Nauki Biologiczne i Rolnicze

Journal of Plant Protection Research

Zawartość

Journal of Plant Protection Research | 2021 | vol. 61 | No 1

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aim of this work was the determination of the influence of the size of grain moth eggs on qualitative characteristics of Trichogramma evanescens (Hymenoptera: Trichogrammatidae) from the second to the seventh generations. The indicators of T. evanescens determine its ability to provide effective plant protection. Using selected large eggs of grain moth T. evanescens reproduction was carried out. As controls, eggs that had only been cleaned were used. These studies were performed with T. evanescens from second to seventh generations. The correlation between the size of grain moth eggs and indicators of T. evanescens such as the level of search ability, the level of regeneration of individuals, the relative number of females, the level of deformed individuals, the lifespan and the fecundity of females were determined. The influence of the size of grain moth eggs on the T. evanescens class was determined. It was found that the use of large grain moth eggs for the production of T. evanescens allowed for maintaining its first class quality from the second to the seventh generations. Trichogramma evanescens from grain moth eggs, which had only been cleaned, had first class quality only up to the fourth generation.
Przejdź do artykułu

Bibliografia

1. Buranova S., Cerny J., Mitura K., Lipinska K., Kovarik J., Balik J. 2016. Effect of organic and mineral fertilizers on yield parameters and quality of wheat grain. Scientia Agriculturae Bohemica 47 (2): 47–53. DOI: 10.1515/sab-2016-0008
2. Cagnotti С.L., Hernбndez C.M., Andormo A.V., Viscarret M., Riquelme M., Botto E.N., Lуpez S.N. 2016. Acceptability and suitability of Tuta absoluta eggs from irradiated parents to parasitism by Trichogramma nerudai and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Agricultural and Forest Entomology 18: 198–205. DOI: 10.1111/afe.12152
3. Davies A.P., Pufke U.S., Zalucki M.P. 2011. Spatio-temporal variation in Helicoverpa egg parasitism by Trichogramma in a tropical Bt-transgenic cotton landscape. Agricultural and Forest Entomology 13: 247–258. DOI: 10.1111/j.1461-9563.2010.00512.x
4. Delpuech J., Delahaye M. 2013. The sublethal effects of deltamethrin on Trichogramma behaviors during the exploitation of host patches. Science of the Total Environment 447: 274–279. DOI: 10.1016/j.scitotenv.2012.12.096
5. Golub G., Marus O., Chuba V. 2019. Parameters of pneumatic calibrator of grain moth eggs for Trichogramma production. Scientia Agriculturae Bohemica 50 (2): 117–126. DOI: 10.2478/sab-2019-0017
6. Golyshin N.M. 1983. Methodical instructions for the industrial production of Trichograms at biofactories. All-Union Scientific Research Institute of Biological Methods of Plant Protection, Moscow, Science, 76 p.
7. Greenberg S.M., Legaspi J.C., Nordlund D.A., Wu Z.X., Legaspi Jr.B., Saldãna R. 1998. Evaluation of Trichogramma spp. (Hymenoptera: Trichogrammatidae) against two pyralid stemborers of Texas sugarcane. Journal of Entomological Science 33 (2): 158–164.
8. Hamouz P., Hamouzova K., Novotna K. 2015. Effects of spring herbicide treatments on winter wheat growth and grain yield. Scientia Agriculturae Bohemica 46 (1): 1–6. DOI: 10.1515/sab-2015-0010
9. Henry C.J., Day K.R. 2000. Egg allocation by Bracon hylobii Ratz., the principal parasitoid of the large pine weevil ( Hylobius abietis L.), and implications for host suppression. Agricultural and Forest Entomology 3: 11–18.
10. Khan M.A. 2017. Effects of selected baculoviruses on oviposition preference by Trichogramma chilonis (Trichogrammatidae: Hymenoptera). Journal of King Saud University 29: 214–220. DOI: 10.1016/j.jksus.2016.06.002
11. Manandhara R., Wright M.G. 2015. Enhancing biological control of corn earworm, Helicoverpa zea and thrips through habitat management and inundative release of Trichogramma pretiosum in corn cropping systems. Biological Control 89: 84–90. DOI: 10.1016/j.biocontrol.2015.05.020
12. Mandour N.S., Sarhan A.A, Atwa D.H. 2012. The integration between Trichogramma evanescens West. (Hymenoptera: Trichogrammatidae) and selected bioinsecticides for controlling the potato tuber moth Phthorimaea operculella (Zell.) (Lepidoptera: Gelechiidae) of stored potatoes. Journal of Plant Protection Research 52 (1): 40–46. DOI: 10.2478/v10045-012-0007-6
13. Marus O., Golub G., Chuba V. 2020. Investigation of influence of calibration of grain moth eggs on production of Trichogramma for biological protection of plants. Engineering for Rural Development 19: 1621–1626. DOI: 10.22616/ERDev2020.19.TF416
14. Marus O.A., Golub G.A. 2014. Problems of technical support for the production of the entomological preparation Trichogramma. Scientific and Practical Journal: Agricultural Technology and Energy Supply 1 (1): 121–126.
15. Medoni L.F., Hermicheva F.M., Shlyakhtych V.A. 1980. Characteristics of an imago Trichogramma in connection with its updating. Trichogramma 1: 33–38.
16. Oliveira C.М., Oliveira J.V., Barbosa D.R.S., Breda M.O., Franзa S.M., Duarte B.L.R. 2017. Biological parameters and thermal requirements of Trichogramma pretiosum for the management of the tomato fruit borer (Lepidoptera: Crambidae) in tomatoes. Crop Protection 99: 39–44. DOI: 10.1016/j.cropro.2017.04.005
17. Pallewatta P.K.T.N.S. 1986. Factors Afecting Progeny and Sex Allocation by the Egg Parasitoid Trichogramma evanescens Westwood. Thesis, London, 420 pp.
18. Parsaeyan E., Safavi S.A., Saber M., Poorjavad N. 2018. Effects of emamectin benzoate and cypermethrin on the demography of Trichogramma brassicae Bezdenko. Crop Protection 110: 269–274. DOI: 10.1016/j.cropro.2017.03.026
19. Preetha G., Manoharan T., Stanley J., Kuttalam S. 2010. Impact of chloronicotinyl insecticide, imidacloprid on egg, egg-larval and larval parasitoids under laboratory conditons. Journal of Plant Protection Research 50 (4): 535–540. DOI: 10.2478/v10045-010-0088-z
20. Rampelotti-Ferreira F.T., Jr A.C., Parra J.R.P., Vendramim J.D. 2017. Selectivity of plant extracts for Trichogramma pretiosum Riley (Hym.: Trichogrammatidae). Ecotoxicology and Environmental Safety 138: 78–82. DOI: 10.1016/j.ecoenv.2016.12.026
21. Reznik S.Y., Samartsev K.G. 2015. Multigenerational maternal inhibition of prepupal diapause in two Trichogramma species (Hymenoptera: Trichogrammatidae). Journal of Insect Physiology 81: 14–20. DOI: 10.1016/j.jinsphys.2015.06.012
22. Shelestova V.S., Melnichuk S.D., Goncharenko O.І., Drozda V.F. 2004. The indicators qualitative of Trichogramma. Methodical recommendations on the application of Trichogramma against pests of agricultural crops, Kyiv, Publishing Center of the National Agrarian University, 59 p.
23. Telenga N.A., Shchepetylnikova V.A. 1949. A Guide to the Reproduction and Use of Trichogramma for Agriculture Pest Management, Kyiv, Publishing House of the Academy of Sciences of the Ukrainian SSR, 99 p.
24. Thubru D.P., Firake D.M., Behere G.T. 2018. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko). Saudi Journal of Biological Sciences 25: 680–688. DOI: 10.1016/j.sjbs.2016.04.007
25. van Alphen J.J., Jervis M.A. 1996. Foraging behaviour. p. 62. In: “Insect Natural Enemies. Practical Approaches to their Study and Evaluation” (M. Jervis and N. Kidd, eds.). Chapman & Hall, U.K.
26. Vlasicova E., Naglova Z. 2015. Differences in the financial management of conventional, organic, and biodynamic farms. Scientia Agriculturae Bohemica 46 (3): 106–111. DOI: 10.1515/sab-2015-0024
27. Waage J.K., Lane J.A. 1984. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. The Journal of Animal Ecology 53 (2): 417–426.
28. Waage J.K., Ming N.S. 1984. The reproductive strategy of a parasitic wasp: I. Optimal progeny and sex allocation in Trichogramma evanescens. The Journal of Animal Ecology 53 (2): 401–415.
29. Wanga Z.Y., He K.L., Zhang F., Lu X., Babendreier D. 2014. Mass rearing and release of Trichogramma for biological control of insect pests of corn in China. Biological Control 68: 136–144. DOI: 10.1016/j.biocontrol.2013.06.015
30. Wu L., Hoffmann A.A., Thomson L.J. 2016. Potential impact of climate change on parasitism efficiency of egg parasitoids: A meta-analysis of Trichogramma under variable climate conditions. Agriculture, Ecosystems and Environment 231: 143–155. DOI: 10.1016/j.agee.2016.06.028
Przejdź do artykułu

Autorzy i Afiliacje

Gennadii Golub
1
Oleh Marus
1

  1. Department of Tractors, Automobiles and Bioenergy System, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Numerous plant species around the world suffer from the presence of viruses, which especially in economically important crops, cause irretrievable damage and/or extensive losses. Many biotechnological approaches have been developed, such as meristem culture, chemotherapy, thermotherapy or cryotherapy, to eliminate viruses from infected plants. These have been used alone or in combination. In this work, meristem culture, thermotherapy and cryotherapy were compared for Apple mosaic virus elimination from hazelnut local cultivar “Palaz”. The virus-free plant was also confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) after each treatment and, the best results were obtained by cryotherapy. A one step freezing technique, droplet vitrification, was used for cryotherapy, and the best regeneration percentage was 52%. After cryotherapy, virus-free seedlings of hazelnut local cultivar “Palaz” were confirmed as being virus-free after three subcultured periods.
Przejdź do artykułu

