Details
Title
Adsorptive removal of sulfamethoxazole from water using carbon-mineral compositesJournal title
Archives of Environmental ProtectionYearbook
2025Volume
51Issue
3Authors
Affiliation
Słomkiewicz, Piotr : Jan Kochanowski University Kielce, Poland ; Szczepanik, Beata : Jan Kochanowski University Kielce, Poland ; Piekacz, Katarzyna : Jan Kochanowski University Kielce, Poland ; Gołombek, Klaudiusz : Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Poland ; Włodarczyk-Makuła, Maria : Faculty of Infrastructure and Environment, Częstochowa University of Technology, PolandKeywords
carbon-mineral composites; ; new adsorbents; ; antibiotic sulfamethoxazole removal;Divisions of PAS
Nauki TechniczneCoverage
40-53Publisher
Polish Academy of SciencesBibliography
- Anadao, P., Pajolli, I.L.R., Hildebrando, E.A. & Wiebeck, H. (2014). Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay, Advanced Powder Technology 25, pp. 926–932. DOI.10.1016/j.apt.2014.01.010
- Avisa,r D., Primor, O., Gozlan, I. & Mamane, H. (2010). Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay, Water, Air, & Soil Pollution, 209, pp.439–450. DOI:10.1007/s11270-009-0212-8
- Bakandritsos, A., Kouvelos, E., Steriotis, T. & Petridis, D. (2005). Aqueous and Gaseous Adsorption from Montmorillonite-Carbon Composites and from Derived Carbons, Langmuir, 21, pp. 2349–2355. DOI. 10.1021/la047495g
- Balarak, D., Baniasadi, M., Lee, S.M. & Shim, M.J. (2021). Ciprofloxacin adsorption onto azolla filiculoides activated carbon from aqueous solutions, Desalination and Water Treatment, 218, pp. 444–453. DOI.10.5004/dwt.2021.26986
- Bandura, L., Białoszewska, M., Leiviskä, T. & Franus, M. (2022). The role of zeolite structure in its -cyclodextrin modification and tetracycline adsorption from aqueous solution: charactersistics and sorption mechanism, Materials, 15, p. 6317. DOI.10.3390/ma15186317
- Bernal, V., Erto, A., Giraldo, L. & Moreno-Piraján, J.C. (2017). Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons, Molecules, 22, p. 1032. DOI.10.3390/molecules22071032
- Biancullo, F., Moreira, N.F.F., Ribeiro, A.R., Manaia, C.M., Faria, J.L., Nunes, O.C., Castro-Silva, S.M. & Silva, A.M.T. (2019). Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents, Chemical Engineering Journal, 367, p. 304. DOI.10.1016/j.cej.2019.02.012
- Chen, Y., Li, M., Gao, W., Guan, Y., Hao, Z. & Liu, J. (2024). Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters, Journal of Environmental Sciences, 146, pp. 251-263. DOI.10.1016/j.jes.2023.10.011
- Chen, L.-F., Liang, H.-W., Lu,Y., Cui, C.-H. & Yu, S.-H. (2011). Synthesis of an Attapulgite Clay@Carbon Nanocomposite Adsorbent by a Hydrothermal Carbonization Process and Their Application in the Removal of Toxic Metal Ions fromWater, Langmuir, 27, pp. 8998–9004. DOI.10.1021/la2017165
- Cheng, H., Frost, R.L., Yang, J., Liu, Q. & He, J. (2010). Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite, Spectrochimica Acta, Part A, 77, pp. 1014–1020. DOI.10.1016/j.saa.2010.08.039
- De Oliveira, T., Fernandez, E. L., Fougère, E., Destandau, M., Boussafir, M., Sohmiya, M., Sugahara, Y. & Guégan, R. (2018). Competitive Association of Antibiotics with a Clay Mineral and Organoclay Derivatives as a Control of Their Lifetimes in the Environment, ACS Omega, 3, pp. 15332-15342.
- Evers, M., Lange, R.-L., Heinz, E. & Wichern, M. (2022). Simultaneous powdered activated carbon dosage for micropollutant removal on a municipal wastewater treatment plant compared to the efficiency of a post treatment stage, Journal of Water Process Engineering, 47, p. 102755. DOI.10.1016/j.jwpe.2022.102755
- Freundlich, H.M.F. (1906). Over the adsorption in solution, Zeitschrift für Physikalische Chemie, 57, pp. 385–470.
- Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, pp. 34–41. doi.org 10.24425/aep.2022.140764
- Gülenay Hacıosmanoğlu, G., Mejías, C., Martín, J., Santos, J. L., Aparicio, I. & Alonso, E. (2022). Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review, Journal of Environmental Management, 317, p. DOI.115397. 10.1016/j.jenvman.2022.115397
- Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes, Process Biochemistry, 34, pp. 451–465. DOI.10.1016/S0032-9592(98)00112-5
- Hu, W., Niu, Y., Dong, K. & Wang, D. (2022). Removal of sulfamethoxazole from aqueous solution onto bagasse derived activated carbon: Response surface methodology, isotherm and kinetics studies, Journal of Molecular Liquids, 347, p. 11814. DOI.10.1016/j.molliq.2021.118141
- Jiang, T., Wu, W., Ma, M., Hu, Y. & Li, R. (2024). Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades, Science of The Total Environment, 951, p. 175664. DOI.10.1016/j.scitotenv.2024.175664
- Jiang, L., Zhang, C., Wei, J., Tjiu, W., Pan, J., Chen, Y. & Liu, T. Surface Modifications of Halloysite Nanotubes with Superparamagnetic Fe3O4 Nanoparticles and Carbonaceous Layers for Efficient Adsorption of Dyes in Water Treatment (2014). Chemical Research in Chinese Universities, 30, pp. 971–977. DOI.10.1007/s40242-014-4218-4.
- Joussein, E., Petit, S. & Delvaux, B. (2007). Behavior of halloysite clay under formamide treatment, Applied Clay Science, 35, pp. 17–24. DOI.10.1016/j.clay.2006.07.002.
- Kayal, A. & Mandal, S. (2022). Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution, Environmental Monitoring and Assessment, 194, p. 639. DOI.10.1007/s10661-022-10314-2.
- Kodama, S. & Sekiguchi, H. (2006). Estimation of point of zero charge for activated carbon treated with atmospheric pressure nonthermal oxygen plasmas, Thin Solid Films, 506–507, pp. 327–330. DOI.10.1016/j.tsf.2005.08.137.
- Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24, pp. 1–39.
- Langmuir, I. (1916). The constitutional and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, pp. 2221–2295.
- Leboda, R., Charmas, B., Skubiszewska-Zięba, J. & Chodorowski, S. (2005). Carbon-mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane, Journal of Colloid and Interface Science, 284, pp. 39-47. DOI.10.1016/j.jcis.2004.09.052.
- Lim, C.K., Bay, H.H., Neoh, C.H., Aris, A., Majid, Z.A. & Ibrahim, Z. (2013). Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies, Environmental Science and Pollution Research, 20, pp. 7243–7255. DOI.10.1007/s11356-013-1725-7.
- Liu, Y., Liu, X., Lu, S., Zhao, B., Wang, Z., Xi, B. & Guo, W. (2020). Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: Influence of particle diameter and redox potential, Chemical Engineering Journal, 384, 123346.
- Lu, Z.-Y., Ma, Y. L., Zhang, J.-T., Fan, N.-S., Huang, B.-Ch. & Jin, R.-C. (2020). A critical review of antibiotic removal strategies: Performance and mechanisms, Journal of Water Process Engineering, 38, p. 101681. DOI.101681.10.1016/j.jwpe.2020.101681.
- Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang ,P., Li, J., Tsang, D.C.W., Bolan, N.S., Rinklebe, J. & Wang, H. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH modified biochar under single and ternary systems, Bioresource Technology, 263, pp. 385–392. DOI.10.1016/j.biortech.2018.05.022.
- Ma, Y., Yang, L., Wu, L., Li, P., Qi, X., He, L., Cui, S., Ding, Y. & Zhang, Z. (2020). Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal, Science of The Total Environment, 718, p. 137299. DOI.10.1016/j.scitotenv.2020.137299
- Parida, V. K., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B. & Gupta, A. K. (2021). Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives, Journal of Environmental Chemical Engineering, 9, p. 105966. DOI.10.1016/j.jece.2021.105966.
- Prasannamedha, G. & Senthil, K.P. (2019). A review on Contamination and Removal of Sulfamethoxazole from Aqueous Solution using Cleaner Techniques: Present and Future Perspective, Journal of Cleaner Production, 250(5), p. 119553. DOI.10.1016/j.jclepro.2019.119553.
- Qalyoubi, L., Al-Othman, A., Al-Asheh, S., Shirvanimoghaddam, K., Mahmoodi, R. & Naebe, M. (2024). Textile-based biochar for the removal of ciprofloxacin antibiotics from water, Emergent Materials, 7, pp. 577–588. DOI.10.1007/s42247-023-00512-0.
- Sagaseta de Ilurdoz, M., Jaime Sadhwani, J. & Vaswani Reboso, J. (2022). Antibiotic removal processes from water & wastewater for the protection of the aquatic environment – a review, Journal of Water Process Engineering, 45, p. 102474. DOI.10.1016/j.jwpe.2021.102474.
- Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, pp. 603–619. DOI.10.1351/pac198254112201.
- Skubiszewska-Zięba, J., Charmas, B., Leboda, R. & Gun’ko, V.M. (2012). Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits, Microporous and Mesoporous Materials, 156, pp. 209–216. DOI.10.1016/j.micromeso.2012.02.038.
