Szczegóły
Tytuł artykułu
Effects of Chromium Cast Iron Inoculations Made with Ferroalloys: FeNb vs FeTiTytuł czasopisma
Archives of Foundry EngineeringRocznik
2025Wolumin
vol. 25Numer
No 4Autorzy
Afiliacje
Mędoń, J. : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland. ; Bracka-Kęsek, K.Z. : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland. ; Wiktor, T. : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland. ; Świątkowski, A. : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland. ; Czarny, M. : Odlewnia „Świdnica” Sp. z o.o., Świdnica ul. Kliczkowska 53, 58-105 Świdnica, Poland. ; Kopyciński, D. : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.Słowa kluczowe
Inoculation ; Inoculation in industry ; High chromium cast iron ; Minimizing casting crackingWydział PAN
Nauki TechniczneZakres
198-210Wydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
-
Kolokoltsev, V., Konopka, Z., Petrochenko, E. (2013). Special cast iron. Types, casting, heat treatment, properties. Częstochowa: Politechniak Częstochowska. (in Polish).
-
Ngqase, M. & Pan, X. (2020). An overview on types of white cast irons and high chromium white cast irons. Journal of Physics: Conference Series. 1495, 012023. DOI: 10.1088/1742-6596/1495/1/012023.
-
Purba, R.H., Shimizu, K., Kusumoto, K., Todaka, T., Shirai, M., Hara, H. & Ito, J. (2021). Erosive wear characteristics of high-chromium based multi-component white cast irons. Tribology International. 159, 106982, 1-9. https://doi.org/10.1016/j.triboint.2021.106982.
-
DeMello, J.D.B., Durand-Charre, M. & Hamar-Thibault, S. (1983). Solidification and solid state transformations during cooling of chromium-molybdenum white cast irons. Metallurgical Transactions A. 14(9), 1793-1801. https://doi.org/10.1007/BF02645549.
-
Studnicki, A., Kilarski, J., Przybył, M., Suchoń, J. & Bartocha, D. (2006). Wear resistance of chromium cast iron–research and application. Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2), 63-73.
-
Studnicki A., Dojka, R., Gromczyk, M. & Kondracki, M. (2016). Influence of titanium on crystallization and wear resistance of high chromium cast iron. Archives of Foundry Engineering. 16(1), 17-23. DOI: 10.1515/afe-2016-0014.
-
Tian, H.H., Addie, G.R. & Pagalthivarthi, K.V. (2005). Determination of wear coefficients for erosive wear prediction through Coriolis wear testing. Wear. 259(1-6), 160-170. https://doi.org/10.1016/j.wear.2005.02.097.
-
Tabrett, C.P., Sare, I.R. & Ghomashchi, M.R. (1996). Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews. 41(2), 59-82. https://doi.org/10.1179/imr.1996.41.2.59.
-
Kopyciński, D. (2015). Shaping the structure and mechanical properties of cast iron intended for use in difficult conditions (selected issues). Katowice-Gliwice: Archives of Foundry Engineerung. (in Polish).
-
Sobczak, J. (2013). Foundryman's Handbook, Vol. 1, Contemporary Foundry. Kraków: Wydawnictwo Stowarzyszenia Technicznego Odlewników Polskich. (in Polish).
-
Goto, I., Fukuchi, K. & Kurosawa, K. (2023). Effects of solidification conditions on the microstructural morphologies and strengths of hypereutectic high-chromium white cast iron castings. Materials Science and Engineering: A. 886, 145692, 1-15. https://doi.org/10.1016/j.msea.2023.145692.
-
Bedolla-Jacuinde, A., Guerra, F.V., Guerrero-Pastran, A.J., Sierra-Cetina, M.A. & Valdez-Medina S. (2021). Microstructural effect and wear performance of high chromium white cast iron modified with high boron contents. Wear. 476, 203675, 1-10. https://doi.org/10.1016/j.wear.2021.203675.
-
Barutçuoğlu, B., Koç, F. G., Erişir, E. & Karaarslan, G. (2025). The effect of tempering temperature on microstructure and wear behavior of tungsten and boron alloyed Ni-Hard 4 white cast irons. International Journal of Metalcasting. 19(1), 480-495. https://doi.org/10.1007/s40962-024-01322-8.
-
Zou, W. Q., Zhang, Z. G., Yang, H. & Li, W. (2016). Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting. China Foundry. 13(4), 248-255. https://doi.org/10.1007/s41230-016-6037-3.
-
Sakwa, W., Jura, S., Sakwa, J. (1980). Abrasion-resistant iron alloys. Part I. Cast Iron. Kraków: Wydawnictwo ZG STOP. (in Polish).
-
Maratray, F., Usseglio-Nanot, R. (1971). Atlas - transformation characteristics of chromium and chromium-molybdenum white irons. Paris, France: Climax Molybdenum. 230.
