Details
Title
Mechanical Performance of EN AC-Al Si12CuNiMg Alloy and Its SiC-Reinforced Composite Under Low-Temperature ConditionsJournal title
Archives of Foundry EngineeringYearbook
2025Volume
vol. 25Issue
No 4Authors
Affiliation
Wacławiak, K. : Department of Materials Technologies, Faculty of Materials Engineering and Digitalization of Industry, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland. ; Mekonnin, A.S. : Department of Materials Technologies, Faculty of Materials Engineering and Digitalization of Industry, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland.Keywords
Cryogenic conditions ; Mechanical properties ; Fractography analysis ; Microstructural characterizationDivisions of PAS
Nauki TechniczneCoverage
144-154Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
-
Yan, J.-B. & Xie, J. (2017). Experimental studies on mechanical properties of steel reinforcements under cryogenic temperatures. Construction and Building Materials. 151, 661–672. DOI.org/10.1016/j.conbuildmat.2017.06.123.
-
Dang, W., Zhang, W., Yi, Y., Huang, S., He, H. & Zhang, J. (2024). Influence of retrogression temperature and time on microstructure, mechanical properties and corrosion behaviours of cryogenically-deformed 7A85 aluminium alloy. Transactions of Nonferrous Metals Society of China. 34(2), 392-407. DOI.org/10.1016/S1003-6326(23)66406-4.
-
Barthélémy, H., Weber, M. & Barbier, F. (2017). Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy. 42(11), 7254-7262. DOI:10.1016/j.ijhydene.2016.03.178.
-
Mekonnin, A. S. & Wacławiak, K. (2025). Investigation of material properties under cryogenic conditions: a review. Zeszyty Naukowe. Organizacja i Zarządzanie/Politechnika Śląska. DOI.org/10.29119/1641-3466.2025.216.22.
-
Luo, D., Liu, M., Jiang, X., Yu, Y., Zhang, Z., Feng, X. & Lai, C. (2022). Effect of yttrium-based rare earth on inclusions and cryogenic temperature impact properties of offshore engineering steel. Crystals. 12(3), 305, 1-16. DOI.org/10.3390/cryst12030305.
-
Mekonnin, A.S., Wacławiak, K., Humayun, M., Zhang, S. & Ullah, H. (2025). Hydrogen storage technology, and its challenges: a review. Catalysts. 15(3), 260, 1-38. DOI.org/10.3390/catal15030260.
-
Sápi, Z. & Butler R. (2020). Properties of cryogenic and low temperature composite materials–A review. Cryogenics. 111, 103190, 1-18. DOI.org/10.1016/j.cryogenics.2020.103190.
-
Qiu, Y., Yang, H., Tong, L. & Wang, L. (2021). Research progress of cryogenic materials for storage and transportation of liquid hydrogen. Metals. 11(7), 1101, 1-13. DOI.org/10.3390/met11071101.
-
de Rosso, E., dos Santos, C.A. & Garcia A. (2022). Microstructure, hardness, tensile strength, and sliding wear of hypoeutectic Al–Si cast alloys with small Cr additions and Fe-impurity content. Advanced Engineering Materials. 24(8), 2001552, 1-13. DOI.org/10.1002/adem.202001552.
-
Jin, M., Lee, B., Yoo, J., Jo, Y. & Lee S. (2024). Cryogenic deformation behaviour of aluminium alloy 6061-T6. Metals and Materials International. 30(6), 1492-1504. DOI: 10.1007/s12540-023-01594-5.
-
Kahrıman, F. & Zeren, M. (2017). Microstructural and mechanical characterization of Al-0.80 Mg-0.85 Si-0.3 Zr alloy. Archives of Foundry Engineering. 17(4), 73-78. DOI: 10.1515/afe-2017-0133.
-
Nguyen, T. D., Singh, C., Kim, Y. S., Han, J. H., Lee, D. H., Lee, K., Harjo, S. & Lee, S. Y. (2024). Mechanical properties of base metal and heat-affected zone in friction-stir-welded AA6061-T6 at ultra-low temperature of 20 K. Journal of Materials Research and Technology. 31, 1547-1556. DOI.org/10.1016/j.jmrt.2024.06.165.
