Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For many years, learning the competences to teach mathematics in early education at university has been associated with the ability to reproductively apply methodological guidelines. Currently, however, the need to not only understand the mathematical meanings given by teachers, but also students of the specialty, are seen to be important. This article attempts to engage in an interpretive line of thinking with regard to mathematics education, coming from the perspective of students learning to be early education teachers. Their understanding of the contexts for learning mathematical concepts, as well as their sensitivity to the processes of constructing mathematical knowledge by very young pupils, being a way of predicting what educational activities will be undertaken in the classroom in the future. This text is the result of qualitative analyses of written essays of early education students, where respondents had to make conceptualizations of their beliefs by justifying the selection of particular declarative statements. Students’ mathematical meanings were also uncovered in their strategies for solving mathematical problems for very young pupils. Moreover, the results of this analyses provides a context for reading the students’ understanding of mathematics learning processes.

Go to article

Authors and Affiliations

Alina Kalinowska
Download PDF Download RIS Download Bibtex

Abstract

Prof. Monika Kalinowska and Dr. Agata Goździk of the PAS Institute of Geophysics talk about ways to bolster public awareness of water issues.

Go to article

Authors and Affiliations

Monika Kalinowska
Agata Goździk
Download PDF Download RIS Download Bibtex

Abstract

O tym, w jaki sposób zwiększać społeczną świadomość problematyki wodnej, opowiadają prof. Monika Kalinowska i dr Agata Goździk z Instytutu Geofizyki PAN.

Go to article

Authors and Affiliations

Monika Kalinowska
Agata Goździk
Download PDF Download RIS Download Bibtex

Abstract

This text focuses on non-military aspects of Polish-Soviet relations in cinema before 1989. It offers an analysis of two melodramas, the Polish “Interrupted Flight (L. Buczkowski, 1964),” and the Soviet-Polish “Remember Your Name” (S. Kolosov, 1974). From a narrow ideological perspective, both fi lms show Polish-Soviet relations in a positive light. Yet, the author points to omissions and understatements that refl ect the ambiguities present in Polish-Soviet relations of the time. As a genre. melodrama complicates superfi cial statements of Polish-Soviet friendship.
Go to article

Authors and Affiliations

Izabella Kalinowska-Blackwood
Download PDF Download RIS Download Bibtex

Abstract

Autor stara się zrekonstruować system etyczny Henryka Elzenberga, wskazując na możliwość ujęcia pewnych wątków etyki społecznej, które Elzenberg raczej pomijał, w strukturę i ramy pojęciowe jego poglądów. Te ogólne ramy aksjologii Elzenberga to przede wszystkim podział na umocowane ontologicznie wartości perfekcyjne i utylitarne; przypisujemy je motywom, stanom rzeczy, nawet przedmiotom. Podstawowe pytanie autora brzmi: czy nie można także przypisywać wartości perfekcyjnej pewnym stanom rzeczy i postawom ludzkim w życiu społecznym (społeczeństwo takie, jakie powinno być)? Pewne elementy teorii Elzenberga usprawiedliwiają zastosowanie innego podziału racji i motywów niż jego własny – i lepiej otwierającego przestrzeń dla idei społecznych; jest to podział na racje/motywy bezosobowe (racje nie-egoistyczne lub prospołeczne, np. likwidacja nędzy na świecie) i osobiste, skupione na wartościach sprzyjających moralnej doskonałości podmiotu, m.in. takich jak wyrzeczenie, ofiara, bohaterstwo, czy – ogólniej – sprzyjających rozwojowi jego życia duchowego.
Go to article

Authors and Affiliations

Joanna Górnicka-Kalinowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Although John Rawls’s theory is an extensive project of the state structure which also discusses the functions of various democratic institutions, the reader tends naturally to look for something more, namely his opinions about human nature and the psychological underpinnings that ultimately determine men’s and women’s responsibilities in a democratic community. The clues offered by A Theory of Justice are disappointingly scarce, as they tend to blur the distinction between the descriptive and the normative aspects of the problem. Rawls’s analysis of such categories as moral sensitivity, or human motives, or social obligations do not take into account the natural limitations that typically accompany the demands formulated by the just state. Or, to put the same complaint differently, Rawls’s opinions about human nature sound unduly optimistic, if compared, for instance, with Kant’s moral theory to which he makes frequent references.
Go to article

Bibliography

Feinberg J. (1975), Rawls and Intuitionism, w: N. Daniels (red.), Reading Rawls: Critical Studies on Rawls’ „A Theory of Justice”, Oxford: Basil Blackwell.
Frankfurt H.G. (1997), Wolność woli i pojęcie osoby, przeł. J. Nowotniak, w: J. Hołówka (red.), Filozofia moralności. Postanowienie i odpowiedzialność moralna, Warszawa: Wydawnictwo Spacja – Fundacja Aletheia.
Hobbes Th. (2005), Lewiatan, przeł. Cz. Znamierowski, Warszawa: Fundacja Aletheia.
Kant I. (2005a), Antropologia w ujęciu pragmatycznym, przeł. E. Drzazgowska, P. Sosnowska, Warszawa: Wydawnictwo IFiS PAN.
Kant I. (2005b), Metafizyka moralności, przeł. E. Nowak, Warszawa: Wydawnictwo Naukowe PWN.
MacIntyre A. (2007), Czyja sprawiedliwość? Jaka racjonalność?, red. A. Chmielewski, Warszawa: Wydawnictwa Akademickie i Profesjonalne.
Nagel Th. (1975), Rawls on Justice, w: N. Daniels (red.), Reading Rawls: Critical Studies on Rawls’ „A Theory of Justice”, Oxford: Basil Blackwell.
Rawls J. (1988), The Priority of Right and Ideas of the Good, „Philosophy & Public Affairs” 17 (4).
Rawls J. (1994), Teoria sprawiedliwości, przeł. M. Panufnik, J. Pasek, A. Romaniuk, Warszawa: Wydawnictwo Naukowe PWN.
Rawls J. (2010), Wykłady z historii filozofii polityki, przeł. S. Szymański, Warszawa: Wydawnictwa Akademickie i Profesjonalne.
Rousseau J.J. (1966), Umowa społeczna, przeł. A. Peretiatkowicz, Warszawa: Państwowe Wydawnictwo Naukowe.
Go to article

Authors and Affiliations

Joanna Górnicka-Kalinowska
1
ORCID: ORCID

  1. prof. em., Uniwersytet Warszawski, Wydział Filozofii, ul. Krakowskie Przedmieście 3, 00‑927 Warszawa
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses selected topics in moral philosophy of Professor Bogusław Wolniewicz. His overall approach is marked by intellectual independence and analytic treatment of moral issues. The theory of values that he has endorsed can be described as a moderate non-religious absolutism based on weak metaphysical principles. Although in general his normative position can be assimilated to the views of an enlightened liberal, it also clashes with that position insofar as he proclaimed the existence of ontological evil and supported legitimacy of death penalty.

Go to article

Authors and Affiliations

Joanna Górnicka-Kalinowska
ORCID: ORCID

Authors and Affiliations

Joanna Górnicka-Kalinowska
1
ORCID: ORCID

  1. prof. em., Uniwersytet Warszawski, Wydział Filozofii, ul. Krakowskie Przedmieście 3, 00-927 Warszawa
Download PDF Download RIS Download Bibtex

Abstract

The marine psychrophilic and endemic Antarctic yeast Leucosporidium antarcticum strain 171 synthesizes intracellular b-fructofuranosidase, and intra- and extracellular a-glucosidases. Each enzyme is maximally produced at 5°C , while the strain’s optimum growth temperature is 15°C . Invertase biosynthesis appeared regulated by catabolic repression, and induced by sucrose; the enzyme was extremely unstable ex vivo, and only EDTA, Mn2+, and BSA stabilized it for up to 12 h after yeast cell lysis. Thermal stability of the invertase was also low (30 min at temperatures up to 12°C). The optimum temperature for invertase activity was 30°C , and optimum pH was 4.55 to 4.75. The extracellular a-glucosidase was maximally active at 35°C and pH 6.70–7.50, and stable for 30 min up to 20°C.