Bibliografia

1. Akbas B., Degirmenci K. 2009. Incidence and natural spread of Apple mosaic virus on hazelnut in the west black sea coast of Turkey and its effect on yield. Journal of Plant Pathology 91 (3): 767–771. DOI: https://doi.org/10.4454/jpp.v91i3.577
2. Balamuralikrishnan M., Doraisamy S., Ganapathy T., Viswanathan R. 2002. Combined Effect of Chemotherapy and Meristem Culture on Sugarcane Mosaic Virus Elimination in Sugarcane. Sugar Tech 4 (2): 19–25. DOI: https://doi.org/10.1007/BF02956875
3. Bettoni J.C., Costa M.D., Gardin J.P.P., Kretzschmar A.A., Pathirana R. 2016. Cryotherapy: a new technique to obtain grapevine plants free of viruses. Revista Brasileira de Fruticultura 38: 2–13. DOI: https://doi.org/10.1590/0100-29452016833
4. Dĩaz-Barrita A.J., Norton M, Martĩnez-Peniche R.A., Uchanski M., Mulwa R., Skirvin R.M. 2008. The use of thermotherapy and in vitro meristem culture to produce virus-free ‘Chancellor’ grapevines. International Journal of Fruit Science 7 (3): 15–25. DOI: https://doi.org/10.1300/J492v07n03_03
5. Feng C., Wang R., Li J., Wang B., Yin Z., Cui Z., Li B., Bi W., Zhang Z., Li M., Wang Q. 2013. Production of pathogen-free horticultural crops by cryotherapy of in vitro-grown shoot tips. p. 463–482. In: "Protocols for Micropropagation of Selected Economically-Important Horticultural Plants" (M. Lambardi, E.A. Ozudogru, S.M. Jain, eds.). Methods in Molecular Biology, Clifton, New York, 490 pp. DOI: https://doi.org/10.1007/978-1-62703-074-8
6. Gergerich R.C., Dolja V.V. 2006. Introduction to plant viruses, the invisible foe. The Plant Health Instructor: 478. DOI: https://doi.org/10.1094/PHI-I-2006-0414-01
Helliot B., Panis B., Poumay Y., Swennen R., Lepoivre P., Frison E. 2002. Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana ( Musa spp.). Plant Cell Reports 20 (12): 1117–1122. DOI: https://doi.org/10.1007/s00299-002-0458-8
7. Hu G., Dong Y., Zhang Z., Fan X., Ren F., Zhou J. 2015. Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture 121 (2): 435–443. DOI: https://doi.org/10.1007/s11240-015-0714-6
8. Hu J.S., Li H.P., Barry K., Wang M. 1995. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two Cucumber mosaic virus isolates infecting banana in Hawaii. Plant Disease 79 (9): 902–906. DOI: https://doi.org/10.1094/PD-79-0902
9. Kaya E. 2015. Using reverse transcription-polymerase chain reaction (RT-PCR) for determination of Apple mosaic ilarvirus (ApMV) in hazelnut ( Corylus avellana L.) cultivars. JSM Biochemistry and Molecular Biology 3 (1): 1011.
10. Kaya E., Alves A., Rodrigues L., Jenderek M., Hernandez-Ellis M., Ozudogru A., Ellis D. 2013. Cryopreservation of Eucalyptus Genetic Resources. CryoLetters 34 (6): 608–618.
11. Kaya E., Galatali S., Guldag S., Ozturk B. 2020. A new perspective on cryotherapy: pathogen elimination using plant shoot apical meristem via cryogenic techniques. p. 137–148. In: " Plant Stem Cells: Methods and Protocols" (M. Naseem, T. Dandekar, eds.). Springer, US, 150 pp. DOI: https://doi.org/10.1007/978-1-0716-0183-9
12. Kaya E., Souza F.V.D. 2017. Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane ( Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cellular and Developmental Biology - Plant 53: 410–417. DOI: https://doi.org/10.1007/s11627-017-9837-2
13. Kobylko T., Nowak B., Urban A. 2005. Incidence of Apple mosaic virus (ApMV) on hazelnut in south-east Poland. Folia Horticulturae 17 (2): 153–161.
14. Kumar S., Khana M.S., Raja S.K., Sharmab A.K. 2009. Elimination of mixed infection of Cucumber mosaic and Tomato aspermy virus from Chrysanthemum morifolium Ramat. cv. Pooja by shoot meristem culture. Scientia Horticulturae 119 (2): 108–112. DOI: https://doi.org/10.1016/j.scienta.2008.07.017
15. Lambardi M., Sharma K.K., Thorpe T.A. 1993. Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine ( Pinus halepensis Mill.). In Vitro Cellular and Developmental Biology – Plant 29: 189–199. DOI: https://doi.org/10.1007/BF02632034
16. Lloyd G., McCown B. 1980. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. International Plant Propagators' Society 30: 421–427.
17. López-Delgado H., Mora-Herrera M.E., Zavaleta-Mancera H.A., Cadena-Hinojosa M., Scott I.M. 2004. Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research 81 (3): 171–176. DOI: https://doi.org/10.1007/BF02871746
18. Marascuilo L.A., McSweeney M. 1977. Post-hoc multiple comparisons in sample preparations for test of homogeneity. p. 141–147. In: “Non-Parametric and Distribution-Free Methods for the Social Sciences” (M. McSweeney, L.A. Marascuilo, eds.). Pacific Grove, CA, USA: Brooks/Cole Publications.
19. Menzel N., Jelkmann N., Maiss E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant m-RNA as internal control. Journal of Virological Methods 99: 89–92. DOI: https://doi.org/10.1016/S0166-0934(01)00381-0
20. Milosevic S., Cingel A., Jevremovic S.B., Stankovic I., Bulajic A., Branka K., Subotic A. 2012. Virus elimination from ornamental plants using in vitro culture techniques. Journal Pesticides and Phytomedicine – Pesting 27 (3): 203–211. DOI: https://doi.org/10.2298/PIF1203203M
21. Nukari A., Uosukainen M., Rokka V.M. 2009. Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland. Agricultural and Food Science 18: 117–128. DOI: https://doi.org/10.2137/145960609789267506
22. O’Donnell K. 1999. Plant pathogen diagnostics: present status and future developments. Potato Research 42: 437–447. DOI: https://doi.org/10.1007/BF02358160
23. Ozudogru E.A., Kaya E., Kirdok E., Issever-Ozturk S. 2011. In vitro propagation from young and mature explants of thyme ( Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cellular & Developmental Biology – Plant 47: 309–320. DOI: https://doi.org/10.1007/s11627-011-9347-6
24. Paprstein F., Sedlak J., Polak J., Svobodova L., Hassan M., Bryxiova M. 2008. Results of in vitro thermotherapy of apple cultivars. Plant Cell Tissue and Organ Culture 94 (3): 347–352. DOI: https://doi.org/10.1007/s11240-008-9342-8
25. Paprstein F., Sedlak J., Svobodova L., Polak J., Gadiou S. 2013. Results of in vitro chemotherapy of apple cv. Fragrance. Horticultural Science 40: 186–190. DOI: https://doi.org/10.17221/37/2013-HORTSCI
26. Ramgareeb S., Snyman S.J., van Antwerpen T., Rutherford R.S. 2010. Elimination of virus and rapid propagation of disease-free sugarcane ( Saccharum spp. cultivar NCo376) using apical meristem culture. Plant Cell Tissue and Organ Culture 100: 175–181. DOI: https://doi.org/10.1007/s11240-009-9634-7
27. Rout G.R., Mohanpatra A., Jain M.S. 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology Advances 24 (6): 531–560. DOI: https://doi.org/10.1016/j.biotechadv.2006.05.001
28. Sakai A., Kobayashi S., Oiyama I. 1990. Cryopreservation of nucellar cells of navel orange ( Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9: 30–33. DOI: https://doi.org/10.1007/BF00232130
29. Sellner L.N., Coelen R.J., Mackenzie J.S. 1992. A one-tube, one manipulation RT-PCR reaction for detection of Ross river virus. ‎ Journal of Virological Methods 40 (3): 255–263. DOI: https://doi.org/10.1016/0166-0934(92)90084-Q
30. Slack S.A., Tufford L.A. 1995. Meristem culture for virus elimination. p. 117–128. In: "Plant Cell, Tissue and Organ Culture, Fundamental Methods" (O.L. Gamborg, G.C. Phillips, eds.), Springer-Verlag Berlin Heidelberg, 349 pp. DOI: https://doi.org/10.1007/978-3-642-79048-5
31. Spiegel S., Frison E.A., Converse R.H. 1993. Recent development in therapy and virus-detection procedures for international movements of clonal plant germplasm. Plant Disease 77: 176–1180. DOI: https://doi.org/10.1094/PD-77-1176
32. Spiegel S., Scott W., Bowman-Vance V., Tam Y., Galiakparov N.N., Rosner A. 1996. Improved detection of prunus necrotic ringspot virus by the polymerase chain reaction. European Journal of Plant Pathology 102 (7): 681–685. DOI: https://doi.org/10.1007/BF01877249
33. Tan R., Wang L., Hong N., Wang G. 2010. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tissue and Organ Culture 101: 229–235. DOI: https://doi.org/10.1007/s11240-010-9681-0
34. Ustaoglu B., Karaca M. 2010. The possible effects of temperature conditions on hazelnut farming in Turkey. Itudergisi 9 (3): 153–161.
35. Valasevich N., Cieślińska M., Kolbanova E. 2014. Molecular characterization of Apple mosaic virus isolates from apple and rose. European Journal of Plant Pathology 141: 839–845. DOI: https://doi.org/10.1007/s10658-014-0580-9
36. Vivek M., Modgil M. 2018. Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. Virus Disease 29 (1): 75–82. DOI: https://doi.org/10.1007/s13337-018-0437-5
37. Wang Q.C., Cuellar W.J., Rajamäki M.L., Hiraka Y., Valkonen J.P.T. 2008. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology 9: 237–250. DOI: https://doi.org/10.1111/j.1364-3703.2007.00456.x
38. Wang Q., Liu Y., Xie Y., You M. 2006. Cryotherapy of Potato Shoot Tips for Efficient Elimination of Potato Leafroll Virus (PLRV) and Potato Virus Y (PVY). Potato Research 49: 119–129. DOI: https://doi.org/10.1007/s11540-006-9011-4
39. Wang Q., Panis B., Engelmann F., Lambardi M., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: a technique for pathogen elimination to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Annals of Applied Biology 154: 351–363. DOI: https://doi.org/10.1111/j.1744-7348.2008.00308.x
40. Wang Q.C., Valkonen J.P.T. 2008a. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods 154: 135–145. DOI: https://doi.org/10.1016/j.jviromet.2008.08.006
41. Wang Q.C., Valkonen J.P.T. 2008b. Efficient elimination of Sweetpotato little leaf phytoplasma fromsweetpotato by cryotherapy of shoot tips. Plant Pathology 57: 338–347. DOI: https://doi.org/10.1111/j.1365-3059.2007.01710.x
42. Wang Q.C., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: novel pathogen eradication method. Trends in Plant Science 14: 119–122. DOI: https://doi.org/10.1016/j.tplants.2008.11.010
43. Wang B., Wang R.R., Cui Z.H., Bi W.L., Li J.W., Li B.Q., Ozudogru E.A., Volk G.M., Wang Q.C. 2014. Potencial applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances 32: 583–595. DOI: https://doi.org/10.1016/j.biotechadv.2014.03.003
44. Ward E., Foster S.J., Fraaije B.A. McCartney H.A. 2004. Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Annals of Applied Biology 145: 1–16. DOI: https://doi.org/10.1111/j.1744-7348.2004.tb00354.x
Przejdź do artykułu

Autorzy i Afiliacje

Ergun Kaya
1

  1. Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The benefits of Lagos spinach ( Celosia argentea L.) as a medicinal plant and leafy vegetable encourage its production. However, goat weed ( Ageratum conyzoides L.) is a common weed in the agroecological region where C. argentea thrives. Evaluation of the goat weed effect on C. argentea is necessary since the impact of crop-weed interaction varies with species and density. A screen-house study comprising a C. argentea plant with 0, 2, 4, 6, 8, and 10 goat weed plants per pot were laid out in a completely randomized design and replicated six times. The experimental treatments were equivalent to 0, 100, 200, 300, 400, and 500 goat weed plants per square meter. Growth parameters of C. argentea, such as plant height, number of leaves and number of branches, were recorded weekly. The study also analyzed weight, moisture, ash, lipid, dietary fiber, protein, and carbohydrate content of C. argentea after harvest. The results showed that all the goat weed densities negatively impacted the growth of C. argentea. However, 8 and 10 goat weed plants per pot seemed to have the greatest effect on the growth of C. argentea. The moisture content, ash, crude protein, and crude fiber of C. argentea were significantly reduced by 50–60%, 60–69%, 45–56%, and 42–54%, respectively, due to the goat weed densities, whereas the carbohydrate content increased. Hence, goat weed should be maintained at less than 100 plants per square meter to prevent quantitative and qualitative losses.
Przejdź do artykułu

Bibliografia

1. Adediran O.A., Gana Z., Oladiran J.A., Ibrahim H. 2015. Effect of age at harvest and leaf position on the yield and nutritional composition of Celosia argentea L. International Journal of Plant and Soil Science (6): 359–365. DOI: https://doi.org/10.9734/IJPSS/2015/15063
2. Adegbaju O.D., Otunola G.A., Afolayan A.J. 2019. Proximate, mineral, vitamin and anti-nutrient content of Celosia argentea at three stages of maturity. South African Journal of Botany 124: 372–379. DOI: https://doi.org/10.1016/j.sajb.2019.05.036
3. Akadiri M., Ayodele O., Aladesanwa R. 2017. Evaluation of selected post-emergence herbicides for weed management in maize at different agroecological zones of Nigeria. World Journal of Agricultural Research 5 (5): 258–264. DOI: https://doi.org/ 10.12691/wjar-5-5-2
4. AOAC. 2012. Official Methods of Analysis of AOAC International. 19th ed. Volume I & II, AOAC International, Suite 500, 481 North Frederick Avenue, Gaithersburg, Maryland, USA.
5. Asthir B., Jain D., Kaur B., Bain N. 2017. Effect of nitrogen on starch and protein content in grain influence of nitrogen doses on grain starch and protein accumulation in diversified wheat genotypes. Journal of Environmental Biology 38 (3): 427–433. DOI: https://doi.org/ 10.22438/jeb/38/3/MS-167
6. Ayorinde O., Zhirin S., Haruna I. 2017. Morphological characteristics of Celosia argentea as influenced by different rates of poultry manure and spacing in northern Guinea savana. PAT 13 (1): 57–64.
7. Bakker R., Elbersen H. 2005. Managing ash content and quality in herbaceous biomass: an analysis from plant to product. p. 17. Proceedings of the 14th European Biomass Conference. 17–21 October 2005, Paris, France, 1846 pp.
8. Bal L., Kar A., Satya S., Naik S. 2011. Kinetics of colour change of bamboo shoot slices during microwave drying. International Journal of Food Science and Technology 46 (4): 827–833. DOI: https://doi.org/10.1111/j.1365-2621.2011.02553.x
9. Baličević R., Ravlić M., Knežević M., Serezlija I. 2014. Allelopathic effect of field bindweed (Convolvulus arvensis L.) water extracts on germination and initial growth of maize. The Journal of Animal and Plant Sciences 24 (6): 1844–1848.
10. Basu S.R. 2016. Plant adaptation to drought stress. F1000Research 5 (F1000 Faculty Rev): 1554. DOI: https://doi.org/10.12688/f1000research.7678.1
11. Bhandari D., Sen D. 1979. Agroecosystem analysis of the Indian arid zone I. Indigofera cordifolia heyne ex roth. as a weed. Agro-Ecosystems 5 (3): 257–262. DOI: https://doi.org/10.1016/0304-3746(79)90005-2
12. de Oliveira F., Gama D., Dombroski J., Silva D., Oliveira Filho F., Neta T., de Souza M. 2018. Competition between cowpea and weeds for water: effect on plant growth. Revista Brasileira de Ciências Agrárias (Agrária) 13 (1): 1–7. DOI: https://doi.org/10.5039/agraria.v13i1a550
14. Del Pozo A., Perez P., Gutierrez D., Alonso A., Morcuende R., Martınez -Carrasco R. 2007. Gas exchange acclimation to elevated CO2 in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany 59 (3): 371–380. DOI: https://doi.org/10.1016/j.envexpbot.2006.04.009
15. Denloye A.A., Makinde O.S., Ajelara K.O., Alafia A.O., Oiku E.A, Dosunmu O.A., Makanjuola W.A., Olowu R.A. 2014. Insects infesting selected vegetables in Lagos and the control of infestation on Celosia argentea (L.) with two plant oils. International Journal of Pure and Applied Zoology 2 (3): 187–195.
16. Didon U. 2002. Variation between barley cultivars in early response to weed competition. Journal of Agronomy and Crop Science 88 (3): 176–184. DOI: https://doi.org/10.1046/j.1439-037X.2002.00566.x
17. Dina S., Klikoff L. 1973. Effect of plant moisture stress on carbohydrate and nitrogen content of bit sagebrush. Journal of Range Management 26 (3): 207–209.
18. Gbadamosi R.O., Adeoluwa O.O. 2014. Improving the yield of Celosia argentea in organic farming system with system of crop intensification. Building Organic Bridges 3: 859–862.
19. George D. and Mallery P. 2016. IBM SPSS Statistics 23 Step by Step: A Simple Guide and Reference. 14th edition, Routledge, New York, 400 pp.
20. Ilodibia C.V., Chukwuma M.U., Okeke N.F., Adimonyemma R.N., Igboabuchi N.A., Akachukwu E.E. 2016. Growth and yield performance to plant density of Celosia argentea in Anambra State, Southeastern Nigeria. International Journal of Plant and Soil Science 12 (5): 1–5. DOI: https://doi.org/10.9734/IJPSS/2016/27923
21. Kaur S., Batish D., Kohli R., Singh H. 2012. Ageratum conyzoides: an alien invasive weed in India. p. 57–76. In: "Invasive Alien Plants; An Ecological Appraisal for the Indian Subcontinent" (J. Bhatt, J. Singh, R. Tripathi, S. Singh., R. Kohli, eds.). CABI, Oxfordshire, 314 pp.
22. Kohli R., Batish D., Singh J., Singh H., Bhatt J. 2012. Plant invasion in India: an overview. p. 1–9. In: "Invasive Alien Plants; An Ecological Appraisal for the Indian Subcontinent" (J. Bhatt, J. Singh, R. Tripathi, S. Singh., R. Kohli, eds.). CABI, Oxfordshire, 314 pp.
23. Law-Ogbomo K.E., Ekunwe P.A. 2011. Growth and herbage yield of Celosia argentea as influenced by plant density and NPK fertilization in degraded ultisol. Tropical and Subtropical Agroecosystems 14 (1): 251–260.
24. Makinde E., Ayoola O., Makinde E. 2009. Intercropping leafy greens and maize on weed infestation, crop development, and yield. International Journal of Vegetable Science 15 (4): 402–411. DOI: https://doi.org/10.1080/19315260903047371
25. Makinde E., Salau A., Odeyemi O. 2016. Evaluation of poultry manure application rate and plant population on growth, dry matter partitioning and nutrient uptake of Cock's comb (Celosia argentea L). International Journal of Organic Agriculture Research and Development 13: 1–17.
26. Nedunchezhiyan M., Sahoo B., Ravi V., Sahoo K., Tripathy S., Bharati Sahu D., Toppo M., Munshi R. 2020. Climatic effect on weed management practices in elephant foot yam under high rainfall sub-humid zone. International Journal of Current Microbiology and Applied Sciences 9 (2): 985–991. DOI: https://doi.org/10.20546/ijcmas.2020.902.115
27. Oladokun M. 1978. Nigerian weed species: intraspecific competition. Weed Science 26 (6): 713–718.
28. Omovbude S., Ogbonna N.U., Benwari A.O. 2016. Evaluation of weed suppressive ability of different dead mulch materials for weed control in a celosia (Celosia argentea L.) plot in southern Nigeria. Asian Journal of Science and Technology 7 (9): 3566–3573.
29. Oyekale K.O. 2014. Evaluation of the influence of weeds and weediness on the growth and yield. actaSATECH 5 (1): 1–10.
30. Pandey J., Dash S., Biswal B. 2017. Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress. Protoplasma 254 (4): 1651–1659. DOI: https://doi.org/10.1007/s00709-016-1061-0
31. Saberali S., Mohammadi K. 2019. The above-ground competition between common bean (Phaseolus vulgaris L.) and barnyardgrass (Echinochloa crus-galli L.) affected by nitrogen application. Phytoparasitica 47 (3): 451–460. DOI: https://doi.org/10.1007/s12600-019-00745-y
32. Schappert A., Linn A., Sturm D., Gerhards R. 2019. Weed suppressive ability of cover crops under water-limited conditions. Plant, Soil and Environment 65 (11): 541–548. DOI: https://doi.org/10.17221/516/2019-PSE
33. Sharma M., Singh A., Mushtaq R., Nazir N., Kumar A., Simnani S., Khalil A., Bhat R. 2018. Effect of soil moisture on temperate fruit crops: a review. Journal of Pharmacognosy and Phytochemistry 7 (6): 2277–2282.
34. Wang C., Kong H., He S., Zheng X., Li C. 2010. The inverse correlation between growth rate and cell carbohydrate content of Microcystis aeruginosa. Journal of Applied Phycology 22 (1): 105–107. DOI: https://doi.org/10.1007/s10811-009-9421-1
35. Yang C., Li L. 2017. Hormonal regulation in shade avoidance. Frontiers in Plant Science 8 (1527): 1–8. DOI: https://doi.org/10.3389/fpls.2017.01527
36. Zohaib A.A., Tasassum T. 2016. Weeds cause losses in field crops through allelopathy. Notulae Scientia Biologicae 8 (1): 47–56.
Przejdź do artykułu