-
Hirsch, J. (2014). Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China. 24(7), 1995-2002. https://doi.org/10.1016/S1003-6326(14)63305-7.
-
Verstraete, D., Hendrick, P., Pilidis, P. & Ramsden, K. (2010). Hydrogen fuel tanks for subsonic transport aircraft, International Journal of Hydrogen Energy. 35(20), 11085-11098. DOI.org/10.1016/j.ijhydene.2010.06.060.
-
Yan, J.-B., Kong, G. & Zhang L. (2023). Low-temperature tensile behaviours of 6061-T6 aluminium alloy: tests, analysis, and numerical simulation. Structures. 56, 105054, 1-17. DOI.org/10.1016/j.istruc.2023.105054.
-
Xi, R., Xie, J. & Yan, J.-B. (2024). Evaluations of low-temperature mechanical properties and full-range constitutive models of AA 5083-H112/6061-T6. Construction and Building Materials. 411, 134520, 1-14. DOI.org/10.1016/j.conbuildmat.2023.134520.
-
Kumar, M., Sotirov, N., Grabner, F., Schneider, R. & Mozdzen, G. (2017). Cryogenic forming behaviour of AW-6016-T4 sheet. Transactions of Nonferrous Metals Society of China. 27(6), 1257-1263. DOI: 10.1016/S1003-6326(17)60146-8.
-
Gruber, B., Grabner, F., Falkinger, G., Schökel, A., Spieckermann, F., Uggowitzer, P. J., & Pogatscher, S. (2020). Room temperature recovery of cryogenically deformed aluminium alloys. Materials & design. 193, 108819, 1-13. DOI.org/10.1016/j.matdes.2020.108819.
-
Park, D.-H., Choi, S.-W., Kim, J.-H. & Lee, J.-M. (2015). Cryogenic mechanical behaviour of 5000-and 6000-series aluminium alloys: Issues on application to offshore plants. Cryogenics. 68, 44-58. DOI.org/10.1016/j.cryogenics.2015.02.001.
-
Tiwari, S., Biswas, P., Mandal, N. & Roy, S. (2025). Effect of SiC Particle Size and content on the mechanical and tribological properties of porous Si3N4-SiC Composites fabricated following a facile low-temperature processing route. Ceramics International. 51(14), 19508-19523. DOI.org/10.1016/j.ceramint.2025.02.126.
-
Jayashree, P., Gowrishankar, M., Sharma, S., Shetty, R., Hiremath, P. & Shettar, M. (2021). The effect of SiC content in aluminum-based metal matrix composites on the microstructure and mechanical properties of welded joints. Journal of Materials Research and Technology. 12, 2325-2339. DOI.org/10.1016/j.jmrt.2021.04.015.
-
Lijay, K.J., Selvam, J.D.R., Dinaharan, I. & Vijay S. (2016). Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate. Transactions of Nonferrous Metals Society of China. 26(7), 1791-1800. DOI.org/10.1016/S1003-6326(16)64255-3.
-
Kurzawa, A. & Kaczmar, J. (2017). Bending strength of EN AC-44200–Al2O3 composites at elevated temperatures. Archives of Foundry Engineering. 17(1), 103-108. DOI: 10.1515/afe-2017-0019.
-
Kurzawa, A. & Kaczmar, J. (2017). Impact strength of composite materials based on EN AC-44200 matrix reinforced with Al2O3 particles. Archives of Foundry Engineering. 17(3), 73-78. DOI: 10.1515/afe-2017-0094.
-
Sahin, Y. (2003). Preparation and some properties of SiC particle reinforced aluminium alloy composites. Materials & design. 24(8), 671-679. DOI.org/10.1016/S0261-3069(03)00156-0.
-
Wysocki, J., Grabian, J. & Przetakiewicz, W. (2007). Continuous drive friction welding of cast AlSi/SiC (p) metal matrix composites. Archives of Foundry Engineering. 7(1), 47-52.
