Details

Title

Modelling of fluidized bed biomass gasification in the quasi-equilibrium regime for preliminary performance studies of energy conversion plants

Journal title

Chemical and Process Engineering

Yearbook

2011

Issue

No 2 June

Authors

Keywords

biomass gasification ; fluidized beds ; thermodynamic equilibrium

Divisions of PAS

Nauki Techniczne

Coverage

73-89

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-011-0007-5 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2011; No 2 June; 73-89

References

Asadullah M. (2003), Demonstration of real biomass gasification drastically promoted by effective catalyst, Appl. Catal. A: Gen, 246, 103, doi.org/10.1016/S0926-860X(03)00047-4 ; Bolhàr-Nordenkampf M. (2002a), Biomass CHP Plant Güssing - using gasification for power generation, null. ; Bolhàr-Nordenkampf M. (2002b), Scale-up of a 100 kWth pilot FICFB-gasifier to a 8 MWth FICFB-gasifier demonstration plant in Güssing (Austria), null. ; Brown D. (2009), Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems, Appl. Therm. Eng, 29, 2137, doi.org/10.1016/j.applthermaleng.2007.06.021 ; Buragohain B. (2010), Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis, Energy, 35, 2557, doi.org/10.1016/j.energy.2010.03.003 ; Corella J. (1998), Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts, Ind. Eng. Chem. Res, 37, 4617, doi.org/10.1021/ie980254h ; Corella J. (2006), Calculation of the conditions to get less than 2 g tar/m<sub>n</sub><sup>3</sup> in a fluidized bed biomass gasifier, Fuel Process. Technol, 87, 841, doi.org/10.1016/j.fuproc.2006.05.002 ; Delft University of Technology, 1980-2006. <i>Cycle-Tempo 5.0. A program for thermodynamic modeling and optimisation of energy conversion systems</i> ; De Jong W., 2005. <i>Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels</i>. PhD thesis, TU Delft, Optima Grafische Communicatie, Rotterdam (available at: <a target="_blank" href='http://repository.tudelft.nl/'>http://repository.tudelft.nl/</a> ; M. De Souza-Santos (2004), Solid fuels combustion and gasification. Modeling, simulation, and equipment operation, doi.org/10.1201/9780203027295 ; Fercher E. (1998), Two years experience with the FICFB-gasification process, null. ; Gil J. (1999), Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution, Biomass Bioenergy, 17, 389, doi.org/10.1016/S0961-9534(99)00055-0 ; Gòmez-Barea A. (2010), Modeling of biomass gasification in fluidized bed, Prog. Energy Combustion Sci, 36, 444, doi.org/10.1016/j.pecs.2009.12.002 ; Hofbauer H. (1997), Developments in thermochemical biomass conversion, 2, 1016, doi.org/10.1007/978-94-009-1559-6_82 ; Kalina J. (2010), Retrofitting of municipal coal fired heating plant with integrated biomass gasification gas turbine based cogeneration block, Energy Convers. Management, 51, 1085, doi.org/10.1016/j.enconman.2009.12.014 ; Kirov N. (1965), Specific heats and total heat contents of coals and related materials at elevated temperatures, BCURA Monthly Bulletin, 29, 33. ; Klimantos P. (2009), Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment, Energy, 34, 708, doi.org/10.1016/j.energy.2008.04.009 ; Kurkela E. (2009), Fluidized-bed gasification of biomass for syngas applications: Comparison of gasification process alternatives, null. ; Li X. (2004), Biomass gasification in a circulating fluidized bed, Biomass and Bioenergy, 26, 171, doi.org/10.1016/S0961-9534(03)00084-9 ; Mevissen N. (2009), Thermodynamics of autothermal wood gasification, Environ. Prog. Sustain. Energy, 28, 3, 347, doi.org/10.1002/ep.10393 ; Miccio F. (1999), Generation and conversion of carbonaceous fine particles during bubbling fluidised bed gasification of a biomass fuel, Fuel, 78, 1473, doi.org/10.1016/S0016-2361(99)00044-7 ; Milne T. (1998), Biomass gasifier "Tars": Their nature, formation, and conversion, doi.org/10.2172/3726 ; Narváez I. (1996), Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas, Ind. Eng. Chem. Res, 35, 2110, doi.org/10.1021/ie9507540 ; Pfeifer C. (2004), Hydrogen-rich gas production with a catalytic dual fluidised bed biomass gasifier, null. ; Prins M. (2007), From coal to biomass gasification: Comparison of thermodynamic efficiency, Energy, 32, 1248, doi.org/10.1016/j.energy.2006.07.017 ; Richard N., Thunman H., 2002. <i>General equations for biomass properties</i>. Project report. (available at: <a target="_blank" href='http://www.unece.lsu.edu/biofuels/presentations.htm'>http://www.unece.lsu.edu/biofuels/presentations.htm</a> ; Schuster G. (2001), Biomass steam gasification - an extensive parametric study, Bioresour. Technol, 77, 71, doi.org/10.1016/S0960-8524(00)00115-2 ; Thunman H. (2001), Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds, Energy Fuels, 15, 1488, doi.org/10.1021/ef010097q ; A. Van der Drift (2001), Ten residual biomass fuels for circulating fluidized-bed gasification, Biomass Bioenergy, 20, 45, doi.org/10.1016/S0961-9534(00)00045-3 ; C. Van der Meijden (2010), The production of synthetic natural gas (SNG): A comparison of three wood gasification systems for energy balance and overall efficiency, Biomass Bioenergy, 34, 302, doi.org/10.1016/j.biombioe.2009.11.001 ; Wu C. (2008), Design and operation of A 5.5 MWe biomass integrated gasification combined cycle demonstration plant, Energy Fuels, 22, 4259, doi.org/10.1021/ef8004042

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×