Go to article

Authors and Affiliations

Marianna Turkiewicz
Marzena Pazgier
Stuart P. Donachie
Halina Kalinowska
Download PDF Download RIS Download Bibtex

Abstract

Lipolytic activity was assayed in samples of Antarctic krill frozen in different conditions and in its liquid digesta with synthetic (tributylglycerol, esters of 2-naphtol and fatty acids C3, C9 , C14 and C18 ) and natural (olive oil) substrates. It was testified that the lipolytic activity is several-fold higher in the crustaceans with high food intake than in those with an empty digestive tract. Krill lipases show higher activity against esters of unsaturated fatty acids that against analogous derivatives of saturated ones and 10-fold higher affinity tributylglycerol (Km = 1.12 mM). Their maximal activity is at pH 6.4 and 37°C. E. superba lipases preserve total activity up to 35°C for 45 minutes, and are completely inactivated at 55°C for 5 minutes. Prevailing part of lipolytic activity is present in krill cephalothorax, however, extracts from krill abdomen also display a marked activity. Krill lipases are probably resistant to an attack of crustacean's proteinases.

Go to article

Authors and Affiliations

Marianna Turkiewicz
Halina Kalinowska
Alina Krystynowicz
Maria Kałużewska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a simple method of measuring the luminous flux value dedicated to LED light sources. This method uses information about a spatial radiation pattern of the lighting source under test and the results of illuminance measurements at the axis of this source. The method is described and the results of the measurements obtained using this method and the classical method are compared and discussed. Tests have been carried out for LED modules of different geometries. The measurement error of the considered method is analysed.
Go to article

Authors and Affiliations

Krzysztof Górecki
1
ORCID: ORCID
Aleksandra Kalinowska
2
Przemysław Ptak
1
ORCID: ORCID

  1. Department of Marine Electronics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  2. Faculty of Electrical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The area of the Coastal Landscape Park (CLP) due to its location is extremely attractive touristi carea. In the summer season, a significant increase in population density is observed, which influences surface water quality. Large numbers of tourists generate an increased amount of municipal wastewater, being treated in local treatment plants and discharged into rivers and streams. The paper presents preliminary research from summer 2016 on three watercourses ending in the Baltic Sea: Piaśnica, Karwianka and Czarna Wda rivers. It is a part of a long-term project conducted in CLP to assess surface waters quality. The scope of research included measurements of in situ parameters (temperature, conductivity, pH, dissolved oxygen). Chemical Oxygen Demand was determined using a spectrophotometer. Ion chromatography was used to determine ions concentrations (including biogenic compounds). Sanitary state of watercourses was assessed based on fecal coliforms abundance, which number was determined by the cultivation method. The determination of microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity was determined using epifluorescence microscopy method. Results showed that water quality of Piaśnica and Czarna Wda rivers were affected by discharged treated wastewater. In the case of Karwianka River, the main pollution source could be surface runoff from fields and unregulated sewage management in this area. The conducted research confirmed the urgent need for better protection of this area to conserve both its ecosystem and value for tourism.
Go to article

