang, T., Wu, W., Ma, M., Hu, Y. & Li, R. (2024). Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades, Science of The Total Environment, 951, p. 175664. DOI.10.1016/j.scitotenv.2024.175664
  19. Jiang, L., Zhang, C., Wei, J., Tjiu, W., Pan, J., Chen, Y. & Liu, T. Surface Modifications of Halloysite Nanotubes with Superparamagnetic Fe3O4 Nanoparticles and Carbonaceous Layers for Efficient Adsorption of Dyes in Water Treatment (2014). Chemical Research in Chinese Universities, 30, pp. 971–977. DOI.10.1007/s40242-014-4218-4.
  20. Joussein, E., Petit, S. & Delvaux, B. (2007). Behavior of halloysite clay under formamide treatment, Applied Clay Science, 35, pp. 17–24. DOI.10.1016/j.clay.2006.07.002.
  21. Kayal, A. & Mandal, S. (2022). Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution, Environmental Monitoring and Assessment, 194, p. 639. DOI.10.1007/s10661-022-10314-2.
  22. Kodama, S. & Sekiguchi, H. (2006). Estimation of point of zero charge for activated carbon treated with atmospheric pressure nonthermal oxygen plasmas, Thin Solid Films, 506–507, pp. 327–330. DOI.10.1016/j.tsf.2005.08.137.
  23. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24, pp. 1–39.
  24. Langmuir, I. (1916). The constitutional and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, pp. 2221–2295.
  25. Leboda, R., Charmas, B., Skubiszewska-Zięba, J. & Chodorowski, S. (2005). Carbon-mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane, Journal of Colloid and Interface Science, 284, pp. 39-47. DOI.10.1016/j.jcis.2004.09.052.
  26. Lim, C.K., Bay, H.H., Neoh, C.H., Aris, A., Majid, Z.A. & Ibrahim, Z. (2013). Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies, Environmental Science and Pollution Research, 20, pp. 7243–7255. DOI.10.1007/s11356-013-1725-7.
  27. Liu, Y., Liu, X., Lu, S., Zhao, B., Wang, Z., Xi, B. & Guo, W. (2020). Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: Influence of particle diameter and redox potential, Chemical Engineering Journal, 384, 123346.
  28. Lu, Z.-Y., Ma, Y. L., Zhang, J.-T., Fan, N.-S., Huang, B.-Ch. & Jin, R.-C. (2020). A critical review of antibiotic removal strategies: Performance and mechanisms, Journal of Water Process Engineering, 38, p. 101681. DOI.101681.10.1016/j.jwpe.2020.101681.
  29. Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang ,P., Li, J., Tsang, D.C.W., Bolan, N.S., Rinklebe, J. & Wang, H. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH modified biochar under single and ternary systems, Bioresource Technology, 263, pp. 385–392. DOI.10.1016/j.biortech.2018.05.022.
  30. Ma, Y., Yang, L., Wu, L., Li, P., Qi, X., He, L., Cui, S., Ding, Y. & Zhang, Z. (2020). Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal, Science of The Total Environment, 718, p. 137299. DOI.10.1016/j.scitotenv.2020.137299
  31. Parida, V. K., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B. & Gupta, A. K. (2021). Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives, Journal of Environmental Chemical Engineering, 9, p. 105966. DOI.10.1016/j.jece.2021.105966.
  32. Prasannamedha, G. & Senthil, K.P. (2019). A review on Contamination and Removal of Sulfamethoxazole from Aqueous Solution using Cleaner Techniques: Present and Future Perspective, Journal of Cleaner Production, 250(5), p. 119553. DOI.10.1016/j.jclepro.2019.119553.
  33. Qalyoubi, L., Al-Othman, A., Al-Asheh, S., Shirvanimoghaddam, K., Mahmoodi, R. & Naebe, M. (2024). Textile-based biochar for the removal of ciprofloxacin antibiotics from water, Emergent Materials, 7, pp. 577–588. DOI.10.1007/s42247-023-00512-0.
  34. Sagaseta de Ilurdoz, M., Jaime Sadhwani, J. & Vaswani Reboso, J. (2022). Antibiotic removal processes from water & wastewater for the protection of the aquatic environment – a review, Journal of Water Process Engineering, 45, p. 102474. DOI.10.1016/j.jwpe.2021.102474.
  35. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, pp. 603–619. DOI.10.1351/pac198254112201.
  36. Skubiszewska-Zięba, J., Charmas, B., Leboda, R. & Gun’ko, V.M. (2012). Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits, Microporous and Mesoporous Materials, 156, pp. 209–216. DOI.10.1016/j.micromeso.2012.02.038.