-
Ozden, S., Ekici, R. & Nair, F. (2006). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing. 38(2), 484-494. DOI:10.1016/j.compositesa.2006.02.026.
-
Aybarc, U., Dispinar, D. & Seydibeyoglu, M.O. (2018). Aluminum metal matrix composites with SiC, Al2O3 and graphene–review. Archives of Foundry Engineering. 18(2), 5-10. DOI. 10.24425/122493.
-
Li, R., Pan, Z., Zeng, Q. & Xiaoli, Y. (2022). Influence of the interface of carbon nanotube-reinforced aluminium matrix composites on the mechanical properties–a review. Archives of Foundry Engineering. 22(1), 23-36. DOI 10.24425/afe.2022.140213.
-
Ozben, T., Kilickap, E. & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology. 198(13), 220-225. DOI:10.1016/j.jmatprotec.2007.06.082.
-
Pawar, P. & Utpat, A.A. (2014). Development of aluminium based silicon carbide particulate metal matrix composite for spur gear. Procedia materials science. 6, 1150-1156. DOI: 10.1016/j.mspro.2014.07.187.
-
Sampath, D., Akid, R. & Morana, R. (2018). Estimation of crack initiation stress and local fracture toughness of Ni-alloys 945X (UNS N09946) and 718 (UNS N07718) under hydrogen environment via fracture surface topography analysis. Engineering Fracture Mechanics. 191, 324-343. DOI.org/10.1016/j.engfracmech.2017.12.010.
-
Macek, W., Branco, R., Podulka, P., Kopec, M., Zhu, S.-P. & Costa, J.D. (2023). A brief note on entire fracture surface topography parameters for 18Ni300 maraging steel produced by LB-PBF after LCF. Engineering Failure Analysis. 153, 107541, 1-17. DOI.org/10.1016/j.engfailanal.2023.107541.
-
Kobayashi T. & Shockey, D.A. (2010). Fracture surface topography analysis (FRASTA)—development, accomplishments, and future applications. Engineering fracture mechanics. 77(12), 2370-2384. DOI.org/10.1016/j.engfracmech.2010.05.016.
-
Sirata, G.G., Wacławiak, K. & Dyzia, M. (2022). Mechanical and microstructural characterization of aluminium alloy, EN AC-Al Si12CuNiMg. Archives of Foundry Engineering. 22(3), 34-40. DOI.10.24425/afe.2022.140234.
-
Sirata, G., Wacławiak, K. & Dolata, A. (2024). Microstructure and Mechanical Properties of the EN AC-AlSi12CuNiMg Alloy and AlSi Composite Reinforced with SiC Particles. Archives of Foundry Engineering. 24(2), 50-59. DOI.10.24425/afe.2024.149271.
-
Liu, Y., Jia, L., Wang, W., Jin, Z. & Zhang, H. (2023). Reinforcing Al matrix composites by novel intermetallic/SiC interface and transition structure. Journal of Materials Research and Technology. 26, 164-175. DOI.org/10.1016/j.jmrt.2023.07.166.
-
Gruber, B., Weißensteiner, I., Kremmer, T., Grabner, F., Falkinger, G., Schökel, A., Spieckermann, F., Schäublin, R., Uggowitzer, P. & Pogatscher, S. (2020). Mechanism of low temperature deformation in aluminium alloys. Materials Science and Engineering: A. 795, 139935, 1-11. DOI.org/10.1016/j.msea.2020.139935.
-
Wendt, U. (2021). Engineering materials and their properties. In K.-H. Grote & H. Hefazi (Eds.), Springer Handbook of Mechanical Engineering (2nd ed., pp. 233–292). Springer Cham. https://doi.org/10.1007/978-3-030-47035-7_8.
-
Park D.-Y. & Niewczas, M. (2018). Plastic deformation of Al and AA5754 between 4.2 K and 295 K. Materials Science and Engineering: A. 491(1-2), 88-102. https://doi.org/10.1016/j.msea.2008.01.065.