Bibliography

  1. Amin, A., Ahmed, I., Salam, N., Kim, B. Y., Singh, D., Zhi, X. Y., Xiao, M. & Li, W. J. (2017). Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. Microbial Ecology, 74 (1), pp. 116–127. DOI:10.1007/s00248-017-0930-1
  2. APHA. (2005). Standard methods for the examination of water and wastewater. In 21st ed. Washington DC, USA.
  3. Baczkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R., Płóciennik, B. & Polkowska, Ż. (2022). Microbial and chemicalquality assessment of the small rivers entering the South Baltic. Part II: Case study on the watercourses in the Puck Bay catchment area. Archives of Environmental Protection. (under review
  4. Becerra-Castro, C., Macedo, G., Silva, A. M. T., Manaia, C. M. & Nunes, O. C. (2016). Proteobacteria become predominant during regrowth after water disinfection. Science
  5. of the Total Environment, 573, pp. 313–323. DOI:10.1016/j.scitotenv.2016.08.054
  6. Borkowski, R. (2019). Wyzwania i zagrożenia dla turystyki na Półwyspie Helskim w XXI wieku. Bezpieczeństwo. Teoria i Praktyka, 3, pp. 55–70. DOI:10.34697/2451-0718-b. (in Polish)
  7. Brysiewicz, A., Bonisławska, M., Czerniejewski, P. & Kierasiński, B. (2019). Quality analysis of waters from selected small watercourses within the river basins of Odra river and Wisła river. Rocznik Ochrona Srodowiska, 21(2), pp. 1202–1216. (in Polish)
  8. Bugajski, P. & Satora, S. (2009). Bilans ścieków dopływających i dowożonych do oczyszczalni na przykładzie wybranego obiektu. Infrastruktura i Ekologia Terenów Wiejskich, 5, pp. 73–82. (in Polish)
  9. Cai, L. & Zhang, T. (2013). Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environmental Science and Technology, 47(10), pp. 5433–5441. DOI:10.1021/es400275r
  10. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V. & Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI:10.3109/1040841X.2015.1087380
  11. Chien, A. C., Hill, N. S. & Levin, P. A. (2012). Cell size control in bacteria. Current Biology, 22(9), R340–R349. DOI:10.1016/j.cub.2012.02.032
  12. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & Likens, G. E. (2009). Ecology - Controlling eutrophication: Nitrogen and phosphorus. In Science (Vol. 323, Issue 5917, pp. 1014–1015). American Association for the Advancement of Science. DOI:10.1126/science.1167755
  13. Council of Ministers, 2011: Rozporządzenia Ministra Środowiska z dnia 9 listopada 2011 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego jednolitych części wód powierzchniowych , (2011) (testimony of (Dz. U. poz. 1549, zał 6). (in Polish)
  14. Council of Ministers, 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
  15. Council of Ministers, 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
  16. Council of Ministers, 2016a: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
  17. Council of Ministers, 2016b: Rozporządzenie Rady Ministrów z dnia 18 października 2016 r. w sprawie Planu gospodarowania wodami na obszarze dorzecza Wisły, (2016) (testimony of Dz.U.2016 poz.1991). (in Polish)
  18. Council of Ministers, 2016c: Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Planu Gospodarowania Wodami Na Obszarze Dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
  19. Council of Ministers, 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U.2019 poz.255). (in Polish)
  20. Council of Ministers, 2021: Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm, (2021) (testimony of Dz.U. 2021 poz. 1475). (in Polish)
  21. Curr, R. H. F., Koh, A., Edwards, E., Williams, A. T. & Davies, P. (2000). Assessing anthropogenic impact on Mediterranean sand dunes from aerial digital photography. Journal of Coastal Conservation, 6(1), pp. 15–22. DOI:10.1007/BF02730463
  22. De Brauwere, A., Ouattara, N. K., & Servais, P. (2014). Modeling fecal indicator bacteria concentrations in natural surface waters: A review. Critical Reviews in Environmental Science and Technology, 44(21), pp. 2380–2453. DOI:10.1080/10643389.2013.829978
  23. de la Vega, C., Schückel, U., Horn, S., Kröncke, I., Asmus, R. & Asmus, H. (2018). How to include ecological network analysis results in management? A case study of three tidal basins of the Wadden Sea, south-eastern North Sea. Ocean and Coastal Management, 163(May), pp. 401–416. DOI:10.1016/j.ocecoaman.2018.07.019
  24. Dodds, W. K. & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters, 6(2), pp. 155–164. DOI:10.5268/IW-6.2.909
  25. Drury, B., Rosi-Marshall, E. & Kelly, J. J. (2013). Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Applied and Environmental Microbiology, 79(6), pp. 1897–1905. DOI:10.1128/AEM.03527-12
  26. Fry, J. C. (1990). Direct Methods and Biomass Estimation. In Grigorova, R. & Norris J. R. B. T.-M. (Eds.), Techniques in Microbial Ecology (Vol. 22, pp. 41–85). Academic Press. DOI:10.1016/S0580-9517(08)70239-3
  27. García-Llorente, M., Harrison, P. A., Berry, P., Palomo, I., Gómez-Baggethun, E., Iniesta-Arandia, I., Montes, C., García del Amo, D. & Martín-López, B. (2018). What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodiversity and Conservation, 27(7), pp.1575–1597. DOI:10.1007/s10531-016-1152-4
  28. Gössling, S., Hall, C. M. & Scott, D. (2018). Coastal and Ocean Tourism. Handbook on Marine Environment Protection, pp. 773–790. DOI:10.1007/978-3-319-60156-4_40
  29. Grabic, J., Duric, S., Ciric, V. & Benka, P. (2018). Water quality at special nature reserves in Vojvodina, Serbia. Croatian Journal of Food Science and Technology, 10(2), pp. 179–184. DOI:10.17508/cjfst.2018.10.2.05
  30. Hachich, E.M.; Di Bari, M.; Christ, A.P.G.; Lamparelli, C.C.; Ramos, S.S.& Sato, M.I.Z. (2012) Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian J. Microbiol., 43, pp. 675–681.
  31. Huo, Y., Bai, Y. & Qu, J. (2017). Unravelling riverine microbial communities under wastewater treatment plant effluent discharge in large urban areas. Applied Microbiology and Biotechnology, 101(17), pp. 6755–6764. DOI:10.1007/s00253-017-8384-4
  32. Infoeko, 2004: Available online: http://www.infoeko.pomorskie.pl/InformacjeZbiorcze/2004/Szczegoly/26. Accessed on 20 October 2020. (in Polish)
  33. Johnston, E. L. & Roberts, D. A. (2009). Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environmental Pollution, 157(6), pp. 1745–1752. DOI:10.1016/j.envpol.2009.02.017
  34. Justić, D., Rabalais, N. N., Turner, R. E. & Dortch, Q. (1995). Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3), pp. 339–356. DOI:10.1016/S0272-7714(05)80014-9
  35. Kaczor, G. (2011). Wpływ wiosennych roztopów śniegu na dopływ wód przypadkowych do oczyszczalni ścieków bytowych. Acta Sci. Pol., Formatio Circumiectus, 10(2), pp. 27–34. (in Polish)
  36. Kosek, K., Kozak, K., Kozioł, K., Jankowska, K., Chmiel, S. & Polkowska, Z. (2018). The interaction between bacterial abundance and selected pollutants concentration levels in an arctic catchment (southwest Spitsbergen, Svalbard). Science of the Total Environment, 622–623, pp. 913–923. DOI:10.1016/j.scitotenv.2017.11.342
  37. Kosek, K. & Polkowska, Ż. (2016). Determination of selected chemical parameters in surface water samples collected from the Revelva catchment (Hornsund fjord, Svalbard). Monatshefte Fur Chemie, 147(8), pp. 1401–1405. DOI:10.1007/s00706-016-1771-1
  38. Kowalski, T. (1989). Analiza chemicznych i biochemicznych właściwości zanieczyszczeń występujących w ściekach. Ochrona Środowiska. (in Polish)
  39. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI:10.3390/w9010042
  40. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of biogenic substances in water-courses of coastal landscape park. Journal of Elementology, 21(2), pp. 413–423. DOI:10.5601/jelem.2015.20.1.800
  41. Kutyła, S. (2015). Characteristics of water level fluctuations in Polish lakes – a review of the literature. Ochrona Srodowiska i Zasobów Naturalnych, 25(3), pp. 27–34. DOI:10.2478/oszn-2014-0011
  42. la Ferla, R., Maimone, G., Azzaro, M., Conversano, F., Brunet, C., Cabral, A. S. & Paranhos, R. (2012). Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgoland Marine Research, 66(4), pp. 635–650. DOI:10.1007/s10152-012-0297-0
  43. Luczkiewicz, A., Jankowska, K., Bray, R., Kulbat, E., Quant, B., Sokolowska, A. & Olańczuk-Neyman, K. (2011). Antimicrobial resistance of fecal indicators in disinfected wastewater. Water Science and Technology, 64(12), 2352. DOI:10.2166/wst.2011.769
  44. Luczkiewicz, A., Jankowska, K., Langas, V. & Kaiser, A. (2019). Inventory of existing treatment technologies in wastewater treatment plants Case studies in four coastal regions of the South Baltic Sea.
  45. Łuczkiewicz, A., Jankowska, K., Fudala-Książek, S. & Olańczuk-Neyman, K. (2010). Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Research, 44(17), pp. 5089–5097. DOI:10.1016/j.watres.2010.08.007
  46. Majdak, P. (2008). Tourist amenities of Hel and conceptions of their development. Turystyka i Rekreacja Tom 4. (in Polish)
  47. Michałkiewicz, M. (2018). Ścieki i ich negatywna rola w środowisku. Technologia Wody, 5(61), pp. 30–33.
  48. Munksgaard, D. G. & Young, J. C. (1980). Flow and load variations at wastewater treatment plants. Journal of the Water Pollution Control Federation, 52(8), pp. 2131–2144.
  49. Norland S. (1993). The relationship between biomass and volume of bacteria. In Cole, J.J. (Ed.), Handbook of methods in aquatic microbial ecology (pp. 303–308). Lewis Publishers,.
  50. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2),pp. 422–430.
  51. Olańczuk-Neyman, K., Quant, B., Łuczkiewicz, A., Kulbat, E., Jankowska, K., Sokołowska, A., Bray, R. & Kulbat, E. (2015). Dezynfekcja ścieków. Seidel-Przywecki sp. z.o.o. (in Polish)
  52. Olson, D. M. & Dinerstein, E. (1998). The global 200: A representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12(3), pp. 502–515. DOI:10.1046/j.1523-1739.1998.012003502.x
  53. Ostroumov, S. A. (2017). Water Quality and Conditioning in Natural Ecosystems: Biomachinery Theory of Self-Purification of Water. Russian Journal of General Chemistry, 87(13), pp. 3199–3204. DOI:10.1134/S107036321713014X
  54. Porter, K. G. & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnological Oceanography, 25(5), pp. 943–948.
  55. Rees, G. & Bartram, J. (2002). Monitoring bathing waters: a practical guide to the design and implementation of assessments and monitoring programmes. CRC Press.
  56. Statistics Poland, 2016: Available online: https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/ Accessed on 20 October 2020, https://stat.gov.pl/obszary-tematyczne/kultura-turystyka-sport/turystyka/ Accessed on 20 October 2020. (in Polish)
  57. Straza, T. R. A., Cottrell, M. T., Ducklow, H. W. & Kirchman, D. L. (2009). Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Applied and Environmental Microbiology, 75(12), pp. 4028–4034. DOI:10.1128/AEM.00183-09
  58. Świątecki, A. (1997). Zastosowanie wskaźników bakteriologicznych w ocenie wód powierzchniowych. (Monografie). Wyższa Szkoła Pedagogiczna. (in Polish)
  59. Trussell, R. R. (1990). Evaluation of the Health Risks Associated with Disinfection. Critical Reviews in Environmental Control, 20(2), pp. 77–113. DOI:10.1080/10643389009388392
  60. Wiskulski, T. (2015). Geography For Society (Issue January 2015).
  61. Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252(May). DOI:10.1016/j.jenvman.2019.109637
  62. Young, K. D. (2006). The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews, 70(3), pp.660–703. DOI:10.1128/MMBR.00001-06
  63. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Pollution Bulletin, 139(November 2018), pp. 238–255. DOI:10.1016/j.marpolbul.2018.11.060
Go to article

Authors and Affiliations

Emilia Bączkowska
1
Agnieszka Kalinowska
1
Oskar Ronda
2 3
Katarzyna Jankowska
1
Rafał Bray
1
Bartosz Płóciennik
4
Żaneta Polkowska
3 2