Autorzy i Afiliacje

Olatunde Philip Ayodele
1

  1. Department of Agronomy, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

β-1,3-glucanases play a major role in combating the abnormal leaf fall disease (ALF) caused by the oomycete Phytophthora spp. in Hevea brasiliensis, the major commercial source of natural rubber. In this study, partial sequences of four novel promoters of different β-1,3-glucanase genomic forms were amplified through inverse PCR from the H. brasiliensis clone RRII 105 and sequence characterized. This is the first report showing β-1,3-glucanase genes driven by a different set of promoter sequences in a single clone of Hevea. The nucleotide sequencing revealed the presence of 913, 582, 553 and 198 bp promoter regions upstream to the translation initiation codon, ‘ATG’, and contained the essential cis-elements that are usually present in biotic/abiotic stress-related plant gene promoters along with other complex regulatory regions. The amplified regions showed strong nucleosome formation potential and in two of the promoters CpG islands were observed indicating the tight regulation of gene expression by the promoters. The functional efficiency of the isolated promoter forms was validated using promoter: reporter gene (GUS) fusion binary vectors through Agrobacterium mediated transformation in Hevea callus and tobacco. GUS gene expression was noticed in Hevea callus indicating that all the promoters are functional. The transgenic tobacco plants showed no GUS gene expression. The implication of these novel promoter regions to co-ordinate the β-1,3-glucanase gene expression can be utilized for defense specific gene expression in future genetic transformation attempts in Hevea and in a wide variety of plant systems.
Przejdź do artykułu

Bibliografia

1. Adrienne C.S., Barbara J.H. 2006. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryotic Cell 5 (12): 1941–1949. DOI: https://doi.org/10.1128/EC.00277-06
2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
3. Antequera F., Bird A. 1993. Number of CpG islands and genes in human and mouse. Proceedings of the National Academy of Sciences USA 90: 11995–11999. DOI: https://doi.org/10.1073/pnas.90.24.11995
4. Anu K., Limiya J., BinduRoy C.2019. An insight into Hevea – Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology 17: 33–41. DOI: https://doi.org/10.1016/j.cpb.2018.11.009
5. Asawatreratanakul K., Zhang Y.W., Wititsuwannakul D., Wititsuwannakul R., Takahashi S., Rattanapittayaporn A., Koyama T. 2003. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. European Journal of Biochemistry 270: 4671–4680. DOI: 10.1046/j.1432-1033.2003. 03863.x
6. Chalfun-Junior A., Mes J.J., Busscher M., Angenent G.C. 2006. Analysis of the SHP2 enhancer for the use of tissue specific activation tagging in Arabidopsis thaliana. Genetics and Molecular Biology 29 (2): 401–407. DOI: https://doi.org/10.1590/S1415-47572006000200032
7. Ding C., Wang C.Y., Gross K.C., Smith D.L. 2002. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214: 895–901. DOI: https://doi.org/10.1007/s00425-001-0698-9
8. Doyle J.J., Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15. DOI: https://doi.org/10.1007/BF02668371
9. Droge-Laser W., Kaiser A., Lindsay W.P., Halkier B.A., Loake G.J., Doerner P., Dixon R.A., Lamb C. 1997. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO Journal 16: 726–738. DOI: https://doi.org/10.1093/emboj/16.4.726
10. Ebel J., Scheel D. 1992. Elicitor recognition and signal transduction. p. 184–205. In: “Genes Involved in Plant Defense” (T. Boller, F. Meins, eds.). Springer-Verlag, Vienna, Austria. DOI: https://doi.org/10.1007/978-3-7091-6684-0
11. Eulgem T., Rushton P.J., Robatzek S., Somssich I.E. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5: 199–206. DOI: https://doi.org/10.1016/S1360-1385(00)01600-9
12. Feil R., Berger F. 2007. Convergent evolution of genomic imprinting in plants and mammals. Trends in Genetics 23 (4): 192–199. DOI: https://doi.org/10.1016/j.tig.2007.02.004
13. Gao Q., Kachroo A., Kachroo P. 2014. Chemical inducers of systemic immunity in plants. Journal of Experimental Botany 65 (7): 1849–1855. DOI: https://doi.org/ 10.1093/jxb/eru010
14. Greek B.F. 1991. Rubber demand is expected to grow after 1991. Chemical and Engineering News 69: 37–54. DOI: https://doi.org/10.1021/cen-v069n019.p037
15. Higo K., Ugawa Y., Iwamoto M., Korenaga T. 1999. Plant cis-acting DNA elements (PLACE) database. Nucleic Acids Research 27: 297–300. DOI: https://doi.org/10.1093/nar/27.1.297
16. Holsters M., de Walaele., Depicker A., Messens E., Van Montagu M., Schell J. 1978. Transformation of Agrobacterium tumefaciens. Molecular and General Genetics 163: 181–187. DOI: https://doi.org/10.1007/BF00267408
17. Jaiswal R., Nain V., Abdin M.Z., Kumar P.A. 2007. Isolation of pigeon pea ( Cajanus cajan L.) legumin gene promoter and identification of conserved regulatory elements using tools of bioinformatics. Indian Journal of Biotechnology 6: 495–503. DOI: https://doi.org/10.1371/journal.pone.0118630
18. Jefferson R.A., Kavanagh T.A., Bevan M.W. 1987. Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 3901–3907. DOI: https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
19. Jiang C., Pugh B.F. 2009. Nucleosome positioning and gene regulation: advances through genomic. Nature Reviews Genetics 10 (3): 161–172. DOI: https://doi.org/10.1038/nrg2522
20. Jin H., Martin C. 2000. Multifunctionality and diversity within the plant MYB – gene family. Nucleic Acids Research 28: 2004–2011. DOI: https://doi.org/10.1023/a:1006319732410
21. Johnson C.S., Kolevski B., Smyth D.R. 2002. Transparent Testa Glabra 2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14: 1359–1375. DOI: https://doi.org/10.1105/tpc.001404
22. Jones H.D., Doherty A., Wu H. 2005. Review of methodologies and a protocol for the Agrobacterium-mediated genetic transformation of wheat. Plant Methods 1: 5. DOI: https://doi.org/10.1186/1746-4811-1-5
23. Jongedijk E., Tigelaar H., Van Roekel J.S.C., Bres-Vloemans SA., Dekker I., Vanden Elzen P.J.M., Cornelissen BJC., Melchers L. 1995. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85: 173–180. DOI: https://doi.org/10.1007/BF00023946
24. Jung M., Pfeifer G.P. 2103. 2nd edition. San Diego: Academic Press, USA, 4368 pp. DOI: https://doi.org/10.1016/B978-0-12-374984-0.00349-1
25. Jyothishwaran G., Kotresha D., Selvaraj T., Srideshikan S.H., Rajvanshi P.K., Jayabaskaran C. 2007. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Current Science 93 (6): 770–772.
26. Kala R.G., Kumari Jayasree P., Sushamakumari S., Sobha S., Jayashree R., Rekha K., Thulaseedharan A. 2006. In vitro regeneration of Hevea brasiliensis from leaf explants. p. 223–228. In: “Recent Trends in Horticultural Biotechnology” (R. Keshavachandran, eds.). New India Publishing Agencies, New Delhi, India, 1090 pp.
27. Kawagoe Y., Murai N. 1996. A novel basic region/helix-loop-helix protein binds to the G-box motif of the bean β-phaseolin gene. Plant Science 116: 47–57. DOI: https://doi.org/10.1016/0168-9452(96)04366-X
28. Kiyama R., Trifonov E.N. 2002. What positions nucleosomes? A model. FEBS Lett 523: 7–11. DOI: https://doi.org/10.1016/s0014-5793(02)02937-x
29. Kombrink E., Schmelzer E. 2001. The hypersensitive response and its role in local and systemic disease eesistance. European Journal of Plant Pathology 107: 69–78. DOI: https://doi.org/10.1023/a:1008736629717 AGR: IND23222876
30. Levitsky V.G., Podkolodnaya O.A., Kolchanov N.A., Podkolodny N.L. 2001. Nucleosome formation potential of exons, introns, and Alu repeats. Bioinformatics 17: 1062–1064. DOI: https://doi.org/10.1093/bioinformatics/17.11.1062
31. Liu H., Ma W., Xie J., Li H., Luo K., Luo D., Liu L., Sun X. 2018. Nucleosome Positioning and Its Role in Gene Regulation in Yeast. The Yeast Role in Medical Applications. Intech Open Publishers. DOI: https://doi.org/10.5772/intechopen.70935
32. Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J. 1997. Crystal structure of the nucleosome core particle at 2.8 A° resolution. Nature 389: 251–260. DOI: https://doi.org/10.1038/38444
33. Mauch F., Hadwiger L.A., Boller T. 1988. Antifungal hydrolases in pea tissue I. Purification and characterization of two chitinases and two β-1,3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiology 87: 325–333. DOI: https://doi.org/10.1104/pp.87.2.325
34. Mauch F., Staehelin L.A. 1989. Functional implication of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1: 447–457. DOI: https://doi.org/10.1105/tpc.1.4.447
35. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
36. Ochman H., Gerber A.S., Hartl D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621–623.
37. Pan Y.J., Cho C.C., Kao Y.Y., Sun C.H. 2009. A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. Journal of Biological Chemistry 284: 17975–17988. DOI: https://doi.org/10.1074/jbc.m109.012047
38. Park S.W., Kaiyomo E., Kumar D., Mosher S.L., Klessig D.F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113–116. DOI: https://doi.org/10.1126/science.1147113
39. Qi-La S., Yi-Qin W., Wen-Bin L., Li-Ming Z., Yong-Ru. 2008. Isolation of a genomic DNA for Gastrodia antifungal protein and analysis of its promoter in transgenic tobacco. Acta Botanica Sinica 45 (2): 229–233.
40. Rudnizky S., Malik O., Bavly A., Pnueli L., Melamed P., Kaplan A. 2017. Nucleosome mobility and the regulation of gene expression: Insights from single‐molecule studies. Protein Science 26 (7): 1266–1277. DOI: https://doi.org/10.1002/pro.3159
41. Thanseem I., Joseph A., Thulaseedharan A. 2005. Induction and differential expression of β-1,3-glucanase mRNAs in tolerant and susceptible Hevea clones in response to infection by Phytophthora meadii. Tree Physiology 25: 1361–1368. DOI: https://doi.org/10.1093/treephys/25.11.1361
42. Thanseem I., Venkatachalam P., Thulaseedharan A. 2003. Sequence characterization of β-1,3-glucanase gene from Hevea brasiliensis through genomic and cDNA cloning. Indian Journal of Natural Rubber Research 16: 106–114.
43. Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. DOI: https://doi.org/10.1093/nar/22.22.4673
44. Ulker B., Somssich I.E. 2004. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology 7: 491–498. DOI: https://doi.org/10.1016/j.pbi.2004.07.012
45. Vögeli-Lange R., Fründ C., Hart C.M., Nagy F., Meins F Jr. 1994. Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I β-1,3-glucanase B promoter. Plant Molecular Biology 25 (2): 299–311. DOI: https://doi.org/10.1007/BF00023245
46. Vögeli-Lange R., Hansen-Gehri A., Boller T., Meins F. Jr. 1988. Induction of the defense-related glucanohydrolases, β-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Science 54: 171–176. DOI: https://doi.org/10.1016/0168-9452(88)90110-0
47. Yanagisawa S. 1997. Dof DNA-binding domains of plant transcription factors contribute to multiple protein–protein interactions. European Journal of Biochemistry 250: 403–410. DOI: https://doi.org/10.1111/j.1432-1033.1997.0403a.x
48. Zheng H., Lei Y., Zhang Z., Lin S., Zhang Q., Liu W., Du J., An X., Zhao X. 2012. Analysis of promoter activity of PtDrl02 gene in white poplars. Journal of Plant Biochemistry and Biotechnology 21 (1): 88–97. DOI: https://doi.org/10.1007/s13562-011-0084-z

Przejdź do artykułu

Autorzy i Afiliacje

Supriya Radhakrishnan
1 2
Suni Anie Mathew
1 3
Alikunju Saleena
1 4
Arjunan Thulaseedharan
1

  1. Advanced Center for Molecular Biology and Biotechnology, Rubber Research Institute of India, Kottayam, Kerala, India
  2. Department of Biotechnology, University of Kerala,Thiruvananthapuram, Kerala, India
  3. Faculty of Science and Engineering, University of Turku, Turku, Finland
  4. Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The objective of biological control is to reduce chemical treatments on crops. To reduce aphid attacks with the use lady beetles is a positive, respectful alternative since it can maintain an ecological balance. In order to achieve this objective, the Algerian seven-spotted lady beetle ( Coccinella algerica) was bred under laboratory conditions, and biological parameters of this species were studied. The study, conducted from April to May, showed that temperature and relative humidity greatly affected the incubation time of C. algerica eggs. Egg fertility was very high and reached up to 100%. The present work highlighted that the developmental cycle of this lady beetle from the Beni-Douala area (Tizi-Ouzou) passes through five larval stages. The fifth instar larva was recorded for the first time. Indeed, all studies carried out to date have identified only four larval stages in this species and have never mentioned the existence of L5, meaning that this result is original.
Przejdź do artykułu