-
Huang, X. & Wu, Y. (1998). A high Cr-Mo alloy iron. Journal of materials engineering and performance. 7(4), 463-466. https://doi.org/10.1361/105994998770347594.
-
Zumelzu, E., Cabezas, C., Opitz, O., Quiroz, E., Goyos, L. & Parada, A. (2003). Microstructural characteristics and corrosion behaviour of high-chromium cast iron alloys in sugar media. Protection of Metals. 39,183-188.
-
Studnicki, A. (2008). Effect of boron carbide on primary crystallization of chromium cast iron. Archives of Foundry Engineering. 8(1), 173-176. ISSN (1897-3310).
-
Yaer, X., Shimizu, K., Matsumoto, H., Kitsudo, T., Momono, T. (2008). Erosive wear characteristics of spheroidal carbides cast iron. Wear. 264(11-12), 947-957. https://doi.org/10.1016/j.wear.2007.07.002.
-
Bedolla-Jacuinde, A., Hernández, B. & Béjar-Gómez, L. (2005). SEM study on the M7C3 carbide nucleation during eutectic solidification of high chromium white irons. International Journal of Materials Research. 96(12), 1380-1385.
-
Bedolla-Jacuinde, A. & Rainforth, W.M. (2001). The wear behaviour of highchromium white cast irons as a function of silicon and mischmetal content. Wear. 250(1-12), 449-461. https://doi.org/10.1016/S0043-1648(01)00633-0.
-
Bedolla-Jacuinde, A. (2001). Microstructure of vanadium-, niobium- and titanium-alloyed high-chromium white cast irons. International Journal of Cast Metals Research. 13(6), 343-361. https://doi.org/10.1080/13640461.2001.11819416.
-
Carpentera, S.D., Carpenterb, D. & Pearcec, J.T.H. (2004). XRD and electron microscope study of an as-cast 26.6% chromium white iron microstructure. Materials Chemistry and Physics. 85(1), 32-40. https://doi.org/10.1016/j.matchemphys.2003.11.037.
-
Laird, G., Nielsen, R.L. & Macmillan, N.H. (1991). On the nature of eutectic carbides in Cr-Ni white cast irons. Metallurgical Transactions A. 22A, 1709-1719. https://doi.org/10.1007/BF02646494.
-
Chung, R.J. (2014). Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance. University of Alberta, Canada.
-
Srivastava, A.K. & Das, K. (2009). Microstructural and Mechanical Characterization of in situ TiC and (Ti,W)C-reinforced high manganese austenitic steel matrix composites. Materials Science and Engineering: A. 516(1-2), 1-6. https://doi.org/10.1016/j.msea.2009.04.041.
-
Das, K., Bandyopadhyay, T.K., & Das, S. (2001). A review on the various synthesis routes of TiC reinforced ferrous based composites. Journal of materials science. 37(18), 3881-3892. https://doi.org/10.1023/A:1019699205003.
-
Olejnik, E., Janas, A., Kolbus, A. & Sikora, G. (2011). The composition of reaction substrates for TiC carbides synthesis and its influence on the thickness of iron casting composite layer. Archives of Foundry Engineering. 11(2), 165-168. ISSN (1897-3310).
-
Olejnik, E., Tokarski, T., Sikora, G., Sobula, S., Maziarz, W., Szymański, Ł. & Grabowska, B. (2019). The effect of Fe addition on fragmentation phenomena, macrostructure, microstructure, and hardness of TiC-Fe local reinforcements fabricated in situ in steel casting. Metallurgical and Materials Transactions A. 50(2), 975-986. https://doi.org/10.1007/s11661-018-4992-6.
-
Sobula, S., Olejnik, E. & Tokarski, T. (2017). Wear resistance of tic reinforced cast steel matrix composite. Archives of Foundry Engineering. 17(1), 143-146. ISSN (1897-3310).
-
Szymański, Ł., Olejnik, E., Tokarski, T., Kurtyka, P., Drożyński, D. & Żymankowska-Kumon, S. (2018). Reactive casting coatings for obtaining in situ composite layers based on Fe alloys. Surface and Coatings Technology. 350, 346-358. https://doi.org/10.1016/j.surfcoat.2018.06.085.
-
Szymański, Ł., Olejnik, E., Sobczak, J.J., Szala, M., Kurtyka, P., Tokarski, T. & Janas, A. (2022). Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ in cast steel and gray cast iron. Journal of Materials Processing Technology. 308, 117688, 1-15. https://doi.org/10.1016/j.jmatprotec.2022.117688.
-
Głownia, J., Tęcza, G., Asłanowicz, M. & Ościłowski, A. (2013). Tools cast from the steel of composite structure. Archives of Metallurgy and Materials. 58(3), 803-808. DOI: 10.2478/amm-2013-0075.