  1. Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering,Gdansk University of Technology, Gdansk, Poland
  2. Department of Analytical Chemistry, Faculty of Chemistry Gdansk University of Technology, Gdansk, Poland
  3. EkoTech Center, Gdansk University of Technology, Gdansk, Poland
  4. Costal Landscape Park, Wladyslawowo, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to its location, Puck Bay is an area particularly vulnerable to pollution of anthropogenic origin. The aim of the study was to assess the water quality of small watercourses entering the inner part of Puck Bay. The paper presents the results of chemical and microbiological analyses of 10 rivers and canals at their estuaries located on the western shore of the internal Puck Bay. The following environmental parameters were analyzed: conductivity, pH, dissolved oxygen concentration (in situ measurements), COD (cuvette tests), concentrations of ions (ion chromatography). Microbiological analysis included assessment of sanitary condition based on the number of fecal coliforms by a cultivation method. The determination of basic microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity were determined using epifluorescence microscopy method. Based on the obtained results, it was found that small watercourses may carry a notable load of anthropogenic pollution and thus affect the environment of Puck Bay. The results clearly indicate the need for quality monitoring in the rivers and canals in the Coastal Landscape Park, flowing into Puck Bay. The research showed that also smaller watercourses may have an impact on the coastal waters’ state, and thus on the Baltic Sea water quality.
Go to article