Bibliografia

1. Ben Halima-Kamel M., Ben Hamouda M.H. 2005. About aphids of fruit trees in Tunisia. Notes fauniques de Gembloux 58: 11–16.
2. Ben Halima Kamel M., Rebhi R., Ommezine A. 2011. Habitats and prey of Coccinella algerica Kovar in different coastal regions of Tunisia. Faunistic Entomology 63: 35–45. (in French, with English abstract)
3. Benoufella-Kitous K. 2015. Bioecology of aphids from different cultures and their natural enemies in Oued Aissi and Draâ Ben Khedda (Tizi-Ouzou). Doctoral thesis. National Agronomic School of El Harrach, Algiers, 334 p. (in French, with English abstract)
4. Brodeur J., Boivin G., Bourgeois G., Cloutier C., Doyon J., Grenier P., Gagnon A.E. 2013. Impact of climate change on the synchronism between pests and their natural enemies: consequences on biological control in agricultural environments in Quebec. Fonds vert, Québec, 99 p. (in French)
5. Dedryver C.A., Le Ralec A., Fabre F. 2010. Conflicting relationships between aphids and humans : a review of their damage and struggle strategies. Comptes Rendus Biologies 333: 539–553. DOI : https://doi.org/10.1016/j.crvi.2010.03.009 (in French, with English abstract)
6. Ferran A., Larroque M.M. 1979. Influence of abiotic factors on the nutritional physiology of larvae of the aphidophagous lady beetle Semiadalia undecimnotata (Col. : Coccinellidae); Temperature action. Entomophaga 24: 403–410. (in French, with English abstract)
7. Guesmi-Jouini J., Boughalleb-M´Hamdi N., Ben Halima-Kamel M. 2011. Preliminary studies on entomopathogenic fungi of artichoke aphids in Tunisia. Faunistic Entomology 63 (3): 171–181. (in French, with English abstract)
8. Harmel H., Francis F., Haubruge E., Giordanengo P. 2008. Physiology of interactions between potato and aphids: towards a new struggle strategy based on plant defense systems. Cahiers agricultures 17 (4): 395–400. DOI: https://doi.org/10.1684/agr.2008.0209 (in French, with English abstract)
9. Iperti G. 1964. Parasites of aphidophagous lady beetles in the Alpes-Maritimes and Basses-Alpes. Entomophaga 9 (2): 153–180.
10. Iperti G. 1986. Laddy beetles from France. Phytoma 377: 14–22.
11. Iperti G., Brun J. 1978. Aphidophagous lady beetle. Office for Entomological Information Fiche : 13–16.
12. Legemble J. 2009. Lady beetles. High Normandy Regional Food Service Fiche : 1–6.
13. Milaire H.G. 1986. From integrated pest management to integrated agricultural production, application to fruit crops. Adalia 3: 76–78.
14. Ongagna P., Giuge L., Iperti G., Ferran A. 1993. Development cycle of Harmonia axyridis (Coleoptera : Coccinellidae) in its area of introduction: the South-East of France. Entomophaga 38 (1): 125–128. (in French, with English abstract)
15. Rahmouni M., Belhamra M., Ben Salah M.K. 2017. Biological control by (Coccinella algerica, Kovar 1977) against the puceron of crops under greenhouses (station bioressources of el outaya CRSTRA) Biskra; Algeria. Journal of Fundamental and Applied Sciences 9 (3): 1585–1597. DOI: http://dx.doi.org/10.4314/jfas.v9i3.21
16. Roy M., Frechette M., Ouellet J. 2010. How to Differentiate the Main Species of Lady Beetles Found in Quebec. Ministry Agriculture, Fisheries, Food, Quebec, 6 p.
17. Saharaoui L. 1987. Inventory of entomophagous lady beetles (Coleoptera, Coccinellidae) in the Mitidja plain and bioecological overview of the main species encountered, for an appreciation of their entomophagous role. African Journal of Zoology 108: 537–546. (in French, with English abstract)
18. Saharaoui L. 1998. Lady Beetles Systematics (Coleoptera, Coccinellidae). Handout. National Institute of Agronomy, El-Harrach-Algiers, 24 pp. (in French)
19. Saharaoui L., Gourreau J.M. 1998. Lady Beetles of Algeria: preliminary inventory and diet (Coleoptera, Coccinellidae). Bulletin de la Société Entomologique de France 103 (3): 213–224. (in French, with English abstract)
20. Saharaoui L., Gourreau J.M. 2000. Lady beetles of Algeria: preliminary inventory and diet (Coleoptera, Coccinellidae). Recherche Agronomique 6: 1l–27. (in French, with English abstract)
21. Saharaoui L., Gourreau J.M., Iperti G. 2001. Study of some biological parameters of the aphidophagous lady beetles of Algeria (Coleoptera : Coccinellidae). Bulletin de la Société Entomologique de France 126 (4): 351–373.
22. Schanderi H., Ferran A., Larroque M.M. 1985. Les besoins trophiques et thermiques des larves de la coccinelle Harmonia axyridis Pallas. Agronomie 5 (5): 417- 421. (in French, with English abstract)
23. Schaub L., Bloesch B., Graf B., Höhn H. 2010. Coccinelles. Fiche: 802. Agroscope Rac Faw, Wädenswil, 3 pp. (in French)
Przejdź do artykułu

Autorzy i Afiliacje

Karima Benoufella-Kitous
1
Naima Mehalli-Ouldkadi
2
Katia Temzi
1

  1. Laboratory of Production, Improvement and Protection of Plants, Department of Animal and Plant Biology, Faculty of Biological Sciences and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria
  2. Laboratory of Production, Safeguard of Threatened Species and Crops, Department of Animal and Plant Biology, Faculty of Biological Sciences and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The intensive use of glyphosate in agricultural areas has increased the frequency of weeds that are resistant to herbicides. Thus, this study was aimed to assess the sensitivity and resistance level of Digitaria insularis (L.) Fedde (sourgrass) populations to glyphosate. Sixty two sourgrass populations were collected from the states of Paraná and São Paulo, Brazil, and subjected to glyphosate application at 1,080 and 2,160 g of acid equivalent (a.e.) · ha–1 in screening assays. Five sourgrass populations were selected, three of which are resistant and two of which are susceptible to glyphosate, to determine the resistance factors (RFs) through dose-response studies at two phenological stages of plant growth: the 2–4-leaf stages and the 2–4-tiller stage. The trials were conducted in a greenhouse in accordance with a completely randomized design. In both trials, the control was evaluated based on the score of the visual control symptoms (VC) and the percentage of dry matter (DM) in relation to those of the control (without application). In the screening test, the data obtained for the response variables were adjusted for frequency curves by following the regression model proposed by Gompertz. The results indicated low sensitivity of D. insularis to glyphosate in 100% of the samples from areas in which soybeans are tolerant to this herbicide. Populations with susceptible plants were found in fallow areas, pasture areas and sugar cane fields. Based on the values of VC50 and DM50, the maximum RF obtained among the populations was 15. More advanced stages of development make sourgrass control difficult, requiring doses that are 3.5 times greater than those at the initial stage.
Przejdź do artykułu

Bibliografia

1. Asociación Latinoamericana De Malezas – ALAM. 1974. Recommendations on the unification of disease control evaluation. Journal of the Latin American Weed Association. 1: 6–38. (in Spanish)
2. Burgos N.R., Tranel P.J., Streibig J.C., Davis V.M., Shaner D., Norsworthy J.K., Ritz C. 2013. Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Science 61 (1): 4–20. DOI: https://doi.org/10.1614/WS-D-12-00032.1
3. Carvalho S.J.P., Lombardi B.P., Nicolai M., López-Ovejero R.F., Christoffoleti P.J., Medeiros D. 2005. Dose-response curves to evaluate the control of weed emergence fluxes by imazapic. Planta Daninha 23 (3): 535–542. DOI: http://dx.doi.org/10.1590/S0100-83582005000300018. (in Portuguese)
4. Carvalho L.B., Hipólito H.C., Torralva F.G., Alves P.L.C.A., Christoffoleti P.J., De Prado R. 2011. Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Science 59 (2): 171–176. DOI: https://doi.org/10.1614/WS-D-10-00113.1
5. Carvalho L.B., Alves P.L., González-Torralva F., Cruz-Hipolito H.E., Rojano-Delgado A.M., Prado R., Gil-Humanes J., Barro F., de Castro M.D. 2012. Pool of resistance mechanisms to glyphosate in Digitaria insularis. Journal of Agricultural and Food Chemistry 60 (2): 615–622. DOI: 10.1021/jf204089d
6. Christoffoleti P.J. 2002. Rate-response curves of resistant and susceptible Bidens pilosa L. biotypes to als-inhibitor herbicides. Scientia Agricola 59 (3): 513–519. DOI: https://doi.org/10.1590/S0103-90162002000300016 (in Portuguese)
7. CONAB. 2018. National Supply Company. Monitoring the Brazilian harvest: grains, ninth survey. 2018. Available on: https://www.conab.gov.br/safras/20861_fb79e3ca2b3184543c580cd4a4aa4. [Accessed on: 10 February 2019]
8. CTNbio. 2019. National Technical Commission on Biosafety. Commercial Releases. Available on: http://ctnbio.mcti.gov.br/liberacaocomercial?p_p_id=110_INSTANCE_SqhWdohU BvU&p_p_lifecycle=0&p_p_state=normal U_fileEntryId=2061402#/liberacao comercial/consultar-processo. [Accessed on: 01 January 2020] (in Portuguese).
9. Hall L.M., Stromme K.M., Horsman G.P. 1998. Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Science 46 (4): 390–396. DOI: https://doi.org/10.1017/S0043174500090780
10. Heap I. 2020. Herbicide resistant sourgrass globally (Digitaria insularis). Available on: http://www.weedscience.org/Summary/Species.aspx. [Accessed on: 01 April 2020]
11. Gemelli A., Oliveira Jr. R.S., Constantin J., Braz G.B.P., Jumes T.M.C., Oliveira Neto A.M., Dan H.A., Biffe D.F. 2012. Biology aspects of Digitaria insularis resistant to glyphosate and implications for its control. Revista Brasileira de Herbicidas 11 (2): 231–240. DOI: https://doi.org/10.7824/rbh.v11i2.186 (in Portuguese)
12. Gompertz B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 115: 513–583.
13. Kissmann K.G., Groth D. 1997. Weed and Harmful Plants. 3rd ed. Tomo I. São Paulo, Brazil, 606 pp.
14. Lopez Ovejero R.F., Takano H.K., Nicolai M., Ferreira A., Melo M.S.C., Cavenaghi A.L. 2017. Frequency and dispersal of glyphosate-resistant sourgrass (Digitaria insularis) populations across brazilian agricultural production areas. Weed Science 65 (2): 285–294. DOI: https://doi.org/10.1017/wsc.2016.31
15. Melo M.S.C., Rocha L.J.F.N., Brunharo C.A.C.G., Nicolai M., Tornisiello V.L., Nissen S.J., Christoffoleti P.J. 2019. Sourgrass resistance mechanism to the herbicide glyphosate. Planta Daninha. Viços. 37: e019185746. DOI: https://doi.org/10.1590/s0100-83582019370100033
16. Mendonça G.S., Martins C.C., Martins D., Costa N.V. 2014. Ecophysiology of seed germination in Digitaria insularis (L.) Fedde. Revista Ciência Agronômica 45 (4): 823–832. DOI: https://doi.org/10.1590/S1806-66902014000400021
17. Mondo V.H.V, Carvalho S.J.P, Dias A.C.R., Júlio M.F. 2010. Light and temperature effects on the seed germination of four Digitaria weed species. Revista Brasileira de Sementes. 32 (1): 131–137. DOI: https://doi.org/10.1590/S0101-31222010000100015 (in Portuguese)
18. Reinert C.S., Prado A.B.C.A., Christoffoleti P.J. 2013. Comparative dose-response curves between sourgrass (Digitaria insularis) resistant and susceptible biotypes to glyphosate Revista Brasileira de Herbicidas. 12 (3): 260–267. DOI: https://doi.org/10.7824/rbh.v12i3.223 (in Portugese)
19. Rodrigues B.N., Almeida F.S. 2018. Herbicide Guide. Londrina, PR, Brazil, 764 pp.
20. Sammons R.D., Gaines T.A. 2014. Glyphosate resistance: state of knowledge. Pest Management Science 70 (9): 1367–1377. DOI: 10.1002/ps.3743
21. Seefeldt S.S., Jensen J.E., Fuerst, E.P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technology 9 (2): 218–227. DOI: https://doi.org/10.1017/S0890037X00023253
22. Silveira H.M., Langaro A.C., Cruz R.A., Sediyama T., Silva A.A. 2018. Glyphosate efficacy on sourgrass biotypes with suspected resistance collected in GR-crop fields. Acta Scientiarum, Agronomy: 40. DOI: http://dx.doi.org/10.4025/actasciagron.v40i1.35120
23. SYSTAT. 2013. Systat Software Products. Available on: https://systatsoftware.com/products/. [Access on: 11 february 2019]
24. Souza R.T.I., Velini E.D., Palladini L. 2007. Methodological aspects for spray deposit analysis by punctual deposit determination. Planta Daninha 25 (1): 195–202. DOI: https://doi.org/10.1590/S0100-83582007000100022 (in Portuguese)
25. Takano H.K., Oliveira Jr. R.S., Constantim J., Mangolim C.A., Machado M.F.P.S., Bevilaqua M.R.R. 2018. Spread of glyphosate-resistant sourgrass (Digitaria insularis): Independent selections or merely propagule dissemination? Weed Biology and Manegement 18: 50–60. DOI: https://doi.org/10.1111/wbm.12143
26. USDA. 2018. United States Department of Agriculture – Brazil – Agricultural Biotechnology Report. Avaliable on: http://usdabrazil.org.br/en/reports/agricultural-biotechnology-annual-5.pdf. [Acessed on: 10 February 2019]
Przejdź do artykułu

Autorzy i Afiliacje

Jhonatan Diego Cavalieri
1
Renan Fonseca Nascentes
1
Matheus Mereb Negrisoli
1
Caio Antonio Carbonari
1
Carlos Gilberto Raetano
1

  1. Department of Plant Protection, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Deformed wing virus (DWV) is one of the most widespread viral infections of European honey bee Apis mellifera L. worldwide. So far, this is the first study which tested the effect of different ratios of synthetic protein to fat (P : F) diets on the health of broodless nurseaged honey bees in the laboratory. The aim of the current study was to determine the load of DWV in the whole body of A. mellifera that were fed different ratios of P : F diets (25 : 1, 10 : 1, 5 : 1, 1 : 1, 1 : 5, 1 : 10, 1 : 12.5 and 1 : 0 as a control). The methods involved feeding bees the tested diets for 10 days and then measuring the virus titre using qPCR technique. The results showed that DWV concentration decreased as the fat content of diets consumed increased. The copy number of viral genomes declined from 7.5 × 105 in the zero-fat diet (1 : 0) to 1.6 × 102 virus genomes in 1 : 12.5 (P : F). We can conclude that there is a positive relationship between fat diets and bee immunity and overall results suggest a connection between fat diet and bee health, indicating that colony losses can be reduced by providing a certain protein and fat supplemental feeding.
Przejdź do artykułu