-
Kalandyk, B., Tęcza, G., Zapała, R., & Sobula, S. (2015). Cast high-manganese steel - the effect of microstructure on abrasive wear behaviour in Miller test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033.
-
Tęcza, G. & Głownia, J. (2015). Resistance to abrasive wear and volume fraction of carbides in cast high-manganese austenitic steel with composite structure. Archives of Foundry Engineering. 15(4), 129-133. DOI: 10.1515/afe-2015-0092.
-
Tęcza, G. & Garbacz-Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. ISSN (1897-3310).
-
Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122. DOI: 10.24425/118823.
-
Tęcza, G. (2021). Changes in abrasive wear resistance during Miller test of high-manganese cast steel with niobium carbides formed in the alloy matrix. Applied Sciences. 11(11), 4794, 1-10. https://doi.org/10.3390/app11114794.
-
Tęcza, G. (2021). Changes in abrasive wear resistance during miller test of Cr-Ni cast steel with Ti carbides formed in the alloy matrix. Archives of Foundry Engineering. 21(1), 110-115. DOI: 10.24425/afe.2021.139758.
-
Tęcza, G. (2022). Changes Changes in microstructure and abrasion resistance during Miller test of Hadfield high-manganese cast steel after the formation of vanadium carbides in alloy matrix. Materials. 15(3), 1021, 1-11. https://doi.org/10.3390/ma15031021.
-
Tęcza, G. (2023). Changes in abrasion resistance of cast Cr-Ni steel as a result of the formation of niobium carbides in alloy matrix. Materials. 16(4), 1726, 1-14. https://doi.org/10.3390/ma16041726.
-
Tęcza, G. (2023). Changes in the microstructure and abrasion resistance of tool cast steel after the formation of titanium carbides in the alloy matrix. Archives of Foundry Engineering. 23(4), 173-180. DOI: 10.24425/afe.2023.148961.
-
Studnicki, A., & Szajnar, J. (2012). Testing the wear resistance of low-alloy and chromium cast steel. Archives of Foundry Engineering. 12(2), 79-84. ISSN (1897-3310).
-
Studnicki, A., Kondracki, M., Suchoń, J., Szajnar, J., Bartocha, D. & Wróbel, T. (2015). Abrasive wear of alloyed cast steels applied for heavy machinery. Archives of Foundry Engineering. 15(1), 99-104. ISSN (1897-3310).
-
Cuppari, M.G.D.V. & Santos, S.F. (2016). Physical properties of the NbC carbide. Metals. 6(10), 250, 1-17. https://doi.org/10.3390/met6100250.
-
Ross R.B. (1992). Metallic Materials Specification Handbook, 4th edn,. London: Chapman and Hall.
-
Studnicki, A. (2002). Investigation of crystallization process of wear resistant cast iron. Archives of Foundry. 2(4), 259-264. ISSN (1642-5308). (in Polish).
-
Bedolla-Jacuinde, A. (2016). Niobium in cast irons. In V.Glebovsky (Eds.), Progress in Metallic Alloys (pp. 187-220). Croatia: InTech. http://dx.doi.org/10.5772/64498.
-
Mohrbacher, H., Jarreta, D. (2015). Technology, Properties and Applications of NbC Reinforced Steel and Iron Alloys, In Proceedings of the Symposium on Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels.
-
Guesserm W.L. (1985). Using niobium in high-chromium irons. Foundry Management Technology.
-
Zhou, Y., Yang, Y., Yang, J., Hao, F., Li, D., Ren, X. & Yang, Q. (2021). Effect of Ti additive on (Cr, Fe)7C3 carbide in arc surfacing layer and its refined mechanism, Applied Surface Science. 258(17), 6653-6659. https://doi.org/10.1016/j.apsusc.2012.03.101.
-
Zhang, Y.C., Song, R.B., Yu, P., Wen, E. & Zhao, Z.Y. (2020). The formation of TiCeNbC coreshell structure in hypereutectic high chromium cast iron leads to significant refinement of primary M7C3. Journal of Alloys and Compounds. 824, 153806, 1-10. https://doi.org/10.1016/j.jallcom.2020.153806.
-
Qu, Y., Xing, J., Zhi, X., Peng, J. & Fu, H. (2008). Effect of cerium on the as-cast microstructure of a hypereutectic high chromium cast iron. Materials Letters. 62(17-18), 3024-3027. https://doi.org/10.1016/j.matlet.2008.01.129.
-
Wu, X.J., Xing, J.D., Fu, H.G. & Zhi, X.H. (2007). Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron. Materials Science and Engineering: A. 457(1-2), 180-185. https://doi.org/10.1016/j.msea.2006.12.006.