Bibliography

  1. Achermann, S., Mansfeldt, C. B., Müller, M., Johnson, D. R. & Fenner, K. (2020). Relating Metatranscriptomic Profiles to the Micropollutant Biotransformation Potential of Complex Microbial Communities. Environmental Science and Technology. DOI:10.1021/acs.est.9b05421
  2. Andrulewicz, E. & Janta, A. (1997). Zatoka Pucka Wewnętrzna. In A. Janta (Ed.), Nadmorski Park Krajobrazowy, pp. 123–137. Wydawnictwo Nadmorskiego Parku Krajobrazowego. (in Polish)
  3. Arheimer, B., Dahné, J. & Donnelly, C. (2012). Climate change impact on riverine nutrient load and land-based remedial measures of the baltic sea action plan. Ambio, 41(6), pp. 600–612. DOI:10.1007/s13280-012-0323-0
  4. Artioli, Y., Friedrich, J., Gilbert, A. J., McQuatters-Gollop, A., Mee, L. D., Vermaat, J. E., Wulff, F., Humborg, C., Palmeri, L. & Pollehne, F. (2008). Nutrient budgets for European seas: A measure of the effectiveness of nutrient reduction policies. Marine Pollution Bulletin, 56(9), pp. 1609–1617. DOI:10.1016/j.marpolbul.2008.05.027
  5. Baath, E. (1994). Thymidine and Leucine Incorporation in Soil Bacteria with Different Cell Size. Marine Ecology, 27, pp. 267–278.
  6. Bączkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R. T., Płóciennik, B. & Polkowska, Ż. (2021). Microbial and chemical quality assessment of the small rivers entering the South Baltic . Part I : Case study on the watercourses in the Baltic Sea catchment area. Archives of Environmental Protection, 47(4), pp. 55–73. DOI:10.24425/aep.2021.139502
  7. Bartram, J. & Rees, G. (2002). Monitoring Bathing Waters – A Practical Guide to the Design
  8. and Implementation of Assessments and Monitoring Programmes. In Urban Water.
  9. E & FN Spon is an imprint of the Taylor & Francis Group. DOI:10.1016/S1462-0758(02)00006-7
  10. Bernard, L., Courties, C., Servais, P., Troussellier, M., Petit, M.A., Lebaron, P. Relationships among Bacterial Cell Size , Productivity, and Flow Cytometry. Microb. Ecol. 2000, 40, pp. 148–158.
  11. Błędzki, L. A. & Kruk-Dowgiallo, L. (1983). Wieloletnie zmiany struktury bentosu Zatoki Puckiej. Człowiek i Środowisko, 7(1–2), pp. 79–93. (in Polish)
  12. Bricker, S. B., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C. & Woerner, J. (2008). Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae, 8(1), pp. 21–32. DOI:10.1016/j.hal.2008.08.028
  13. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V., … Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI:10.3109/1040841X.2015.1087380
  14. Castaldelli, G., Soana, E., Racchetti, E., Vincenzi, F., Fano, E. A. & Bartoli, M. (2015). Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agriculture, Ecosystems and Environment, 212, pp. 253–262. DOI:10.1016/j.agee.2015.07.009
  15. Cochrane, S.K.J., Connor, D.W., Nilsson, P., Mitchell, I., Reker, J., Franco, J., Valavanis, V., Moncheva, S., Ekebom, J. & Nygaard, K. (2010) Marine Strategy Framework Directive. Guidance on the Interpretation and Application of Descriptor 1: Biological Diversity. Report by Task Group 1 on Biological diversity for the European Commission’s Joint Research Centre, Ispra,, Luxembourg, 2010;
  16. Cole, J. J., Pace, M. L., Caraco, N. F. & Steinhart, G. S. (1993). Bacterial biomass and cell size distributions More and larger cells in anoxic waters in lakes. Aquatic Microbial Ecology, 38(8), pp. 1627–1632.
  17. Cottrell, M. T. & Kirchman, D. L. (2004). Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquatic Microbial Ecology, 34, pp. 139–149.
  18. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, Documents in European Community Environmental Law No L 206 / 7 (1992). DOI:10.1017/cbo9780511610851.039
  19. Council of Ministers 1988: Zarządzenia Ministra Ochrony Środowiska i Zasobów Naturalnych z dnia 17 listopada 1988 r. (MP nr 32, poz. 292) i z dnia 10 maja 1989 r. (MP Nr 17, poz. 119), (1988). (in Polish)
  20. Council of Ministers 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
  21. Council of Ministers 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
  22. Council of Ministers 2016a: Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Planu Gospodarowania Wodami Na Obszarze Dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
  23. Council of Ministers 2016b: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
  24. Council of Ministers 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U.2019 poz.255). (in Polish)
  25. Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), pp. 926–929. DOI:10.1126/science.1156401
  26. Duan, S., He, Y., Kaushal, S. S., Bianchi, T. S., Ward, N. D. & Guo, L. (2017). Impact of wetland decline on decreasing dissolved organic carbon concentrations along the Mississippi River continuum. Frontiers in Marine Science, 3 (JAN). DOI:10.3389/FMARS.2016.00280
  27. Ducrotoy, J. P. & Elliott, M. (2008). The science and management of the North Sea and the Baltic Sea: Natural history, present threats and future challenges. Marine Pollution Bulletin, 57(1–5), pp. 8–21. DOI:10.1016/j.marpolbul.2008.04.030
  28. Dzierzbicka-Głowacka, L., Janecki, M., Dybowski, D., Szymczycha, B., Obarska-Pempkowiak, H., Wojciechowska, E., Zima, P., Pietrzak, S., Pazikowska-Sapota, G., Jaworska-Szulc, B., Nowicki, A., Kłostowska, Ż., Szymkiewicz, A., Galer-Tatarowicz, K., Wichorowski, M., Białoskórski, M. & Puszkarczuk, T. (2019). A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on baltic sea coastal waters. Polish Journal of Environmental Studies, 28(4), pp. 2531–2539. DOI:10.15244/pjoes/92524
  29. Elofsson, K. (2003). Cost-effective reductions of stochastic agricultural loads to the Baltic Sea. Ecological Economics, 47(1), pp. 13–31. DOI:10.1016/j.ecolecon.2002.10.001
  30. European Court of Auditors. (2016). Combating eutrophication in the Baltic Sea: further and more effective action needed. Special report number 3 (Issue 03). DOI:10.2865/9931
  31. Gasoll, J. M., Giorgio, P. A. & Massana, R. (1995). Active Versus Inactive Bacteria: Size-Dependence in a Coastal Marine Plankton Community. Marine Ecology Progress Series, 128, pp. 91–97. http://www.int-res.com/articles/meps/128/m128p091.pdf
  32. Gillor, O., Hadas, O., Post, A. F. & Belkin, S. (2010). Phosphorus and nitrogen in a monomictic freshwater lake: Employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshwater Biology, 55(6), pp. 1182–1190. DOI:10.1111/j.1365-2427.2009.02342.x
  33. Giovannoni, S. J. (2017). SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annual Review of Marine Science, 9(1), pp. 231–255. DOI:10.1146/annurev-marine-010814-015934
  34. Górniak, A. (2017). Spatial and temporal patterns of total organic carbon along the Vistula River course (Central Europe). Applied Geochemistry, 87(September), pp. 93–101. DOI:10.1016/j.apgeochem.2017.10.006
  35. Gren, I. M. (2017). Cost-effective nutrient reductions to the Baltic Sea. Managing a Sea: The Ecological Economics of the Baltic, Hjort 1992, pp. 43–56. DOI:10.4324/9781315071367-4
  36. Hachich, E. M., Di Bari, M., Christ, A. P. G., Lamparelli, C. C., Ramos, S. S. & Sato, M. I. Z. (2012). Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian Journal of Microbiology, 43(2), pp. 675–681. DOI:10.1590/S1517-83822012000200032
  37. HELCOM. (2009). Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. DOI:10.1002/iroh.19910760302
  38. HELCOM, 2015. Updated Fifth Baltic Sea pollution load compilation (PLC-5.5). Baltic Sea
  39. Environment Proceedings No. 145
  40. HELCOM. (2018). State of the Baltic Sea- Second HELCOM holistic assessment, 2011-2016. In Baltic Sea Environment Proceedings (Vol. 155). DOI:10.1016/j.gaitpost.2008.05.016
  41. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), pp. 807–816. DOI:10.1016/S0043-1354(99)00225-0
  42. Hobot, A., Banaszak, K., Stolarska, M., Sowińska, K., Serafin, R. Stachura, A. (2012). Warunki korzystania z wód zlewni rzeki Redy (SCWP: DW1802, DW1803) – Etap 1 – Dynamiczny bilans ilościowy zasobów wodnych. Available online, accessed on 5 January 2022: http://www.rzgw.gda.pl/cms/fck/uploaded/ZGPW_rozporzadzenia/Bilansowanie%20zasob%C3%B3w_REDA.pdf (in Polish)
  43. Hong, Z., Zhao, Q., Chang, J., Peng, L., Wang, S., Hong, Y., Liu, G. & Ding, S. (2020). Evaluation of water quality and heavy metals in wetlands along the yellow river in Henan province. Sustainability (Switzerland), 12(4), pp. 1–19. DOI:10.3390/su12041300
  44. Hooker, K. V., Coxon, C. E., Hackett, R., Kirwan, L. E., O’Keeffe, E. & Richards, K. G. (2008). Evaluation of Cover Crop and Reduced Cultivation for Reducing Nitrate Leaching in Ireland. Journal of Environmental Quality, 37(1), pp. 138–145. DOI:10.2134/jeq2006.0547
  45. IMGW Data, 2009-2015: Available online, accessed on 20 October 2020: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/ (in Polish)
  46. IMGW Data, 2016: Available online, accessed on 20 October 2020: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/Biuletyn_PSHM_2016_07_(lipiec).pdf (in Polish)
  47. Kalenik, M. (2014). Skuteczność oczyszczania ścieków w gruncie piaszczystym z warstwą naturalnego klinoptylolitu. Ochrona Środowiska, 36, pp. 43–48 (in Polish).
  48. Kalinowska D., Wielgat P., Kolerski T. & Zima P. (2020). Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water 12(3), 809. DOI: 10.3390/w12030809
  49. Klekot, L. (1980a). Ilościowe badania łąk podwodnych zatoki puckiej. Oceanologia, 12, pp. 125–139 (in Polish).
  50. Klekot, L. (1980b). Zatoka pucka osobliwością hydrologiczną Bałtyku. Oceanologia, 12, pp. 109–123 (in Polish).
  51. Korth, F.,Fry, B., Liskow, I. & Voss, M. (2013). Nitrogen Turnover during the Spring Outflows of the Nitrate-Rich Curonian and Szczecin Lagoons Using Dual Nitrate Isotopes. Marine Chemistry 154: pp. 1–11. DOI:10.1016/j.marchem.2013.04.012
  52. Korzeniewski, K. (1993). Zatoka Pucka. Fundacja Rozwoju Uniwersytetu Gdańskiego.
  53. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI:10.3390/w9010042
  54. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of Biogenic Substances in Water- Courses of Coastal Landscape Park. Journal of Elementology 21 (538): pp. 413–23. DOI:10.5601/jelem.2015.20.1.800
  55. Kruk-Dowgiałło L, S. A. (2008). Gulf of Gdańsk and Puck Bay. [In:] Schiewer U (Ed) Ecology of Baltic coastal waters. Ecological studies. Vol. 197, pp. 139-165. DOI:10,1007/978-3-540-73524-3_7
  56. Kumar, A. S., Reddy, A. M., Srinivas, L. & Reddy, P. M. (2014). Assessment of Surface Water Quality in Hyderabad Lakes by Using Multivariate Statistical Techniques, Hyderabad-India. Environment and Pollution, 4(2), pp. 14–23. DOI:10.5539/ep.v4n2p14