Bibliografia

1. Alaux C., Dantec C., Parrinello H., Le Conte Y. 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC genomics 12 (1): 496. DOI: https://doi.org/10.1186/1471-2164-12-496.
2. Alaux C., Ducloz F., Crauser D., Le Conte Y. 2010. Diet effects on honeybee immunocompetence. Biology Letters: rsbl20090986. DOI: https://doi: 10.1186/1471-2164-12-496.
3. Basualdo M., Barragan S., Vanagas L., Garcia C., Solana H., Rodriguez E., Bedascarrasbure E. 2013. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 106 (4): 1553–1558. DOI: https://doi.org/10.1603/ec12466.
4. Benaets K., Van Geystelen A., Cardoen D., De Smet L., de Graaf D. C., Schoofs L., Larmuseau M.H., Brettell L.E., Martin S.J., Wenseleers T. 2017. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences 284 (1848), 25 pp. DOI: http://dx.doi.org/10.1098/rspb.2016.2149
5. Branchiccela B., Castelli L., Corona M., Díaz-Cetti S., Invernizzi C., de la Escalera G.M., Mendoza Y., Santos E., Silva C., Zunino P. 2019. Impact of nutritional stress on the honeybee colony health. Scientific Reports 9 (1): 1–11. DOI: https://doi.org/10.1038/s41598-019-46453-9
6. Brodschneider R., Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie 41 (3): 278–294. DOI: https://doi.org/10.1051/apido/2010012
7. Crailsheim K. 1991. Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. Journal of Comparative Physiology B 161 (1): 55–60. DOI: https://doi.org/10.1007/BF00258746
8. Dainat B., Evans J.D., Chen Y.P., Gauthier L., Neumann P. 2012. Predictive markers of honey bee colony collapse. PLoS one 7 (2): e32151. DOI: https:// doi.org/10.1371/journal.pone.0032151.
9. DeGrandi-Hoffman G., Chen Y., Huang E., Huang M.H. 2010. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). Journal of Insect Physiology 56: 1184–1191. DOI: https://doi.org/10.1016/j.jinsphys.2010.03.017
10. deGroot A. 1953. Protein and amino acid requirements of the honey bee (Apis mellifera L.). Phys Comp Oec 3: 197–285. DOI: https://doi.org/10.1007/BF02173740
11. Di Pasquale G., Salignon M., Le Conte Y., Belzunces L.P., Decourtye A., Kretzschmar A., Suchail S., Brunet J.-L., Alaux C. 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PloS One 8 (8): e72016. DOI: https://doi.org/10.1371/journal.pone.0072016
12. Di Prisco G., Annoscia D., Margiotta M., Ferrara R., Varricchio P., Zanni V., Caprio E., Nazzi F., Pennacchio F. 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences 113 (12): 3203–3208. DOI: https://doi.org/10.1073/pnas.1523515113
13. Forzan M., Felicioli A., Sagona S., Bandecchi P., Mazzei M. 2017. Complete genome sequence of deformed wing virus isolated from Vespa crabro in Italy. Genome Announc 5 (40): e00961–00917. DOI: https://doi.org/10.1128/genomeA.00961-17
14. Goodman W.G., Cusson M. 2012. The juvenile hormones p. 310–365. In: "Insect Endocrinology" (L.I. Gilbert, ed.). San Diego, Academic Press. CA, USA.
15. Goulson D., Nicholls E., Botías C., Rotheray E. L. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229): 1–16. DOI: 10.1126/science.1255957
16. Highfield A.C., El Nagar A., Mackinder L.C., Noel L.M., Hall M.J., Martin S.J., Schroeder D.C. 2009. Deformed wing virus implicated in overwintering honeybee colony losses. Applied Environmental Microbiology 75 (22): 7212–7220. DOI: https://doi.org/10.1128/AEM.02227-09
17. Im S.-S., Yousef L., Blaschitz C., Liu J.Z., Edwards R.A., Young S.G., Raffatellu M., Osborne T.F. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metabolism 13 (5): 540–549. DOI: https://doi.10.1016/j.cmet.2011.04.001
18. Jackman J.A., Cho N.-J. 2020. Supported lipid bilayer formation: beyond vesicle fusion. Langmuir 36 (6): 1387–1400. DOI: 10.1021/acs.langmuir.9b03706
19. Martin S.J., Brettell L.E. 2019. Deformed wing virus in honeybees and other insects. Annual Review of Virology 6: 49–69. DOI: https://doi.org/10.1146/annurev-virology-092818-015700
20. Moore J., Jironkin A., Chandler D., Burroughs N., Evans D.J., Ryabov E.V. 2011. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. Journal of General Virology 92 (1): 156–161. DOI: 10.1099/vir.0.025965-0
21. Ponton F., Wilson K., Cotter S.C., Raubenheimer D., Simpson S.J. 2011. Nutritional immunology: a multi-dimensional approach. PLoS Pathogens 7 (12): e1002223. DOI: https://doi.org/10.1371/journal.ppat.1002223
22. Ponton F., Wilson K., Holmes A.J., Cotter S.C., Raubenheimer D., Simpson S.J. 2013. Integrating nutrition and immunology: a new frontier. Journal of Insect Physiology 59 (2): 130–137. DOI: https://doi.org/10.1016/j.jinsphys.2012.10.011
23. Roulston T.A.H., Cane J.H., Buchmann S.L. 2000. What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Monographs 70 (4): 617–643. DOI: https://doi.org/10.1890/0012-9615(2000)070[0617:WGPCOP]2.0.CO;2
24. Smilanich A.M., Mason P.A., Singer M.S. 2014. Ecological immunology mediated by diet in herbivorous insects. Integrative and Comparative Biology 54 (5): 913–921. DOI: https:// doi.org/10.1093/icb/icu089.
25. Staroscik A. 2004. Calculator for determining the number of copies of a template. URI Genomics and Sequencing Center.
26. Tantillo G., Bottaro M., Di Pinto A., Martella V., Di Pinto P., Terio V. 2015. Virus Infections of honeybees Apis mellifera. Italian Journal of Food Safety 4 (3): 5364–5364. DOI: https://doi.org/10.4081/ijfs.2015.5364.
27. Vaudo A.D., Stabler D., Patch H.M., Tooker J.F., Grozinger C.M., Wright G.A. 2016. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. Journal of Experimental Biology 219 (24): 3962–3970. DOI: https://doi.org/10.1242/jeb.140772.
28. Winston M.L. 1991. The Biology of the Honey Bee. Harvard University Press, Cambridge, USA. 281 pp.

Przejdź do artykułu

Autorzy i Afiliacje

Baida Mohsen Alshukri
1
Mushtaq Talib Al-Esawy
1 2

  1. Plant Protection Department, University of Kufa, Najaf Governorate, Iraq
  2. Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Modern agriculture and plant breeding must continuously meet the high and increasingly growing requirements of consumers and recipients. In this context, one of the conditions for effective management of any farm is access to quick and efficient diagnostics of plant pathogens, the result of which, together with the assessment of experts, provide breeders with tools to effectively reduce the occurrence of plant diseases. This paper presents information about biodiversity and spectrum of endophytic and phytopathogenic bacterial species identified in plant samples delivered to the Plant Disease Clinic in 2013–2019. During the tests, using the Biolog Gen III system, the species affiliation of the majority of detected bacterial strains found in plant tissues as an endophyte and not causing disease symptoms on plants was determined. These data were compiled and compared with the number of found identifications for a given species and data on the pathogenicity of bacterial species towards plants. In this way, valuable information for the scientific community was obtained about the species composition of the bacterial microbiome of the crop plants studied by us, which were confronted with available literature data. In the study, special attention was paid to tomato, which is the plant most often supplied for testing in the Plant Disease Clinic due to its economic importance.
Przejdź do artykułu

Bibliografia

1. Ahmed F.A., Arif M., Alvarez A.M. 2017. Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in tomato. Frontiers in Microbiology 8: 1–9. DOI: 10.3389/fmicb.2017.01728
2. Bosmans L., Moerkens R., Wittemans L., De Mot R., Rediers H., Lievens B. 2017. Rhizogenic agrobacteria in hydroponic crops: epidemics, diagnostics and control. Plant Pathology 66: 1043–1053. DOI: https://doi.org/10.1111/ppa.12687
3. Buell C.R., Joardar V., Lindeberg M. Selengut J, Paulsen I.T., Gwinn M.L., Dodson R.J., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R., Daugherty S., Brinkac L., Beanan M.J., Haft D.H., Nelson W.C., Davidsen T., Zafar N., Zhou L., Liu J., Yuan Q., Khouri H., Fedorova N., Tran B., Russell D., Berry K., Utterback T., Van Aken S.E., Feldblyum T.V., D'Ascenzo M., Deng W.L., Ramos A.R., Alfano J.R., Cartinhour S., Chatterjee A.K., Delaney T.P., Lazarowitz S.G., Martin G.B., Schneider D.J., Tang X., Bender C.L., White O., Fraser C.M., Collmer A. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America 100: 10181–10186. DOI: 10.1073/pnas.1731982100
4. Chojniak J., Jałowiecki Ł., Dorgeloh E. Hegedusova B., Ejhed H., Magnér J., Płaza G. 2015. Application of the BIOLOG system for characterization of Serratia marcescens ss marcescens isolated from onsite wastewater technology (OSWT). Acta Biochimica Polonica 62: 799–805. DOI: 10.18388/abp.2015_1138
5. Ciardi J.A., Tieman D.M., Lund S.T., Jones J.B., Stall R.E., Klee H.J. 2000. Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiology 123: 81–92. DOI: 10.1104/pp.123.1.81
6. Coutinho T.A., Venter S.N., 2009. Pantoea ananatis: an unconventional plant pathogen. Molecular Plant Pathology 10: 325–335. DOI: 10.1111/j.1364-3703.2009.00542.x
7. Daami-Remadi M. 2007. First report of Pectobacterium carotovorum subsp. carotovorum on tomato plants in Tunisia. Tunisian Journal of Plant Protection 2: 1–5.
8. Esker P.D., Nutter F.W. 2002. New frontiers in plant disease losses and disease management assessing the risk of stewart’s disease of corn through improved knowledge of the role of the corn flea beetle vector. Phytopathology: 1999–2001.
9. Freeman N.D., Pataky J.K. 2001. Levels of stewart’s wilt resistance necessary to prevent reductions in yield of sweet corn hybrids. Plant Disease 85: 1278–1284. DOI: https://doi.org/10.1094/PDIS.2001.85.12.1278
10. Gartemann K.H., Kirchner O., Engemann J., Gräfen I., Eichenlaub R., Burger A. 2003. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology 106: 179–191. DOI: https://doi.org/10.1016/j.jbiotec.2003.07.011
11. SP. 2018. Produkcja upraw rolnych i ogrodniczych w 2017 r. Statistics Poland: 1–84.
12. Iakimova E.T., Sobiczewski P., Michalczuk L., Wegrzynowicz-Lesiak E., Mikiciński A., Woltering E.J. 2013. Morphological and biochemical characterization of Erwinia amylovora-induced hypersensitive cell death in apple leaves. Plant Physiology and Biochemistry 63: 292–305. DOI: 10.1016/j.plaphy.2012.12.006
13. Jones J.B. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology 76: 430.
14. Kalużna M., Pulawska J., Waleron M., Sobiczewski P. 2014. The genetic characterization of Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight in Poland. Plant Pathology 63: 1404–1416. DOI: https://doi.org/10.1111/ppa.12211
15. Kałużna M., Willems A., Pothier J.F., Ruinelli M., Sobiczewski P., Puławska J. 2016. Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry. Systematic and Applied Microbiology 39: 370–377. DOI: 10.1016/j.syapm.2016.05.005
16. Krawczyk K., Borodynko-Filas N. 2020. Kosakonia cowanii as the new bacterial pathogen affecting soybean ( Glycine max Willd.). European Journal of Plant Pathology 157: 173–183. DOI: https://doi.org/10.1007/s10658-020-01998-8
17. Krawczyk K., Kamasa J., Zwolińska A., Pospieszny H. 2010. First report of Pantoea ananatis associated with leaf spot disease of maize in Poland. Journal of Plant Pathology 92: 807–811. DOI: http://dx.doi.org/10.4454/jpp.v92i3.332
18. Krawczyk K., Łochyńska M. 2020. Identification and characterization of Pseudomonas syringae pv. mori affecting white mulberry ( Morus alba) in Poland. European Journal of Plant Pathology 158: 281–291. DOI: https://doi.org/10.1007/s10658-020-02074-x
19. Krawczyk K., Zwolińska A., Pospieszny H., Borodynko N. 2016. First report of ‘ Candidatus Phytoplasma asteris’- related strain affecting juniperus plants in Poland. Plant Disease 100: 2521–2521. DOI: https://doi.org/10.1094/PDIS-05-16-0621-PDN
20. Lukezic F.L. 1979. Pseudomonas corrugate, a pathogen of tomato, isolated from symptomless alfalfa roots. Phytopathology 69: 27. DOI: 10.1094/Phyto-69-27
21. Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald P., Dow M., Verdier V., Beer S.V., Machado M.A., Toth I., Salmond G., Foster G.D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13:614–629. DOI: 10.1111/J.1364-3703.2012.00804.X
22. Mikiciński A., Sobiczewski P., Puławska J., Maciorowski R. 2016. Control of fire blight ( Erwinia amylovora) by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple ( Malus spp.). European Journal of Plant Pathology 145: 265–276. DOI: https://doi.org/10.1007/s10658-015-0837-y
24. Mikiciński A., Sobiczewski P., Sulikowska M., Puławska J., Treder J. 2010. Pectolytic bacteria associated with soft rot of calla lily ( Zantedeschia spp.) tubers. Journal of Phytopathology 158: 201–209. DOI: https://doi.org/10.1111/j.1439-0434.2009.01597.x
25. Nabhan S., Boer S.H. De Maiss E., Wydra K. 2019. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. International Journal of Systematic and Evolutionary Microbiology 2520–2525. DOI: 10.1099/ijs.0.046011-0
26. Ottesen A.R., González Peña A., White J.R. Pettengill J.B., Li C., Allard S., Rideout S., Allard M., Hill T., Evans P., Strain E., Musser S., Knight R., Brown E. 2013. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiology 13: 114. DOI: https://doi.org/10.1186/1471-2180-13-114
27. Pospieszny H., Krawczyk K., Kamasa J., Petrzik K. 2007. First report of a phytoplasma affecting tomato in Poland. Plant Disease 91: 1054. DOI: https://doi.org/10.1094/PDIS-91-8-1054B
28. Pulawska J., Maes M., Willems A., Sobiczewski P. 2000. Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium, Rhizobium and Sinorhizobium strains. Systematic and Applied Microbiology 23: 238–244. DOI: https://doi.org/10.1016/S0723-2020(00)80010-7
29. Rapicavoli J., Ingel B., Blanco-Ulate B., Cantu D., Roper C. 2018. Xylella fastidiosa: an examination of a re-emerging plant pathogen. Molecular Plant Pathology 19: 786–800. DOI: 10.1111/mpp.12585
30. Sawada H., Azegami K. 2014. First report of root mat (hairy root) of tomato ( Lycopersicon esculentum) caused by Rhizobium radiobacter harboring cucumopine Ri plasmid in Japan. Japanese Journal of Phytopathology 80: 98–114. DOI: https://doi.org/10.3186/jjphytopath.80.98
31. Scarlett C.M., Fletcher J.T., Roberts P., Lelliott R.A. 1978. Tomato pith necrosis caused by Pseudomonas corrugata n. sp. Annals of Applied Biology 88: 105–114. DOI: https://doi.org/10.1111/j.1744-7348.1978.tb00684.x
32. Schaad N.W., Jones J.B., Chun W. 2001. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. American Phytopathological Society (APS Press), 373 pp.
33. Tian B., Zhang C., Ye Y., Wen J., Wu Y., Wang H. 2017. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems and Environment 247: 149–156. DOI: https://doi.org/10.1016/j.agee.2017.06.041
34. Xin X.F., Kvitko B., He S.Y. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology 16: 316–328. DOI: 10.1038/nrmicro.2018.17
35. Zhao Y., Thilmony R., Bender C.L., Schaller A., He S.Y., Howe G.A. 2003. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal 36: 485–499. DOI: 10.1046/j.1365-313x.2003.01895.x
36. Zwolińska A., Borodynko N., Krawczyk K., Pospieszny H. 2016. First report of aster yellows related phytoplasma affecting sugar beets in Poland. Plant Disease 100: 2158. DOI: https://doi.org/10.1094/PDIS-02-16-0225-PDN
37. Zwolińska A., Krawczyk K., Klejdysz T., Pospieszny H. 2011. First report of ‘Candidatus Phytoplasma asteris’ associated with oilseed rape phyllody in Poland. Plant Disease 95: 1475. DOI: https://doi.org/10.1094/PDIS-03-11-0177
38. Zwolińska A., Krawczyk K., Pospieszny H. 2012. Molecular characterization of stolbur phytoplasma associated with pea plants in Poland. Journal of Phytopathology 160: 317–323. DOI: 10.1111/j.1439-0434.2012.01903.x
Przejdź do artykułu

Autorzy i Afiliacje

Weronika Zenelt
1
Krzysztof Krawczyk
2
ORCID: ORCID
Natasza Borodynko-Filas
1
ORCID: ORCID