- Szczepanik, B., Banaś, D., Kubala-Kukuś, A., Szary, K., Słomkiewicz, P., Rędzia, N. & Frydel, L. (2020). Surface Properties of Halloysite-Carbon Nanocomposites and Their Application for Adsorption of Paracetamol, Materials, 13, p. 5647. DOI.10.3390/ma13245647.
- Szczepanik, B., Frydel, L., Słomkiewicz, P. M., Banaś, D., Stabrawa, I. & Kubala-Kukuś, A. (2023). Adsorptive removal of chloroxylenol and chlorophene from aqueous solutions using carbon-halloysite nanocomposites obtained from corrugated cardboard as a carbon precursor, Desalination and Water Treatment, 288, pp. 93–103. DOI.10.5004/dwt.2023.29212.
- Szczepanik, B., Rędzia, N., Frydel, L., Słomkiewicz, P., Kołbus, A., Styszko, K. & Samojeden, B. (2019). Synthesis and Characterization of Halloysite/Carbon Nanocomposites for Enhanced NSAIDs Adsorption from Water, Materials, 12, p. 3754. DOI.10.3390/ma12223754.
- Tan, X., Wei, H., Zhou, Y., Zhang, Ch. & Ho, S.-H. (2022). Adsorption of sulfamethoxazole via biochar: The key role of characteristic components derived from different growth stage of microalgae, Environmental Research, 210, p. 112965. DOI.10.1016/j.envres.2022.112965.
- Tang, L., Yu, J., Pang, Y., Zeng,, G., Deng Y., Wang, J., Ren, X., Ye,, S., Peng B. & Feng, H. (2018). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal, Chemical Engineering Journal, 336, pp. 160–169. DOI.10.1016/j.cej.2017.11.048.
- Temkin, M.I. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst, Acta USSR 12, 3, pp. 27–356.
- Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH, Colloids and Surfaces, 177, pp. 23–45. DOI.10.1016/S0927-7757(00)00594-X.
- Wang, J. & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview, Total Environment, 701, p. 135023. DOI.10.1016/j.scitotenv.2019.135023.
- Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon solution, Journal of the Sanitary Engineering Division Am. Soc. Civ. Eng, 89, pp. 31–59.
- Wu, X., Gao, P., Zhang, X., Jin, G., Xu, Y. & Wu, Y. (2014). Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite, Applied Clay Science, 95, pp. 60–66. DOI.10.1016/j.clay.2014.03.010.
- Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y. & Peng, X. (2016). Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes, Applied Clay Science, 119, pp. 284–293. DOI.10.1016/j.clay.2015.10.029.
- Wu, X., Xu, Y., Zhang, X., Wu, Y. & Gao, P. (2015). Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite, New Carbon Materials, 30, pp.71–78. DOI.10.1016/S1872-5805(24)60878-4.
- Wu, X., Zhu, W., Zhang, X., Chen, T. & Frost, R.L. (2011). Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol, Applied Clay Science, 52, pp. 400–406. DOI.10.1016/j.clay.2011.04.011.
- Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., Yang, J., Zhang, J., Luo, L. & Zhou, Z. (2019). Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors, Journal of Environmental Management, 237, pp. 128-138. DOI.10.1016/j.jenvman.2019.02.068.
- Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D. & He, H. (2012). Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating, Clays and Clay Minerals, 60(6), pp. 561-573. DOI.10.1346/CCMN.2012.0600602.
- Zhang, Ch., Wang, L., Gao, X. & He, X. (2016). Antibiotics in WWTP discharge into the Chaobai River, Beijing, Archives of Environmental Protection, 42, pp. 48–57. DOI.10.1515/aep-2016-0036.
- Zhao, J., Han, Y., Liu, J., Li, B., Li, J., Li, W., Shi, P., Pan, Y., & Li, A. (2024). Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China, Science of The Total Environment, 939, p. 173610. DOI. 10.1016/j.scitotenv.2024.173610.
- Zhao, J. (2023). Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: Mechanism, regeneration and targeted adsorption, Process Safety and Environmental Protection, 171, pp. 238–249. DOI.10.1016/j.psep.2023.01.024.
- Zhao, T., Ali, A., Su, J., Liu, S., Yan, H. & Xu, L. (2024). Removal of sulfamethoxazole from water by biosurfactant-modified sludge biochar: Properties and mechanism, Journal of Environmental Chemical Engineering, 12, p.114200. DOI.10.1016/j.jece.2024.114200.
- Zhao, Z. & Zhou, W. (2019). Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole, Environmental Pollution, 245, pp. 208-217. DOI: 10.1016/j.envpol.2018.11.013
Date
08.09.2025Type
ArticleIdentifier
DOI: 10.24425/aep.2025.156008DOI
10.24425/aep.2025.156008Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science