  57. Kyllmar, K., Forsberg, L. S., Andersson, S. & Mårtensson, K. (2014). Small agricultural monitoring catchments in Sweden representing environmental impact. Agriculture, Ecosystems and Environment, 198, pp. 25–35. DOI:10.1016/j.agee.2014.05.016
  58. La Ferla, R., Azzaro, M., Budillon, G., Caroppo, C., Decembrini, F. & Maimone, G. (2010). Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Advances in Oceanography and Limnology, 1(2), pp. 235–257. DOI:10.1080/19475721.2010.541500
  59. La Ferla, R., Maimone, G., Caruso, G., Azzaro, F., Azzaro, M., Decembrini, F., Cosenza, A., Leonardi, M. & Paranhos, R. (2014). Are prokaryotic cell shape and size suitable to ecosystem characterization? Hydrobiologia, 726, pp. 65–80. DOI:10.1007/s10750-013-1752-x
  60. Ling, T. Y., Soo, C. L., Liew, J. J., Nyanti, L., Sim, S. F. & Grinang, J. (2017). Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River. Journal of Chemistry, 2017. DOI:10.1155/2017/5737452
  61. Lundberg, C. (2013). Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66(1–2), pp. 143–150. DOI:10.1016/j.marpolbul.2012.09.031
  62. Luo, J., Ledgard, S. F. & Lindsey, S. B. (2008). A test of a winter farm management option for mitigating nitrous oxide emissions from a dairy farm. Soil Use and Management, 24(2), pp. 121–130. DOI:10.1111/j.1475-2743.2007.00140.x
  63. Łysiak-Pastuszak, E., Drgas, N. & Pia̧tkowska, Z. (2004). Eutrophication in the Polish coastal zone: The past, present status and future scenarios. Marine Pollution Bulletin, 49(3), pp. 186–195. DOI:10.1016/j.marpolbul.2004.02.007
  64. Massoud, M. A. (2012). Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental Monitoring and Assessment, 184(7), pp. 4151–4160. DOI:10.1007/s10661-011-2251-z
  65. Matej-Lukowicz, K., Wojciechowska, E., Nawrot, N. & Dzierzbicka-Głowacka, L. A. (2020). Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland. PeerJ, 8, e8381. DOI:10.7717/peerj.8381
  66. Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A. & Schimanke, S. (2012). Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Climate Dynamics, 39(9–10), pp. 2421–2441. DOI:10.1007/s00382-012-1339-7
  67. Michałek, M., Barańska, A., Kuczyński, T., Brzeska-Roszczyk, P., Mioskowska, M., & Tarała, A. (2021). Marine Ecosystem Protection Survey - protection plan for the Coastal Landscape Park. Wydawnictwa Wewnętrzne Instytutu Morskiego Nr WW 7367. Available online, accessed on 5 January 2022: https://pomorskieparki.pl/planyochrony/opracowanie-projektu-planu-ochrony-nadmorskiego-parku-krajobrazowego/ (in Polish)
  68. Michałek, M. & Kruk-Dowgiałło, L., (2015). Management Program for Zatoka Pucka Region. Areas: Zatoka Pucka and Hel Peninsula (PLH 220032) and Zatoka Pucka (PLB220005). Wydawnictwa Wewnętrzne Instytutu Morskiego w Gdańsku WW 6855A (in Polish)
  69. Nazeer, S., Ali, Z. & Malik, R. N. (2016). Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling. Archives of Environmental Contamination and Toxicology, 71(1), pp. 97–112. DOI:10.1007/s00244-016-0272-x
  70. Newton, R. J. & McLellan, S. L. (2015). A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Frontiers in Microbiology, 6(SEP), pp. 1–13. DOI:10.3389/fmicb.2015.01028
  71. Ngang, B. U. & Agbazue, V. E. (2016). A Seasonal Assessment of Groundwater Pollution due to Biochemical Oxygen Demand, Chemical Oxygen Demand and Elevated Temperatures in Enugu Northern Senatorial District, South East Nigeria. IOSR Journal of Applied Chemistry (IOSR-JAC, 9(7), pp. 66–73. DOI:10.9790/5736-0907016673
  72. Noble, R.T., Moore, D.F., Leecaster, M.K., McGee, C.D. & Weisberg, S.B. (2003). Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res. 37, pp. 1637–1643.
  73. Norland S. (1993). The relationship between biomass and volume of bacteria. [In] Cole J.J. (Ed.) Handbook of methods in aquatic microbial ecology, pp. 303–308. Lewis Publishers.
  74. Novotny, V. (2003). Water quality: diffuse pollution and watershed management. John Wiley & Sons. Inc., Hoboken, New Jersey.
  75. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2), pp. 422–430. http://www.ncbi.nlm.nih.gov/pubmed/9925563
  76. Ordinance of the Governor, 1999: Zarządzenia Nr 173/99 Wojewody Pomorskiego z dnia 30 listopada 1999r.50131_AS_5_.JPG(Dz.U. W.P. nr 131, poz. 1129), (1999) (in Polish).
  77. Pastuszak, M., Kowalkowski, T., Kopiński, J., Doroszewski, A., Jurga, B. & Buszewski, B. (2018). Long-term changes in nitrogen and phosphorus emission into the Vistula and Oder catchments (Poland)—modeling (MONERIS) studies. Environmental Science and Pollution Research, 25(29), PP. 29734–29751. DOI:10.1007/s11356-018-2945-7
  78. Pernthaler, J. (2017). Competition and niche separation of pelagic bacteria in freshwater habitats. Environmental Microbiology, 19(6), pp. 2133–2150. DOI:10.1111/1462-2920.13742
  79. Piniewski, M., Kardel, I., Giełczewski, M., Marcinkowski, P. & Okruszko, T. (2014). Climate change and agricultural development: Adapting polish agriculture to reduce future
  80. nutrient loads in a coastal watershed. Ambio, 43(5), pp. 644–660. DOI:10.1007/s13280-013-0461-z
  81. Pliński, M. & Florczyk, I. (1984). Analizys of the composition and vertical distribution
  82. of the macroalgae in western part of the Gulf of Gdańsk in 1979 and 1980. Oceanologia,
  83. 19, pp. 101–115.
  84. Posch, T., Franzoi, J., Prader, M. & Salcher, M. M. (2009). New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquatic Microbial Ecology, 54, pp. 113–126. DOI:10.3354/ame01269
  85. Rinke, K., Kuehn, B., Bocaniov, S., Wendt-Potthoff, K., Büttner, O., Tittel, J., Schultze, M., Herzsprung, P., Rönicke, H., Rink, K., Rinke, K., Dietze, M., Matthes, M., Paul, L. & Friese, K. (2013). Reservoirs as sentinels of catchments: The Rappbode Reservoir Observatory (Harz Mountains, Germany). Environmental Earth Sciences, 69(2), pp. 523–536. DOI:10.1007/s12665-013-2464-2
  86. Russell, M. J., Weller, D. E., Jordan, T. E., Sigwart, K. J. & Sullivan, K. J. (2008). Net anthropogenic phosphorus inputs: Spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry, 88(3), pp. 285–304. DOI:10.1007/s10533-008-9212-9
  87. Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., Graupner, N., Haegerbaeumer, A., Kelly, A. M., Kopecky, J., Leese, F., Nõges, P., Orlic, S., Panksep,K., Pawlowski, j., Petrusek, A., Piggott, J.J., Rusch, J.C., Salis, R., Schenk, J., Simek, K., Stovicek, A., Strand, D.A., Vasquez, M,I., Vrålstad, T., Zlatkovic, S., Zupancic, M, & Stoeck, T. (2021). Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Research, 191 (December 2020), 116767. DOI:10.1016/j.watres.2020.116767
  88. Saniewska, D., Gębka, K., Bełdowska, M., Siedlewicz, G., Bełdowski, J. & Wilman, B. (2019). Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Marine Pollution Bulletin, 142 (April), pp. 361–376. DOI:10.1016/j.marpolbul.2019.03.059
  89. Serajuddin, Chowdhury, A. I. & Ferdous, T. (2018). Correlation Among Some Global Parameters Describing Organic Pollutants in River Water: a Case Study. International Journal of Research -GRANTHAALAYAH, 6(7), pp. 278–289. DOI:10.29121/granthaalayah.v6.i7.2018.1308
  90. Shrestha, S. & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), pp. 464–475. DOI:10.1016/j.envsoft.2006.02.001
  91. Šimek, K., Vrba, J. & Hartman, P. (1994). Size-Selective Feeding by Cyclidium sp. on Bacterioplankton and Various Sizes of Cultured Bacteria. FEMS Microbiology Ecology, 14(2), pp. 157–167.
  92. Šimek, K., Nedoma, J., Znachor, P., Kasalický, V., Jezbera, J., Horňák, K. & Sed’a, J. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnology and Oceanography, 59(5), pp. 1477–1492. DOI:10.4319/lo.2014.59.5.1477
  93. Świątecki, A. (1997). Application of bacteriological indicators in the assessment of surface waters. WSP Olsztyn. (in Polish)
  94. Tanentzap, A. J., Fitch, A., Orland, C., Emilson, E. J. S., Yakimovich, K. M., Osterholz, H. & Dittmar, T. (2019). Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 116(49), pp. 24689–24695. DOI:10.1073/pnas.1904896116
  95. Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H., Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N. & Wulff, F. (2007). Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio, 36(2–3), pp. 186–194. DOI:10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2
  96. Węsławski, J. M., Kryla-Straszewska, L., Piwowarczyk, J., Urbański, J., Warzocha, J., Kotwicki, L., Włodarska-kowalczuk, M. & Wiktor, J. (2013). Habitat modelling limitations – Puck Bay, Baltic Sea – a case study. Oceanologia, 55(1), pp. 167–183. DOI:10.5697/oc.55-1.167
  97. Węsławski, J. M., Warzocha, J., Bradtke, K., Kryla, L., Tatarek, A., Kotwicki, L. & Piwowarczyk, J. (2009). Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone). Oceanologia, 51(3), pp. 415–435.
  98. Wielgat, P., Kalinowska, D., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Wojciechowska, E., Nawrot, N., Matej-Lukowicz, K. & Dzierzbicka-Glowacka, L. A. (2021). Towards a multi-basin SWAT model for the migration of nutrients and pesticides to Puck Bay (Southern Baltic Sea). PeerJ, 9, pp. 1–26. DOI:10.7717/peerj.10938
  99. Wojciechowska, E., Nawrot, N., Matej-Łukowicz, K., Gajewska, M. & Obarska-Pempkowiak, H. (2019a). Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Science and Technology: Water Supply, 19(3), pp. 986–994. DOI:10.2166/ws.2018.190
  100. Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019b). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252 (May). DOI:10.1016/j.jenvman.2019.109637
  101. Wojtusiak, R. J. (1950). In the sea. Państwowe Zakłady Wydawnictw Szkolnych. (in Polish)
  102. Wołowicz, M., Kotwicki, S. & Geringer d’Odenberg, M. (1993). Many years of changes in the biocenosis of the Bay of Puck in the area of the mouth of the sewage treatment plant in Swarzewo. [In] Korzeniewski, K. (Ed.), Puck Bay (pp. 510–519). Fundacja Rozwoju Uniwersytetu Gdańskiego (in Polish).
  103. Wulff, F., Humborg, C., Andersen, H. E., Blicher-Mathiesen, G., Czajkowski, M., Elofsson, K., Fonnesbech-Wulff, A., Hasler, B., Hong, B., Jansons, V., Mörth, C. M., Smart, J. C. R., Smedberg, E., Stålnacke, P., Swaney, D. P., Thodsen, H., Was, A. & Zylicz, T. (2014). Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment. Ambio, 43(1), pp. 11–25. DOI:10.1007/s13280-013-0484-5
  104. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Pollution Bulletin, 139(November 2018), pp. 238–255. DOI:10.1016/j.marpolbul.2018.11.060
  105. Zalewska, T., Woroń, J., Danowska, B. & Suplińska, M. (2015). Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia, 57(1), pp. 32–43. DOI:10.1016/j.oceano.2014.06.003
  106. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K. & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems and Environment, 88(2), pp. 137–146. DOI:10.1016/S0167-8809(01)00249-3
Go to article