  1. Plant Disease Clinic and Bank of Plant Pathogen, Institute of Plant Protection – National Research Institute, Poznań, Poland
  2. Department of Molecular Biology and Biotechnology, Institute of Plant Protection – National Research Institute, Poznań, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aim of this study was to evaluate the antioxidant effect of selenium in Pisum sativum L. plants pre-treated with sodium selenite or sodium selenate at a concentration of 10 and 20 μM, and then colonized by pea aphid Acyrthosiphon pisum (Harris). It has been hypothesized that selenium at low concentrations alleviates oxidative stress caused by aphid feeding on pea leaves. The study focused on the generation of reactive oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical), the activities of the antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) scavenging the reactive oxygen species levels, as well as on total antioxidant activity in pea leaves. Selenium in pea leaves exposed to aphid feeding affected changes in the levels of reactive oxygen species, the activity of studied antioxidant enzymes, and the total antioxidant capacity. Effects depended on the form and concentration of selenium, as well as on the time after the colonization of pea plants by aphids. Obtained results showed beneficial effects of selenium in alleviating oxidative stress in pea leaves caused by aphid feeding.
Przejdź do artykułu

Bibliografia

1. Andrade F.R., da Silva G.N., Guimarães K.C., Barreto H.B.F., de Souza K.R.D., Guilherme L.R.G., Faquin V. Reis A.R. 2018. Selenium protects rice plants from water deficit stress. Ecotoxicology and Environmental Safety 164: 562–570. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.022
2. Apel K., Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373–399. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701
3. Bartosz G. 2013. Druga twarz tlenu. Wolne rodniki w przyrodzie. [Second Face of Oxygen. Free Radicals in Nature]. Wydawnictwo Naukowe PWN, Warszawa, Poland, 447 pp. (in Polish)
4. Beauchamp C., Fridovich I. 1971. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44 (1): 276–287. DOI: https://doi.org/10.1016/0003-2697(71)90370-8
5. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2): 248–254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
6. Cartes P., Jara A., Pinilla L., Rosas A., Mora M. 2010. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annales of Applied Biology 156: 297–307. DOI: https://doi.org/10.1111/j.1744-7348.2010.00387.x
7. Coppola V., Coppola M., Rocco M., Digilio M.C., D’Ambrosio C., Renzone G., Renzone G., Martinelli R., Scaloni A., Pennacchio F., Rao R., Corrado G. 2013. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomocs 14: 515–532. DOI: https://doi.org/10.1186/1471-2164-14-515
8. Czerniewicz P., Sytykiewicz H., Durak R., Borowiak-Sobkowiak B., Chrzanowski G. 2017. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiology and Biochemistry 118: 529–540. DOI: https://doi.org/10.1016/j.plaphy.2017.07.024
9. Dampc J., Kula-Maximenko M., Molon M., Durak R. 2020. Enzymatic defense response of apple aphid Aphis pomi to increased temperature. Insects 11 (7): 436. DOI: https://doi.org/10.3390/insects11070436
10. Das K., Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2: 53. DOI: https://doi.org/10.3389/ fenvs.2014.00053
11. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57: 779–795. DOI: https://doi: 10.1007/s000180050041
12. del Pino A.M., Guiducci M., D’Amato R., Di Michele A., Tosti G., Datti A., Palmerini C.A. 2019. Selenium maintains cytosolic Ca2+ homeostasis and preserves germination rates of maize pollen under H2O2-induced oxidative stress. Scientific Reports 9 (1): 1–9. DOI: https://doi.org/1038/s41598-019-49760-3
13. del Río L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53: 1255–1272. DOI: https://doi.org/10.1093/jexbot/53.372.1255
14. Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological Plant Pathology 23 (3): 345–357. DOI: https://doi.org/10.1016/0048-4059(83)90019-X
15. Feng R., Wei C., Tu S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany 87: 58–68. DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002
16. Foyer C.H., Rasool B., Davey J.W., Hancock R.D. 2016. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. Journal of Experimental Botany 67 (7): 2025–2037. DOI: https://doi.org/10.1093/jxb/erw079.
17. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12): 909–930. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
18. Gouveia G.C.C., Galindo F.S., Lanza M.G.D.B., Silva A.C.R., Mateus M.P.B, Silva M.S., Tavanti R.F.R., Tavanti T.R., Lavres J., Reis A.R. 2020. Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicology and Environmental Safety 202: e110916. DOI: https://doi.org/10.1016/j.ecoenv.2020.110916
19. Guardado-Félixa D., Serna-Saldivarb S.O., Cuevas-Rodrígueza E.O., Jacobo-Velázquezb D.A., Gutiérrez-Uribeb J.A. 2017. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea ( Cicer arietinum L.) sprouts. Food Chemistry 226: 69–74. DOI: https://doi.org/10.1016/j.foodchem.2017.01.046
20. Gupta M., Gupta S. 2017. An overview of plant selenium uptake, metabolism and toxicity in plants. Frontiers in Plant Science 7: e2074. DOI: https://doi.org/10.3389/fpls.2016.02074
21. Habibi G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101: 31–39. DOI: https://doi.org/10.2478/acas-2013-0004
22. Hartikainen H., Xue H., Piironen V. 2000. Selenium as an antioxidant. Plant and Soil 225: 193–200. DOI: https://doi.org/10.1023/A:1026512921026
23. He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Guan Z., He C. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defence enzyme activity in response to aphid infestation. Journal of Plant Physiology 168 (7): 687–693. DOI: https://doi.org/10.1016/j.jplph.2010.10.009
24. Holman J. 2009. Host Plant Catalog for Aphids. Palearctic Region. Springer Science + Business Media B.V., Berlin/Heidelberg, Germany, 1216 pp.
25. Hossain M.A., Bhattacharjee S., Armin S.M., Qian P., Xin W., Li H.Y., Burritt D.J., Fujita M, Tran L.-S.P. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science 6: e420. DOI: https://doi.org/10.3389/ fpls.2015.00420
26. Kasote D.M., Katyare S.S., Hegde M.V., Bae H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences 11 (8): 982–991. DOI: https://doi:10.7150/ijbs.12096
27. Kuśnierczyk A., Winge P., Jorstad T.S., Troczyńska J., Rossiter J.T., Bunes A.M. 2008. Towards global understanding of plant defence against aphids timing and dynamics of early Arabidopsis defence responses to cabbage aphid ( Brevicoryne brassicae) attack. Plant, Cell and Environment 31 (8): 1097–1115. DOI: https://doi.org/10.1111/j.1365-3040.2008.01823.x
28. Lehmann S., Serrano M., L’Haridon F., Tjamos S.E., Metraux J P. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112: 54–62. DOI: https://doi.org/10.1016/j.phytochem.2014.08.027
29. Łukasik I., Goławska S., Wójcicka A. 2012. Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies 21 (6): 1937–1941.
30. Łukasik I., Goławska S. 2013. Effect of host plant on levels of reactive oxygen species andantioxidants in the cereal aphids Sitobion avenae and Rhopalosiphum padi. Biochemical Systematic and Ecology 51: 232–239. DOI: https://doi.org/10.1016/j.bse.2013.09.001
31. Łukaszewicz S., Politycka B., Smoleń S. 2018. Effect of selenium on the content of essential micronutrients and their translocation in garden pea. Journal of Elementology 23 (4): 1307–1317. DOI: https://doi.org/10.5601/jelem.2017.22.4.1577.
32. Maffei M.E., Mithöfer A., Boland W. 2007. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68 (22–24): 2946–2959. DOI: https://doi.org/10.1016/j.phytochem.2007.07.016
33. Mai V.C., Bednarski W., Borowiak-Sobkowiak B., Wilkaniec B., Samardakiewicz S., Morkunas I. 2013. Oxidative stress in pea seedling leaves in response to Acirthosiphon pisum infestation. Phytochemistry 93: 49–62. DOI: https://doi.org/10.1016/j.phytochem.2013.02.011
34. Mai V.C., Tran N.T., Nguyen D.S. 2016. The involvement of peroxidases in soybean seedlings’ defence against infestation of cowpea aphid. Arthropod-Plant Interactions 10: 283–292. DOI: https://doi.org/10.1007/s11829-016-9424-1
35. Marchi-Werle L., Heng-Moss T.M., Hunt T.E., Baldin E.L.L., Baird L.M. 2014. Characterization of peroxidase changes in tolerant and susceptible soybeans challenged by soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 107 (5): 1985–1991. DOI: https://doi.org/10.1603/EC14220
36. Mechora Š., Ugrinović K. 2015. Can plant-herbivore interaction be affected by selenium? Austin Journal of Environmental Toxicology 1(1): e5.
37. Messner B., Boll M. 1994. Cell suspension of spruce ( Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide. Plant Cell Tissue Organ and Culture 39: 69–78. DOI: https://doi.org/10.1007/BF00037594
38. Moloi M.J., van der Westhuizen A.J. 2008. Antioxidative enzymes and the Russian wheat aphid ( Diuraphis noxia) resistance response in wheat ( Triticum aestivum). Plant Biology 10 (3): 403–407. DOI: https://doi.org/10.1111/j.1438-8677.2008.00042.x
39. Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22 (5): 867–880. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
40. Ni X., Quinsberry S.S. 2003. Possible roles of esterase, glutathione S-transferase, and superoxide dismutase activities in understanding aphid–cereal interactions. Entomologia Experimentalis et Applicata 108: 187–195. DOI: https://doi.org/10.1046/j.1570-7458.2003.00082.x
41. Ni X., Quisenberry S.S., Heng-Moss T.M., Markwell J., Sarath G., Klucas R., Baxendale F. 2001. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology 94: 743–751. DOI: https://doi.org/10.1603/0022-0493-94.3.743
42. Pereira A.S., Dorneles A.O.S., Bernardy K., Sasso V.M., Bernardy D., Possebom G., Rossato L.V., Dressler V.L., Tabaldi L.A. 2018. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environmental Science and Pollution Research 25: 18548–18558. DOI: https://doi.org/10.1007/s11356-018-2005-3
43. Pierson L.M., Heng-Moss T.M., Hunt T.E., Reese J. 2011. Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid ( Aphis glycines Matsumura) feeding. Arthropod-Plant Interactions 5: 49–58. DOI: https://doi.org/10.1007/s11829-010-9115-2
44. Prochaska T.J. 2011. Characterization of the Tolerance Response in the Soybean KS4202 to Aphis glycines Matsumura. M.Sc. Thesis, University of Nebraska, Lincoln, USA.
45. Prochaska T.J., Pierson L.M., Baldin E.L.L., Hunt T.E., Heng-Moss T.M., Reese J.C. 2013. Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 106 (2): 1036–1044. DOI: https://doi.org/10.1603/EC12320
46. Quan L.J., Zhang B., Shi W.W., Li H.Y. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal od Integrative Plant Biology 50: 2–18. DOI: https://doi.org/10.1111/j.1744-7909.2007.00599.x
47. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. 1999. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231–1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3
48. Ríos J.J., Blasco B., Cervilla L.M., Rosales M.A., Sanchez-Rodriguez E., Romero L., Ruiz J.M. 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology 154: 107–116. DOI: https://doi.org/10.1111/j.1744-7348.2008.00276.x
49. Saxena I., Srikanth S., Chen Z. 2016. Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science 7: e570. DOI: https://doi.org/10.3389/fpls.2016.00570
50. Shalaby T., Bayoumi Y., Alshaal T., Elhawat N., Sztrik A., El-Ramady H. 2017. Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant Soil 421: 245–258. DOI: https://doi.org/10.1007/s11104-017-3458-8
51. Shao Y., Guo M., He X., Fan Q., Wang Z., Jia J., Guo J. 2019. Constitutive H2O2 is involved in sorghum defense against aphids. Brazilian Journal of Botany 42 (2): 271–281. DOI: https://doi.org/10.1007/s40415-019-00525-2
52. Sieprawska A., Kornaś A., Filek M. 2015. Involvement of selenium in protective mechanisms of plants under environmental stress conditions – review. Acta Biologica Cracoviensia. Series Botanica 57 (1): 9–20. DOI: http://dx.doi.org/10.1515/abcsb-2015-0014
53. van Breusegem F., Vranová E., Dat J.F., Inzé D. 2001. The role of active oxygen species in plant signal transduction. Plant Science 161 (3): 405–416. DOI: https://doi.org/10.1016/S0168-9452(01)00452-6
54. von Tiedemann A.V. 1997. Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology 50 (3): 151–166. DOI: https://doi.org/10.1006/pmpp.1996.0076
55. Walz C., Juenger M., Schad M., Kehr J. 2002. Evidence for the presence and activity of a complete defence system in mature sieve tubes. The Plant Journal 31 (2): 189–197. DOI: https://doi.org/10.1046/j.1365-313X.2002.01348.x
56. Wu J., Baldwin I.T. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44: 1–24. DOI: https://doi.org/10.1146/annurev-genet-102209-163500
57. Yang T., Poovaiah B. W. 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America 99 (6): 4097–4102. DOI: https://doi.org/10.1073/pnas.052564899
Przejdź do artykułu

Autorzy i Afiliacje

Sabina Łukaszewicz
1
Barbara Politycka
1
Beata Borowiak-Sobkowiak
2

  1. Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
  2. Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Poznań, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Characterization of angular leaf spot (ALS) disease of beans caused by Pseudocercospora griseola (Sacc.) Crous & Braun along with its occurrence was investigated using 118 isolates obtained from beans grown in greenhouses in the western Black Sea region of Turkey. Incidences of ALS disease ranged between 77–100% and 82–100% for summer and autumn sown bean cultivations while the disease severity was in the ranges of 66–82% and 74–86% for the same periods, respectively. All of the 118 isolates of P. griseola yielded 500–560 bp PCR products from ITS1 and ITS4 primers, while 45 isolates yielded 200–250 bp products from actin genes primer and 5 isolates yielded 300–350 bp from calmodulin primer. The form of the Turkish isolates of P. griseola was determined as f. griseola since ITS sequences of 118 isolates of P. griseola showed between 98–100% similarity to the isolates of P. griseola f. griseola deposited in GenBank and our isolates took place on the same branch on the phylogenetic tree formed by the representative isolates in GenBank. The actin sequences did not give a clear differentiation for the forms of P. griseola. The phylogenetic trees generated by ITS1, ITS2 and actin genes formed similar branches. Each had two main clade and similar sub clades.
Przejdź do artykułu

