Details

Title

Observability of linear q-difference fractional-order systems with finite initial memory

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2010

Volume

58

Issue

No 4

Authors

Divisions of PAS

Nauki Techniczne

Coverage

601-605

Date

2010

Identifier

DOI: 10.2478/v10175-010-0061-z ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2010; 58; No 4; 601-605

References

Podlubny I. (1999), Fractional Differential Systems. ; Samko S. (1993), Fractional Integrals and Derivatives: Theory and Applications. ; Bettayeb M. (2008), Controllability and the observability of linear discrete-time fractional-order systems, Int. J. Appl. Math. Comput. Sci, 18, 2, 213. ; Sierociuk D. (2006), Fractional Kalman filter algorithn for the states, parameters and order of fractonal system estimation, Int. J. Appl. Math. Comput. Sci, 16, 1, 129. ; Bartosiewicz Z. (2006), Realizations of linear control systems on time scales, Control & Cybernet, 35, 4, 769. ; Bohner M. (2001), Dynamic Equations on Time Scales. An Introduction with Applications. ; G. Bangerezako, "An introduction to q-difference eqautions", <i>Technical Report</i>, University of Burundi, Bujumbura, 2006. ; Kac V. (2001), Quantum Calculus. ; Ortigueira M. (2008), The fractional quantum derivative and the generalised Euler-Cauchy equation, null, 1. ; Kaczorek T. (2008), Reachability of fractional positive continuoustime linear systems, Int. J. Appl. Math. Comput. Sci, 18, 2, 223, doi.org/10.2478/v10006-008-0020-0 ; Kaczorek T. (2008), Practical stability of positive fractional discretetime linear systems, Bull. Pol. Ac.: Tech, 56, 4, 313. ; Ortigueira M. (2007), Revisiting the initial conditions problem in fractional linear systems, null, 1. ; Lorenzo C. (2009), On self-consistent operators with application to operators of fractional order, null, 1. ; Atici F. (2008), Initial value problems in discrete fractional calculus, null. ; Kaczorek T. (2007), New reachability and observability tests for positive linear discrete-time systems, Bull. Pol. Ac.: Tech, 55, 1. ; Mozyrska D. (2010), On observability concepts for nonlinear discrete-time fractional order control systems, New Trends in Nanotechnology and Fractional Calculus Applications, 4, 305, doi.org/10.1007/978-90-481-3293-5_26 ; Bartosiewicz Z. (2005), Observability. ; Sontag E. (1990), Mathematical Control Theory. ; Kaczorek T. (1992/1993), Linear Control Systems, I, II.
×