Authors and Affiliations

Emilia Bączkowska
1
Agnieszka Kalinowska
1
Oskar Ronda
2 3
Katarzyna Jankowska
1
Rafał Bray
1
Bartosz Płóciennik
4
Żaneta Polkowska
2 3

  1. Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering,Gdansk University of Technology, Gdansk, Poland
  2. Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
  3. EkoTech Center, Gdansk University of Technology, Gdansk, Poland
  4. Coastal Landscape Park, Wladyslawowo, Poland
Download PDF Download RIS Download Bibtex

Abstract

Transport properties of bronchial mucus are investigated by two-stage experimental approach focused on: (a) rheological properties and (b) mass transfer rate through the stagnant layer of solutions of mucus components (mucine, DNA, proteins) and simulated multi-component mucus. Studies were done using thermostated horizontal diffusion cells with sodium cromoglycate and carminic acid as transferred solutes. Rheological properties of tested liquids was studied by a rotational viscometer and a cone-plate rheometer (dynamic method). First part of the studies demonstrated that inter-molecular interactions in these complex liquids influence both rheological and permeability characteristics. Transfer rate is governed not only by mucus composition and concentration but also by hydrophobic/hydrophilic properties of transported molecules. Second part was focused on the properties of such a layer in presence of selected nanostructured particles (different nanoclays and graphene oxide) which may be present in lungs after inhalation. It was shown that most of such particles increase visco-elasticity of the mucus and reduce the rate of mass transfer of model drugs. Measured effects may have adverse impact on health, since they will reduce mucociliary clearance in vivo and slow down drug penetration to the bronchial epithelium during inhalation therapy.

Go to article

Authors and Affiliations

Marcin Odziomek
Martyna Kalinowska
Aleksandra Płuzińska
Antoni Rożeń
Tomasz R. Sosnowski
Download PDF Download RIS Download Bibtex

Abstract

The most interesting area of ethical considerations by Bertrand Russell belongs to the field of metaethics and concerns the meaning of basic ethical concepts and their epistemological status. In the classic dispute between cognitivism and noncognitivism, Russell has chosen the emotivist position which deprives moral opinions of any cognitive value by treating them as an expression of individual emotive attitudes. Thus, he advocates a kind of subjectivism in ethics, and at the same time he refutes all arguments ascribing to moral phenomena specific objective qualities independent of human attitudes and emotions. He also puts to doubt all sources of morality that have a religious character. His own normative statements concerning metaethical issues are so phrased, however, that a serious methodological doubt arises: Is it possible to practice normative ethics without using an objectivist hypothesis?
Go to article

Authors and Affiliations

Joanna Górnicka‑Kalinowska
1
ORCID: ORCID

  1. Uniwersytet Warszawski, Wydział Filozofii, ul. Kra-kowskie Przedmieście 3, 00-927 Warszawa

Authors and Affiliations

Anna Wysocka
Ewa Głowniak
Michał Szulczewski
Stanisław Rudowski
Jerzy Giżejewski
Paweł Henryk Karnkowski
Joanna Pinińska
Grzegorz Pieńkowski
Stanisław Skompski
Ewa Słaby
Anna Kalinowska
Gerard Sawicki
Download PDF Download RIS Download Bibtex

Abstract

W artykule opisujemy zmiany w zakresie jakości badań jakościowych wynikające z dostosowywania praktyk badawczych do warunków pandemicznych na kolejnych etapach procesu badawczego. Analiza powstała na podstawie 32 wywiadów pogłębionych z badaczami i badaczkami społeczno-humanistycznymi. Omawiamy „drogi do jakości” i „drogi do niejakości” w badaniach jakościowych w czasie kryzysu pandemicznego. Osoby prowadzące badania cechowała ambiwalencja w ocenie wpływu warunków pandemicznych na jakość ich badań. Analiza skupień pokazała z kolei, że strategie zapewniania jakości badań jakościowych w pandemii różniły się ze względu na uważność na zmiany jakości w różnych fazach procesu badawczego. Wyróżniono strategie polegające na dążeniu do osiągania jakości głównie na etapie realizacji badań oraz strategie holistyczne, skupione na zapewnianiu jakości we wszystkich fazach badania. Uzyskane wyniki zostały zinterpretowane w odniesieniu do czterech podejść do jakości badań jakościowych wyróżnionych na podstawie analizy literatury przedmiotu.
Go to article