Bibliografia

1. Abadio A.K.R., Lima S.S., Santana M.F., Salamao T.M.F., Sartorato A., Mizubuti E.S.G., Araujo E.F., Queiroz de M.V. 2012. Genetic diversity analysis of isolates of the fungal bean pathogen Pseudocercospora griseola from central and southern Brazil. Genetics and Molecular Research 11 (2): 1272–1279. DOI: 10.4238/2012.May.14.1
2. Bora T., Karaca İ. 1970. Kültür Bitkilerinde Hastalığın ve Zararın Olçülmesi. [Measurement of Disease and Damage in Cultivated Plants]. Ege University, Faculty of Agriculture Auxiliary Textbook, No. 167. (in Turkish).
3. Canpolat S., Maden S. 2017. Determination of the inoculum sources of angular leaf spot disease caused by Pseudocercospora griseola, on common beans. Plant Protection Bulletin 57 (1): 39–47 (in Turkish with English abstract). DOI: 10.16955/bitkorb.299016, ISSN 0406-3597
4. Canpolat S., Maden S. 2020. Reactions of some common bean cultivars grown in Turkey against some isolates of angular leaf spot disease, caused by Pseudocercospora griseola. Plant Protection Bulletin 60 (2): 45–54. (in Turkish with English abstract). DOI: 10.16955/bitkorb.630968
5. Chilagane L.A., Nchimbi-Msolla S., Kusolwa P.M., Porch T.G., Diaz L.M.S., Tryphone G.M. 2016. Characterization of the common bean host and Pseudocercospora griseola, the causative agent of angular leaf spot disease in Tanzania. African Journal of Plant Science 10 (11): 238–245. DOI: https://doi.org/10.5897/AJPS2016.1427
6. Crous P.W., Lienbenberg M.M., Braun U., Groenewald J.Z. 2006. Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Studies in Mycology 55 (1): 163–173. DOI: 10.3114/sim.55.1.163
7. Ddamulira G., Mukankusi C.M., Ochwo-Ssemakula M., Edema R., Sseruwagi P., Gepts P.L. 2014. Distribution and variability of Pseudocercospora griseola in Uganda. Journal of Agricultural Science 6 (6): 16–29. DOI: 10.5539/jas.v6n6p16
8. Nay M.M., Souza T.L.P.O., Gonçalves-Vidigal M.C., Raatz B., Mukankusi C.M., Gonçalves-Vidigal M.C., Abreu A.F.B., Melo L.C., Pastor-Corrales M.A. 2019. A review of angular leaf spot resistance in common bean. Crop Science 59: 1376–1391. DOI: 10.2135/cropsci2018.09.0596
9. Sartorato A. 2004. Pathogenic variability and genetic diversity of Phaeoisariopsis griseola isolates from two counties in the State of Goias, Brazil. Journal of Phytopathology 152: 385–390.
10. Schoonhoven A., Pastor-Corrales M.A. 1987. Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical, CIAT Apartado Areo 6713 Cali, Colombia, p.56.
11. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725.
12. Townsend G.K., Heuberger J.W. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report 27: 340–343.
13. Viguiliouk E., Mejia S.B., Kendall C.W., Sievenpiper J.L. 2017. Can pulses play a role in improving cardiometabolic health. Evidence from systematic reviews and meta‐analyses. Annuals of the New York Academy of Sciences 1392 (1): 43.
Przejdź do artykułu

Autorzy i Afiliacje

Sirel Canpolat
1
Salih Maden
2

  1. Department of Phytopathology, Ankara Plant Protection Central Research Institute, Ankara, Turkey
  2. Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The present study investigated the potential use of the nano-emulsion of Lippia multiflora Mold. essential oil in managing the cabbage pest ( Brassica oleracea L.) in two Ivorian areas (Yamoussoukro and Korhogo) during the wet seasons (April-September 2018). The nano- -emulsion was tested against cabbage diamondback moth ( Plutella xylostella), aphid ( Brevicoryne brassicae), webworm ( Hellula undalis), cutworm ( Spodoptera exigua) and whitefly ( Bemisia tabaci) under field conditions. The efficacy of essential oil emulsion was compared with the synthetic pesticide Karate 5 EC (Lambda cyhalothrin 52 g · l–1). The results indicated that the nano-emulsion of essential oil gave better control of the cabbage insect pest than the untreated plots. For all the insects studied, the nano-emulsion was very effective towards the species B. brassicae and P. xylostella for which the reduction of the mean population was respectively, 28.48 ± 0.2 and 0.6 ± 0.02 in Yamoussoukro and 0.0 and 7.11 ± 0.16 in Korhogo, compared to 45.32 ± 0.43 and 15.89 ± 0.23, respectively, for untreated plots. The yields of cabbage heads obtained in both areas Yamoussoukro and Korhogo were 4.7 and 15, respectively. The head damage percentages were 23.3% in Yamoussoukro and 26.7% in Korhogo when the fields were sprayed with nano-emulsion and were 13.3% and 28.3%, respectively, when the cabbages were treated with the synthetic pesticide. The formulation obtained here might be an interesting alternative for integrated pest management of cabbage.
Przejdź do artykułu

Bibliografia

1. Aboagye E. 1996. Biological studies and insecticidal control of cabbage worm ( Hellula undalis). PhD Thesis, Bsc. Dissertation, Faculty of Agriculture, KNUST, Kumasi.
2. Baba M.F., Koumaglo K., Ayedoun A., Akpagana K., Moudachirou M., Bouchet P. 1997. Activité antifongique d’huiles essentielles extraites au Bénin et au Togo. Cryptogamie. Mycologie 18 (2): 165–168. (in French)
3. Baidoo P.K., Adam J.I. 2012. The effects of extracts of Lantana camara (L.) and Azadirachta indica (A. Juss) on the population dynamics of Plutella xylostella, Brevicoryne brassicae and Hellula undalis on cabbage. Sustainable Agriculture Research 1: 229–234. DOI: http://dx.doi.org/10.5539/sar.v1n2p229
4. Baidoo P.K., Mochiah M.B. 2016. Comparing the effectiveness of garlic ( Allium sativum L.) and hot pepper ( Capsicum frutescens L.) in the management of the major pests of cabbage Brassica oleracea (L.). Sustainable Agriculture Research 5: 83–91. DOI: http://dx.doi.org/10.5539/sar.v5n2p83
5. Bassole I.H., Guelbeogo W.M., Nebie R., Costantini C., Sagnon N., Kabore Z.I., Traore S.A. 2003. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parassitologia 45: 23–26.
6. Bassolé I.H.N., Lamien-Meda A., Bayala B., Tirogo S., Franz C., Novak J., Nebié R.C., Dicko M.H. 2010. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15: 7825–7839. DOI: https://doi.org/10.3390/molecules15117825
7. Boulogne I., Petit P., Ozier-Lafontaine H., Desfontaines L., Loranger-Merciris G. 2012. Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chemistry Letters 10: 325–347. DOI: http://dx.doi.org/10.1007/s10311-012-0359-1
8. Cerda H., Carpio C., Ledezma-Carrizalez A.C., Sánchez J., Ramos L., Muñoz-Shugulí C., Andino M., Chiurato M. 2019. Effects of aqueous extracts from amazon plants on Plutella xylostella (Lepidoptera: Plutellidae) and Brevicoryne brassicae (Homoptera: Aphididae) in laboratory, semifield, and field trials. Journal of Insect Science 19 (5): 8. DOI: 10.1093/jisesa/iez068
9. Christofoli M., Costa E.C.C., Bicalho K.U., Cássia D. V., Peixoto M.F., Alves C.C.F., Araújo W.L., Melo Cazal C. 2015. Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products 70: 301–308. DOI: https://doi.org/10.1016/j.indcrop.2015.03.025
10. Dadang D., Fitriasari E.D., Prijono D. 2011. Field efficacy of two botanical insecticide formulations against cabbage insect pests, Crocidolomia pavonana (F.) (Lepidoptera: Pyralidae) and Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Journal of International Society for Southeast Asian Agricultural Sciences 17: 38–47.
11. Feng J., Zhang, Q., Liu Q., Zhu Z., McClements D.J., Jafari S.M. 2018. Application of nanoemulsions in formulation of pesticides. p. 379–413. In: “Nanoemulsions, Formulation, Applications, and Characterization” (S.M. Jafari, D.J. McClements, eds.). Elsevier, 664 pp. DOI: 10.1016/B978-0-12-811838-2.00012-6
12. Furlong M.J., Wright D.J., Dosdall L.M. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annual Review of Entomology 58: 517–541. DOI: https://doi.org/10.1146/annurev-ento-120811-153605
13. Gill H.K., Garg H. 2014. Pesticides: environmental impacts and management strategies, Pesticides-toxic aspects. IntechOpen. DOI: 10.5772/57399
14. Ezena G.N., Akotsen-Mensah C., Fening K.O. 2016. Exploiting the insecticidal potential of the invasive siam weed, Chromolaena odorata L. (Asteraceae) in the management of the major pests of cabbage and their natural enemies in Southern Ghana. Advances in Crop Science and Technology 4: 230. DOI: https://doi.org/10.4172/2329-8863.1000230
15. Khoshraftar Z., Safekordi A.A., Shamel A., Zaefizadeh M. 2019. Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chemistry Letters and Reviews 12: 286–298. DOI: https://doi.org/10.1080/17518253.2019.1643930
16. Maji T.K., Baruah I., Dube S., Hussain M.R. 2007. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technology 98: 840–844. DOI: https://doi.org/10.1016/j.biortech.2006.03.005
17. Mondedji A.D., Nyamador W.S., Amevoin K., Ketoh G. K., Glitho I. A. 2014. Efficacité d’extraits de feuilles de neem Azadirachta indica (Sapindale) sur Plutella xylostella (Lepidoptera : Plutellidae), Hellula undalis (Lepidoptera : Pyralidae) et Lipaphis erysimi (Hemiptera : Aphididae) du chou Brassica oleracea (Brassicaceae) dans une approche « Champ Ecole Paysan » au sud du Togo. International Journal of Biological and Chemical Sciences, 8(5): 2286-2295.
18. Munthali D.C., Tshegofatso A.B. 2014. Factors affecting abundance and damage caused by cabbage aphid, Brevicoryne brassicae on four Brassica leafy vegetables: Brassica oleracea var. Acephala, B. chinense, B. napus and B. carinata. The Open Entomology Journal 8: 1–9. DOI: 10.2174/1874407901408010001
19. Mustafa I.F., Hussein M.Z. 2020. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 10: 1608. DOI: https://doi.org/10.3390/nano10081608
20. Oladimeji F.A., Orafidiya O.O., Ogunniyi T.A.B., Adewunmi T.A. 2000. Pediculocidal and scabicidal properties of Lippia multiflora essential oil. Journal of Ethnopharmacology 72: 305–311. DOI: 10.1016/s0378-8741(00)00229-4
21. Owolabi M.S., Ogundajo A., Lajide L., Oladimeji M.O., Setzer W.N., Palazzo M.C. 2009. Chemical composition and antibacterial activity of the essential oil of Lippia multiflora Moldenke from Nigeria. Record of Natural Product 3: 170–177.
22. Paula H.C., Sombra F.M., Abreu F.O., Paul R. 2010. Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. Journal of the Brazilian Chemical Society 21: 2359–2366. DOI: http://doi.org/10.1590/S0103-50532010001200025
23. Shiberu T., Negeri M. 2016. Effects of synthetic insecticides and crude botanicals extracts on cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) on cabbage. Journal of Fertilizers and Pesticides 7: 162. DOI: 10.4172/2471-2728.1000162
24. Solomon B., Sahle F.F., Gebre-Mariam T., Asres K., Neubert R.H.H. 2012. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. European Journal of Pharmaceutics and Biopharmaceutics 80: 61–66. DOI: 10.1016/j.ejpb.2011.08.003
25. Tia E.V., Adima A.A., Niamké S.L., Jean G.A., Martin T., Lozano P., Menut C. 2011. Chemical composition and insecticidal activity of essential oils of two aromatic plants from Ivory Coast against Bemisia tabaci G. (Hemiptera: Aleyrodidae). Natural Product Communications 6 (8): 1183–1188. DOI: 10.1177/1934578X1100600835
26. Tia E.V., Lozano P., Menut C., Lozano Y.F., Martin T., Niamké S., Adima A.A. 2013. Potentiality of essential oils for control of the whitefly Bemisia tabaci Genn., a greenhouse pest. Phytothérapie 11: 31–38. DOI: 10.1007/s10298-012-0736-8
27. Tia V.E., Doannio J.M. C., Adima A.A. 2020. Repellent effect of some essential oil from Ivorian ethnomedicinal plant against malaria vector, Anopheles gambiae (Giles, 1902). International Journal of Mosquito Research 7 (1): 16–24.
28. Yang F.-L., Li X.-G., Zhu F., Lei C.-L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57: 10156–10162. DOI: 10.1021/jf9023118
29. Zorzi G.K., Carvalho E.L.S., von Poser G.L., Teixeira H.F. 2015. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Revista Brasileira de Farmacognosia 25: 426–436. DOI: https://doi.org/10.1016/j.bjp.2015.07.015
Przejdź do artykułu

Autorzy i Afiliacje

Vama Etienne Tia
1
Soumahoro Gueu
2
Mohamed Cissé
1
Yalamoussa Tuo
3
Ayekpa Jean Gnago
4
Eugène Konan
5

  1. Département Biochimie – Génétique, Université Peleforo Gon Coulibaly, BP1328 Korhogo, Côte d’Ivoire (Ivory Coast)
  2. Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, BP1093 Yamoussoukro, Côte d’Ivoire (Ivory Coast)
  3. Département Biologie Animale, Université Peleforo Gon Coulibaly, BP1328 Korhogo, Côte d’Ivoire (Ivory Coast)
  4. Laboratoire de Zoologie Agricole et d’Entomologie, Institut National Polytechnique Félix Houphouët-Boigny, BP1093 Yamoussoukro, Côte d’Ivoire (Ivory Coast)
  5. Département de Recherche et Développement, Compagnie Ivoirienne de Coton (COIC), BP193 Korhogo, Côte d’Ivoire (Ivory Coast)
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The squash beetle Epilachna chrysomelina (F.) is an important insect pest which causes severe damage to cucurbit plants in Iraq. The aims of this study were to isolate and characterize an endogenous isolate of Myrothecium-like species from cucurbit plants and from soil in order to evaluate its pathogenicity to squash beetle. Paramyrothecium roridum (Tode) L. Lombard & Crous was isolated, its phenotypic characteristics were identified and ITS rDNA sequence analysis was done. The pathogenicity of P. roridum strain (MT019839) was evaluated at a concentration of 107 conidia · ml–1) water against larvae and adults of E. chrysomelina under laboratory conditions. The results revealed the pathogenicity of the isolate to larvae with variations between larvae instar responses. The highest mortality percentage was reported when the adults were placed in treated litter and it differed significantly from adults treated directly with the pathogen. Our results documented for the first time that P. roridum has potential as an insect pathogen.
Przejdź do artykułu