  37. Szczepanik, B., Banaś, D., Kubala-Kukuś, A., Szary, K., Słomkiewicz, P., Rędzia, N. & Frydel, L. (2020). Surface Properties of Halloysite-Carbon Nanocomposites and Their Application for Adsorption of Paracetamol, Materials, 13, p. 5647. DOI.10.3390/ma13245647.
  38. Szczepanik, B., Frydel, L., Słomkiewicz, P. M., Banaś, D., Stabrawa, I. & Kubala-Kukuś, A. (2023). Adsorptive removal of chloroxylenol and chlorophene from aqueous solutions using carbon-halloysite nanocomposites obtained from corrugated cardboard as a carbon precursor, Desalination and Water Treatment, 288, pp. 93–103. DOI.10.5004/dwt.2023.29212.
  39. Szczepanik, B., Rędzia, N., Frydel, L., Słomkiewicz, P., Kołbus, A., Styszko, K. & Samojeden, B. (2019). Synthesis and Characterization of Halloysite/Carbon Nanocomposites for Enhanced NSAIDs Adsorption from Water, Materials, 12, p. 3754. DOI.10.3390/ma12223754.
  40. Tan, X., Wei, H., Zhou, Y., Zhang, Ch. & Ho, S.-H. (2022). Adsorption of sulfamethoxazole via biochar: The key role of characteristic components derived from different growth stage of microalgae, Environmental Research, 210, p. 112965. DOI.10.1016/j.envres.2022.112965.
  41. Tang, L., Yu, J., Pang, Y., Zeng,, G., Deng Y., Wang, J., Ren, X., Ye,, S., Peng B. & Feng, H. (2018). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal, Chemical Engineering Journal, 336, pp. 160–169. DOI.10.1016/j.cej.2017.11.048.
  42. Temkin, M.I. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst, Acta USSR 12, 3, pp. 27–356.
  43. Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH, Colloids and Surfaces, 177, pp. 23–45. DOI.10.1016/S0927-7757(00)00594-X.
  44. Wang, J. & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview, Total Environment, 701, p. 135023. DOI.10.1016/j.scitotenv.2019.135023.
  45. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon solution, Journal of the Sanitary Engineering Division Am. Soc. Civ. Eng, 89, pp. 31–59.
  46. Wu, X., Gao, P., Zhang, X., Jin, G., Xu, Y. & Wu, Y. (2014). Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite, Applied Clay Science, 95, pp. 60–66. DOI.10.1016/j.clay.2014.03.010.
  47. Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y. & Peng, X. (2016). Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes, Applied Clay Science, 119, pp. 284–293. DOI.10.1016/j.clay.2015.10.029.
  48. Wu, X., Xu, Y., Zhang, X., Wu, Y. & Gao, P. (2015). Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite, New Carbon Materials, 30, pp.71–78. DOI.10.1016/S1872-5805(24)60878-4.
  49. Wu, X., Zhu, W., Zhang, X., Chen, T. & Frost, R.L. (2011). Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol, Applied Clay Science, 52, pp. 400–406. DOI.10.1016/j.clay.2011.04.011.
  50. Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., Yang, J., Zhang, J., Luo, L. & Zhou, Z. (2019). Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors, Journal of Environmental Management, 237, pp. 128-138. DOI.10.1016/j.jenvman.2019.02.068.
  51. Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D. & He, H. (2012). Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating, Clays and Clay Minerals, 60(6), pp. 561-573. DOI.10.1346/CCMN.2012.0600602.
  52. Zhang, Ch., Wang, L., Gao, X. & He, X. (2016). Antibiotics in WWTP discharge into the Chaobai River, Beijing, Archives of Environmental Protection, 42, pp. 48–57. DOI.10.1515/aep-2016-0036.
  53. Zhao, J., Han, Y., Liu, J., Li, B., Li, J., Li, W., Shi, P., Pan, Y., & Li, A. (2024). Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China, Science of The Total Environment, 939, p. 173610. DOI. 10.1016/j.scitotenv.2024.173610.
  54. Zhao, J. (2023). Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: Mechanism, regeneration and targeted adsorption, Process Safety and Environmental Protection, 171, pp. 238–249. DOI.10.1016/j.psep.2023.01.024.
  55. Zhao, T., Ali, A., Su, J., Liu, S., Yan, H. & Xu, L. (2024). Removal of sulfamethoxazole from water by biosurfactant-modified sludge biochar: Properties and mechanism, Journal of Environmental Chemical Engineering, 12, p.114200. DOI.10.1016/j.jece.2024.114200.
  56. Zhao, Z. & Zhou, W. (2019). Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole, Environmental Pollution, 245, pp. 208-217. DOI: 10.1016/j.envpol.2018.11.013

Date

08.09.2025

Type

Article

Identifier

DOI: 10.24425/aep.2025.156008

DOI

10.24425/aep.2025.156008

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×