Bibliography

1. Całek, Grzegorz. 2023. „Wreszcie się wyspałam, po raz pierwszy sama upiekłam bułeczki…”– spojrzenie na pierwszy tydzień pandemii COVID-19 w Polsce. Przegląd Socjologiczny, 72, 1. DOI: 10.26485/PS/2023/72.1.
2. Charmaz, Kathy. 2009. Teoria ugruntowana. Praktyczny przewodnik po analizie jakościowej. Przekład Barbara Komorowska. Warszawa: Wydawnictwo Naukowe PWN.
3. Denzin Norman K., Yvonna S. Lincoln. 2009. Metody badań jakościowych, t. II. Warszawa: Wydawnictwo Naukowe PWN.
4. Dolińska, Anna, Kamil Łuczaj, Olga Kurek-Ochmańska. 2022. Metoda biograficzna w kontekście badań jakościowych realizowanych zdalnie – możliwości, ograniczenia i aspekty etyczne. Przegląd Socjologiczny, 71, 1: 61–84. DOI: 10.26485/PS/2022/71.1/3.
5. Ferlatte, Olivier, Julie Karmann, Geneviève Gariépy, Katherine L. Frohlich, Gregory Moullec, Valérie Lemieux, Réjean Hébert. 2022. Virtual photovoice with older adults: Methodological reflections during the COVID-19 Pandemic. International Journal of Qualitative Methods, 21. DOI: 10.1177/16094069221095656.
6. Flick, Uwe. 2011. Jakość w badaniach jakościowych. Przekład Paweł Tomanek. Warszawa: Wydawnictwo Naukowe PWN.
7. Gibbs, Graham. 2011. Analizowanie danych jakościowych. Przekład Maja Brzozowska-Brywczyńska. Warszawa: Wydawnictwo Naukowe PWN.
8. Hammersley, Martin. 2007. The issue of quality in qualitative research. International Journal of Research & Method in Education, 21, 3: 287–305.
9. Horolets, Anna. 2016. Badacz jako gość. Przegląd Socjologii Jakościowej, 12, 3: 54‒69. http://www.qualitativesociologyreview.org/PL/Volume35/PSJ_12_3_Horolets.pdf [21.03.22023].
10. Howlett Marnie. 2021. Looking at the ‘field’ through a Zoom lens: Methodological reflections on conducting online research during a global pandemic. Qualitative Research, 22 (3): 387–402. DOI:10.1177/1468794120985691.
11. Joseph, Dawn, Reshmi Lahiri-Roy, Jemima Bunn. 2022. A trio of teacher education voices: Developing professional relationships through co-caring and belonging during the pandemic. Qualitative Research Journal, 22, 2: 157–172. DOI: 10.1108/QRJ-04-2021-0045.
12. Kalinowska, Katarzyna, Beata Bielska, Sylwia Męcfal, Adrianna Surmiak. 2022. Czy badać? Co badać? Jak badać? Strategie badawcze w naukach społecznych i humanistycznych w pierwszej fali pandemii COVID-19. Przegląd Socjologii Jakościowej, 18, 4: 34–59. DOI: 10.18778/1733-8069.18.4.02.
13. Kim, Jaymelee J., Sierra Williams, Erin R. Eldridge, Amanda J. Reinke. 2023. Digitally shaped ethnographic relationships during a global pandemic and beyond. Qualitative Research, 23, 3: 809–824. DOI: 10.1177/14687941211052275.
14. Konecki, Krzysztof T. 2019. Kreatywność w badaniach jakościowych. Pomiędzy procedurami a intuicją. Przegląd Socjologii Jakościowej, 15, 3: 30–54. DOI: 10.18778/1733-8069.15.3.03.
15. Krajewski, Marek, Maciej Frąckowiak, Małgorzata Kubacka, Łukasz Rogowski. 2021. The bright side of the crisis. The positive aspects of the COVID-19 pandemic according to the Poles. European Societies, 23, sup1: S777–S790. DOI: 10.1080/14616696.2020.1836387.
16. Kvale, Steinar. 2010. Prowadzenie wywiadów. Przekład Agata Dziuban. Warszawa: Wydawnictwo Naukowe PWN.
17. Lincoln, Yvonna S., Egon G. Guba. 1985. Naturalistic inquiry. Newbury Park, CA: Sage Publications.
18. Long, Andrew F., Mary Godfrey. 2004. An evaluation tool to assess the quality of qualitative research studies. International Journal of Social Research Methodology, 7, 2: 181–196. DOI: 10.1080/1364557032000045302.
19. Łukianow, Małgorzata, Maja Głowacka, Monika Helak, Justyna Kościńska, Mateusz Mazzini. 2021. Poles in the face of forced isolation. A study of the Polish socjety during the COVID-19 pandemic based on ‘Pandemic Diaries’ competition. European Societies, 23, sup1: S844–S858. DOI: 10.1080/14616696.2020.1841264.
20. Marzi, Sonja. 2021. Participatory video from a distance: Co-producing knowledge during the COVID-19 pandemic using smartphones. Qualitative Research, 1–17. DOI: 10.1177/14687941211038171.
21. Minello Alessandra, Sara Martucci, Lidia K. C. Manzo. 2021. The pandemic and the academic mothers: Present hardships and future perspectives. European Societies, 23, sup1: S82–S94. DOI: 10.1080/14616696.2020.1809690.
22. Mwambari, David, Andrea Purdeková, Aymar Nyenyezi Bisoka. 2021. COVID-19 and research in conflict-affected contexts: Distanced methods and the digitalisation of suffering. Qualitative Research, 22, 6: 969–978. DOI: 10.1177/1468794121999014.
23. Naganathan, Gayathri, Sinthu Srikanthan, Abhirami Balachandran, Angel Gladdy, Vasuki Shanmuganathan. 2022. Collaborative zoom coding – a novel approach to qualitative analysis. International Journal of Qualitative Methods, 21. DOI: 10.1177/16094069221075862.
24. Nawojski, Radosław, Beata Kowalska. 2022. „KIEDY PAŃSTWO MNIE NIE CHRONI…” – oddolne mobilizacje na rzecz praw reprodukcyjnych a doświadczanie obywatelstwa . Studia Socjologiczne, 1, 244: 81–103. DOI: 10.24425/sts.2022.140597.
25. Novotný Lukáš, Hynek Böhm. 2022. New re-bordering left them alone and neglected: Czech cross-border commuters in German-Czech borderland. European Societies, 24, 3: 333–353. DOI: 10.1080/14616696.2022.2052144.
26. Oliffe, John L. 2021. Zoom interviews: Benefits and concessions. International Journal of Qualitative Methods, 20. DOI: 10.1177/16094069211053522.
27. Ossowski, Stanisław. 1967. O osobliwościach nauk społecznych. W: S. Ossowski. Dzieła, t. IV. Warszawa: PWN.
28. Polkowska, Dominika. 2021. Przyspieszenie czy spowolnienie? Praca platformowa dostawców jedzenia w dobie pandemii Sars-Cov-2. Studia Socjologiczne, 4, 243: 109–133. DOI: 10.24425/sts.2021.139724.
29. Radzińska, Jowita. 2022. Między elastycznością a spójnością – wykorzystanie metod asynchronicznych w jakościowym badaniu podłużnym realizowanym w trakcie pandemii COVID-19. Przegląd Socjologii Jakościowej, 18, 3: 10–31. DOI: 10.18778/1733-8069.18.3.02.
30. Rahman, Syahirah A., Lauren Tuckerman, Tim Vorley, Cristian Gherhes. 2021. Resilient research in the field: Insights and lessons from adapting qualitative research projects during the COVID-19 pandemic. International Journal of Qualitative Methods, 20. DOI: 10.1177/16094069211016106.
31. Ravenek, Michael J., Debbie L. Rudman. 2013. Bridging conceptions of quality in moments of qualitative research. International Journal of Qualitative Methods, 12, 1: 436–456. DOI: 10.1177/160940691301200122.
32. Seale, Clive. 1999. The quality of qualitative research. Thousand Oaks, CA: Sage.
33. Surmiak, Adrianna, Bielska Beata, Kalinowska Katarzyna. 2022. Social Researchers’ Approaches to Research Ethics During the COVID-19 Pandemic: An Exploratory Study. Journal of Empirical Research on Human Research Ethics, 17,1.2: 213–222. DOI: 10.1177/15562646211055056.
34. Tarrant Anna, Laura Way, Linzi Ladlow. 2021. ‘Oh sorry, I’ve muted you!’: Issues of connection and connectivity in qualitative (longitudinal) research with young fathers and family support professionals. International Journal of Social Research Methodology, DOI: 10.1080/13645579.2021.1986313.
35. ‘t Hart, Dorinda. 2021. Covid times make ‘deep listening’ explicit: Changing the space between interviewer and participant. Qualitative Research, 0: 1-16. DOI: 10.1177/14687941211027780.
36. Thunberg, Sara, Linda Arnell. 2021. Pioneering the use of technologies in qualitative research – A research review of the use of digital interviews. International Journal of Social Research Methodology, 25, 6: 757–768. DOI: 10.1080/13645579.2021.1935565. 37. Tracy, Sarah J. 2010. Qualitative quality: Eight “big-tent” criteria for excellent qualitative research. Qualitative Inquiry, 16, 10: 837–851. DOI: 10.1177/1077800410383121.
38. Watson, Ash, Deborah Lupton. 2022. Remote fieldwork in homes during the COVID-19 pandemic: Video-call ethnography and map drawing methods. International Journal of Qualitative Methods, 21. DOI: 10.1177/16094069221078376.
39. Wyka, Anna. 1993. Badacz społeczny wobec doświadczenia. Warszawa: Wydawnictwo IFiS PAN.
40. Żadkowska Magdalena, Bogna Dowgiałło, Magdalena Gajewska, Magdalena Herzberg-Kurasz, Marianna Kostecka. 2022. The sociological confessional: A reflexive process in the transformation from face-to-face to online interview. International Journal of Qualitative Methods, 21: 1–12. DOI:10.1177/16094069221084785.

Go to article

Authors and Affiliations

Sylwia Męcfal
1
ORCID: ORCID
Beata Bielska
2
ORCID: ORCID
Katarzyna Kalinowska
3
ORCID: ORCID
Adrianna Surmiak
4
ORCID: ORCID

  1. Instytut Socjologii, Uniwersytet Łódzki
  2. Instytut Socjologii, Uniwersytet Mikołaja Kopernika w Toruniu
  3. Instytut Socjologii im. E. Wnuk-Lipińskiego Collegium Civitas
  4. Instytut Stosowanych Nauk Społecznych, Uniwersytet Warszawski

This page uses 'cookies'. Learn more