Bibliografia

1. Abbott W.S. 1925. A method for computing the effectivenss of an insecticide. Journal of Economic Entomology 8: 265–277.
2. Abdullah S.K., Abbas B.A. 2008. Fungi inhabiting surface sediments of Shatt Al-Arab River and its creeks at Basrah, Iraq. Basrah Journal of Science (B) 26 (1): 68–81.
3. Abdullah S.K., Al-Mosawi K.A. 2010. Fungi associated with seeds of sunflower ( Helianthus annuus) cultivars grown in Iraq. Phytopathologia 57: 11–20.
4. Abdullah S.K., Monfort E., Asensio L., Salinas J., LopezLlorca L.V., Jansson H.B. 2010. Mycobiota of date palm plantations in Elche, SE Spain. Czech Mycology 61 (2): 149–162.
5. Abdullah S.K., Saadullah A.A. 2013. Soil mycobiota at grapevine plantations in Duhok, North Iraq. Mesopotamia Journal of Agriculture 41 (1): 437–447.
6. Abdullah S.K., Zora S.E. 1993. Soil microfungi from date palm plantations in Iraq. Basrah Journal of Science 11 (1): 45–57.
7. Abdul-Rassoul M.S. 1976. Check list of insects of Iraq. Natural History Research Centre, Publication No. 30: 1-41.
8. AmithaV., Shylaja M.D., Nalini M.S. 2014. Fungal endophytes from culinary herbs and their antioxidant activity. International Journal of Current Research 6 (8): 7996–8002.
9. Arnold A.E. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews 21: 51–66.
10. Assaf L.H., Hassan F.R., Younis G.H. 2011. Evaluation of the Entomopathogenic fungi, Beauveria bassiana (Bals.)Vuill.and Paecilomyces farinosus (Dicks ex Fr.) against the Poplar Leaf Beetle Melasoma populi L. Agriculture and Veterinary Sciences 14: 35-44.
11. Awadalla S.S., Abd-Wahab H.A., Abd El-Baky N.F., Abdel-Salam S.S. 2011. Host plant preference of the melon ladybird beetle Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae) on different cucurbit vegetables in Mansoura region. Journal of Plant Protection and Pathology 2 (1): 41–47.
12. Bharath B.G., Likesh S., Yashovarma B., Prakash H.S., Shetty H.S. 2006. Seed-borne nature of Myrothecium roridium in watermelon seeds. Research Journal of Botany 1 (1): 44–45. DOI: 10.3923/rib.2006.44.45.
13. Bosio P., Siciliano I., Gilardi G., Gullino, M.L., Garibaldi A. 2017. Verrucarin A and roridin E produced on rocket by Myrothecium roridium under different temperatures and CO2 levels. World Mycotoxin Journal 10: 229–236.
14. Chavan S.B.,Vidhate R.P., Kallure G.S., Dandawate N.L., Khire J.M., Deshpande M.V. 2017. Stability studies of cuticle and mycolytic enzymes of Myrothecium verrucaria for control of insect pests and fungal phytopathogens. Indian Journal of Biotechnology 16: 404–412.
15. Domsch K.H., Gams W., Anderson T. 2007. Compendium of Soil Fungi. 2nd ed. IHW Verlag, Eching, Germany, 672 pp.
16. Gindin G., Levski S., Glazer I., Soroker V. 2006. Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus. Phytoparasitica 34: 370–379.
17. Han K.S., Choi S.K., Kim H.H., Lee S.C., Park J.H., Cho M.R., Park M.J. 2014. First report of Myrothecium roridium causing leaf and stem rot disease of Pepteromia quadrangularis in Korea. Mycobiology 42 (2): 203–205. DOI: 10.5941/MYCO.2014.42.2.203
18. Hassan F.R. 2003. Studies in poplar leaf beetle Melasoma (= Chrysomela) populi L. (Chrysomelidae: Coleoptera) in Duhok region. M.Sc. thesis, University of Duhok, College of Agriculture, Iraq, 83 pp.
19. Hassan F.R. 2019. Selective Isolation and Biomass Production of Beauveria bassiana and its Virulence to Squash Beetle Epilachna chrysomelina F. Ph.D dissertation, College of Agricultural Engineering Sciences, University of Duhok, Iraq, 165 pp.
20. Hassan F.R., Abdullah S.K., Assaf L.H. 2019. Pathogenicity of the entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill. endophytic and a soil isolate against the squash beetle, Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae). Egyptian Journal of Biological Pest Control 29: 74. DOI: 10.1186/s41938-019-0169-x
21. Haudenshield J.S., Pawlowski M., Miranda C., Hartman G.L. 2018. First report of Paramyrothecium roridium causing Myrothecium leaf spot on soybean in Africa. Plant Disease 102 (12): 2638. DOI: 10.1094/PDIS-04-18-0624-PDN
22. Ismail A.L.S., Abdullah S.K. 1977. Studies on the soil fungi of Iraq. Proceedings of the Indian Academy of Sciences-Section B 86 (3): 151–154.
23. Kwon H.W., Kim J.Y., Choi M.Ah., Son S.Y., Kim S.H. 2014. Characterization of Myrothecium roridium isolated from imported Anthurium plant culture medium. Mycobiology 42 (1): 82–85. DOI: 10.5941/MYCO.2014.42.1.82
24. Lee H.B., Kim J.C., Hong K.S., Kim C.J. 2008. Evaluation of fungal strain, Myrothecium roridium F0252, as a bioherbicide agent. The Plant Pathology Journal 24 (2): 453–460.
25. Li T.-X., Xiong Y.-M., Chen X., Yang Y.-N., Wang, Jia X.-W., Yang X.-P., Tan L.-L., Xu C.-P. 2019. Antifungal macrocyclic Trichothecens from the insect-associated fungus Myrothecium roridium. Journal of Agriculture and Food Chemistry 67 (47): 13033–13039. DOI: 10.1021/acs.jafc.9b04507.
26. Liang J., Li G., Zhou S., Zhao M., Cai l. 2019. Myrothecium-like new species from turfgrasses and associated rhizosphere. MycoKeys 51: 29–53. DOI: 10.3897/mycokeys.51.31957.
27. Liu J.Y., Huang L.L., Ye Y.H., Zou W.X., Guo Z.J., Tan R.X. 2006. Antifungal and new metabo¬lites of Myrothecium sp. Z16, a fungus associated with white croaker Argyromosumar¬gentatus. Journal of Applied Microbiology 100: 195–202. DOI: https://doi.org/10.1111/j.1365- 2672.2005.02760.x
28. Liu H.X., Liu W.Z., ChenY.C., Sun Z.H., Tan Y.Z., Li H.H., Zhang W.M. 2016. Cytotoxic trichothecene macrolides from the endophyte fungus Myrothecium roridium. Journal of Asian Natural Products Research 18 (7): 684–689. DOI: 10.1080/10286020.2015.1134505.
29. Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Reblova M., Groenewald J.Z., Crous P.W. 2016. Genetic hyper-diversity in Stachybotriaceae. Persoonia 36: 156–246. DOI: 10.3767/003158516X691582
30. Macia-Vicente J. G., Jansson H. B., Abdullah S. K., Descals E., Salinas J., Lopez-Llorca L. V. 2008. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiology Ecology 64: 90–105. DOI: 10.1111/j.1574-6941.2007. 00443.
31. Matic S., Gilardi G., Gullino M.L., Garibaldi A. 2019. Emergence of leaf spot disease on leafy vegetable and ornamental crops caused by Paramyrothecium and Albifimbria species. Phytopathology 109: 1053–1061. DOI: 10.1094/PHYTO-10-18-0396-R
32. Mou J.Y. 1975. Preliminary study on Myrothecium sp. (in Chinese). Applicationand Research on Entomogenous Fungus in China 2: 237–238.
33. Okunowo W.O., Gbenle G.O., Osuntoki A.A., Adekunle A.A., Ojokuku S.A. 2010. Production of cellulolytic enzymes by a phytopathogenic Myrothecium roridium and some avirulent fungal aisolates from water hyacinth. African Journal of Biotechnology 9 (7): 1074–1078. DOI: 10.5897/AJB09.1598
34. Pappachan A., Rahul K., Debashish Ch., Sivaprasad V. 2019. Phylogenetic analysis of Paramyrothecium roridium causing brown leaf spot of mulberry. International Journal of Current Microbiology and Applied Sciences 8(03): 1393–1399. DOI: 10.20546/ijcmas.2019.803.163
35. Parker B.L., Skinner M., Costa S.D., Gouli S., Reid W., El Bouhssini M. 2003. Entomopathogenic fungi of Eurygaster. integriceps Puton (Hemiptera: Scutelleridae): collection and characterization for development. Biological Control 27: 260–272.
36. Shen L., Ai C.Z., SongY.C.,Wang F.W., Jiao R.H., Zhang A.H., Man H.Z., Tan R.X. 2019. Cytotoxic trichothecene macrolides produced by the endophytic Myrothecium roridium. Journal of Natural Products 82 (6): 1503–1509.
37. Soliman M.S. 2020. Characterization of Paramyrothecium roridium (basionym Myrothecium roridium) causing leaf spot of strawberry. Journal of Plant Protection Research 60 (2): 141–149. DOI: 10.24425/jppr.2020.133308
38. Talukdar D., Dantre R.K. 2014. Biochemical studies on Myrothecium roridium Tode. ex. Fries causing leaf spot of soybean. Global Journal of Research Analysis 3: 7–9.
39. Tulloch M. 1972. The genus Myrothecium Tode ex Fr. Mycological Papers 130: 1–42.
40. Vidhate R., Singh J., Ghormade V., Chavan S.B., Patil A., Deshpande M.V. 2015. Use of hydrolytic enzymes of Myrothecium verrucaria and conidia of Metarhizium anisopliae, singly and sequentially to control pest and pathogens in grapes and their compatibility with pesticides used in the field. Biopesticides International 11 (1): 48–60.
41. Warcup J.H.1960. Methods for isolation and estimation of activity of fungi in soil. p. 3–21. In: "The Ecology of Soil Fungi" (D. Parkinson, J.S. Waid, eds.). Liverpool University Press, UK.
42. White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: "PCR Protocols: A Guide to Methods and Aapplications" (M.A. Innis, D.H. Gelfand, J.J. Shinsky, T.J. White, eds.). Academic Press, San Diego, California, USA.

Przejdź do artykułu

Autorzy i Afiliacje

Feyroz Ramadan Hassan
1
Nacheervan Majeed Ghaffar
2
Lazgeen Haji Assaf
3
Samir Khalaf Abdullah
4

  1. Department of Plant Protection, College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region, Duhok, Iraq
  2. Duhok Research Center, College of Veterinary Medicine, Duhok University, Kurdistan Region, Duhok, Iraq
  3. Plant Protection, General Directorate of Agriculture-Duhok, Kurdistan Region, Duhok, Iraq
  4. Department of Medical Laboratory Techniques, Al-Noor University College, Nineva, Iraq

Instrukcja dla autorów

Instructions for Authors

Manuscripts published in JPPR are free of charge. Only colour figures and photos are payed 61.5 € per one colour page JPPR publishes original research papers, short communications, critical reviews, and book reviews covering all areas of modern plant protection. Subjects include phytopathological virology, bacteriology, mycology and applied nematology and entomology as well as topics on protecting crop plants and stocks of crop products against diseases, viruses, weeds, etc. Submitted manuscripts should provide new facts or confirmatory data. All manuscripts should be written in high-quality English. Non-English native authors should seek appropriate help from English-writing professionals before submission. The manuscript should be submitted only via the JPPR Editorial System (http://www.editorialsystem.com/jppr). The authors must also remember to upload a scan of a completed License to Publish (point 4 and a handwritten signature are of particular importance). ALP form is available at the Editorial System. The day the manuscript reaches the editors for the first time is given upon publication as the date ‘received’ and the day the version, corrected by the authors is accepted by the reviewers, is given as the date ‘revised’. All papers are available free of charge at the Journal’s webpage (www.plantprotection.pl). However, colour figures and photos cost 61.5 € per one colour page.

General information for preparing a manuscript

All text should be written in a concise and integrated way, by focusing on major points, findings, breakthrough or discoveries, and their broad significance. All running text should be in Times New Roman 12, 1.5 spacing with all margins 2.5 cm on all sides.

Original article

The original research articles should contain the following sections: Title – the title should be unambiguous, understandable to specialists in other fields, and must reflect the contents of the paper. No abbreviations may be used in the title. Name(s) of author(s) with affiliations footnoted added only to the system, not visible in the manuscript (Double Blind Reviews). The names of the authors should be given in the following order: first name, second name initial, surname. Affiliations should contain: name of institution, faculty, department, street, city with zip code, and country. Abstract – information given in the title does not need to be repeated in the abstract. The abstract should be no longer than 300 words. It must contain the aim of the study, methods, results and conclusions. If used, abbreviations should be limited and must be explained when first used. Keywords – a maximum of 6, should cover the most specific terms found in the paper. They should describe the subject and results and must differ from words used in the title. Introduction – a brief review of relevant research (with references to the most important and recent publications) should lead to the clear formulation of the working hypothesis and aim of the study. It is recommended to indicate what is novel and important in the study. Materials and Methods – in this section the description of experimental procedures should be sufficient to allow replication. Organisms must be identified by scientific name, including authors. The International System of Units (SI) and their abbreviations should be used. Methods of statistical processing, including the software used, should also be listed in this section. Results – should be presented clearly and concisely without deducting and theori sing. Graphs should be preferred over tables to express quantitative data. Discussion – should contain an interpretation of the results ( without unnecessary repetition) and explain the influence of experimental factors or methods. It should describe how the results and their interpretation relate to the scientific hypothesis and/or aim of the study. The discussion should take into account the current state of knowledge and up-to-date literature. It should highlight the significance and novelty of the paper. It may also point to the next steps that will lead to a better understanding of the matters in question. Acknowledgements – of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full. References In the text, papers with more than two authors should be cited by the last name of the first author, followed by et al. (et al. in italics), a space, and the year of publication (example: Smith et al. 2012). If the cited manuscript has two authors, the citation should include both last names, a space, and the publication year (example: Marconi and Johnston 2006). In the Reference section, a maximum of ten authors of the cited paper may be given. All references cited in the text must be listed in the Reference section alphabetically by the last names of the author(s) and then chronologically. The year of publication follows the authors’ names. All titles of the cited articles should be given in English. Please limit the citation of papers published in languages other than English. If necessary translate the title into English and provide information concerning the original language in brackets (e.g. in Spanish). The list of references should only include works from the last ten years that have had the greatest impact on the subject. Older references can be cited only if they are important for manuscript content. The full name of periodicals should be given. If possible, the DOI number should be added at the end of each reference. The following system for arranging references should be used: Journal articles Jorjani M., Heydari A., Zamanizadeh H.R., Rezaee S., Naraghi L., Zamzami P. 2012. Controlling sugar beet mortality disease by application of new bioformulations. Journal of Plant Protection Research 52 (3): 303-307. DOI: https://doi.org/10.2478/v10045-012-0049-9 Online articles Turner E., Jacobson D.J., Taylor J.W. 2011. Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection. PLoS Genetics 7 (8): e1002204. DOI: https://doi.org/10.1371/journal.pgen.1002204 Books Bancrof J.D., Stevens A. 1996. Theory and Practice of Histological Techniques. 4th ed. Churchill Livingstone, Edinburgh, UK, 776 pp. Book chapters Pradhan S.K. 2000. Integrated pest management. p. 463-469. In: "IPM System in Agriculture. Cash Crop" (R.K. Upadhyaya, K.G. Mukerji, O.P. Dubey, eds.). Aditya Books Pvt. Ltd. New Delhi, India, 710 pp. Online documents Cartwright J. 2007. Big stars have weather too. IOP Publishing PhysicsWeb. Available on: https://doi.org/10.1371/journal.pgen.1002204

Tables, Figures, Phothographs, Drawings

Tables and figures should be uploaded as separated files at the submission stage. Their place in the manuscript should be clearly indicated by authors. Colour figures are accepted at no charge for the electronic version. In the hardcopy version of the journal, colour figures cost (65,5 € per one colour page). When attaching files please indicate if you want colour only in the online version or in both the online and the hardcopy. Photographs and RGB bitmaps should be provided in JPG or TIFF file format. They must have no less than 300 dpi resolution. The text column should be 8 cm wide and they must be at least 1000 pixels wide. Please send original (not resized) photograph(s), straight from a digital camera, without any text descriptions on the photo. Bitmaps combined with text object descriptions should be provided in MS Word or MS Powerpoint format. Text objects using Arial font-face should be editable (changing font-face or font size). Drawings should be provided in MS Word, MS Powerpoint, CorelDRAW or EPS file format and stored with original data file. Text objects using Arial font-face should be editable (changing font-face or font size). Charts (MS Excel graphs) should be provided in MS Excel file format, and stored with original MS Excel data file without captions but with the number of the figure attached. Please do not use bitmap fills for bar charts. Use colour fills only if necessary. Captions and legends should be added at the end of the text, referred to as "Fig." and numbered consecutively throughout the paper.

Rapid communications

Rapid communications should present brief observations which do not warrant the length of a full paper. However, they must present completed studies and follow the same scientific standards as original articles. Rapid communications should contain the following sections: Title Abstract - less than 300 words Key words - maximum 6 Text body Acknowledgements References The length of such submissions is limited to 1500 words for the text, one table, and one figure.

Reviews

Review articles are invited by the editors.Unsolicited reviews are also considered. The length is limited to 5000 words with no limitations on figures and tables and a maximum of 150 references. Mini-Review articles should be dedicated to "hot" topics and limited to 3000 words and a maximum two figures, two tables and 20 references.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji