Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The coastal regions of southwest India which falls in the tropical regime, have witnessed many transgression-regression events and climatic extremes in the Quaternary Period. A core, 15 m long, was recovered from the floodplains associated with a typical backwater body (lake) in the southwestern coast of India. The granulometric analysis proved dominance of sand and silt fractions and extremely high energy conditions over the entire core. The TOC/TN ratio indicated a domination of the C4-type over the C3-type plants in the lower half of the core, suggesting a warm climate. The C3-type plants prevail in the upper part of the core, thus reflecting cool and wet environments. Extremely low values of TOC/TN ratio (0.33% to 10%) of the core indicate short periods of very high rainfall events and the rapid influx of nutrients to the basin and the eutrophication of the basin. The presence of slightly brackish, brackish/marine and marine benthic foraminifers at 12.5–9 m depth indicates episodes of transgression and regression. The derived AMS radiocarbon dates suggest the Marine Isotope Stage 3 for the lower part of the core.
Go to article

Authors and Affiliations

Divya Murali
1
Rajesh Reghunath
1
Pranav Prakash
1
Ravi Bhushan
2
K. Anoop Krishnan
3
Sruthy Rose Baby
1

  1. Department of Geology, University of Kerala, Karyavattom Campus, Trivandrum, Kerala-695581, India
  2. Geosciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, Gujarat, India
  3. Biogeochemistry Group, National Centre for Earth Science Studies, Akkulam, Trivandrum, Kerala, India
Download PDF Download RIS Download Bibtex

Abstract

Low-frequency noise measurements have long been recognized as a valuable tool in the examination of quality and reliability of metallic interconnections in the microelectronic industry. While characterized by very high sensitivity, low-frequency noise measurements can be extremely time-consuming, especially when tests have to be carried out over an extended temperature range and with high temperature resolution as it is required by some advanced characterization approaches recently proposed in the literature. In order to address this issue we designed a dedicated system for the characterization of the low-frequency noise produced by a metallic line vs temperature. The system combines high flexibility and automation with excellent background noise levels. Test temperatures range from ambient temperature up to 300◦C. Measurements can be completely automated with temperature changing in pre-programmed steps. A ramp temperature mode is also possible that can be used, with proper caution, to virtually obtain a continuous plot of noise parameters vs temperature.

Go to article

Authors and Affiliations

Graziella Scandurra
Sofie Beyne
Gino Giusi
Carmine Ciofi

This page uses 'cookies'. Learn more