Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A method for defects extraction for a mercury cadmium telluride (MCT) multilayer low-bandgap heterostructure is presented. The N+/T/p/T/P+/n+ epitaxial layer was deposited on a GaAs substrate by a metal-organic chemical vapour deposition (MOCVD). The absorber was optimized for a cut-off wavelength of λc = 6 μm at 230 K. Deep-level transient spectroscopy (DLTS) measurements were conducted for the isolated junctions of the N+/T/p/T/P+/n+ heterostructure. Three localised point defects were extracted within the p-type active layer. Two of them were identified as electron traps and one as a hole trap, respectively.
Go to article

Authors and Affiliations

Kinga Majkowycz
1
ORCID: ORCID
Małgorzata Kopytko
1
ORCID: ORCID
Krzysztof Murawski
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The dual-band avalanche photodiode (APD) detector based on a HgCdTe material system was designed and analysed in detail numerically. A theoretical analysis of the two-colour APD intended for the mid wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges was conducted. The main purpose of the work was to indicate an approach to select APD structure parameters to achieve the best performance at high operating temperatures (HOT). The numerical simulations were performed by Crosslight numerical APSYS platform which is designed to simulate semiconductor optoelectronic devices. The current-voltage characteristics, current gain, and excess noise analysis at temperature T = 230 K vs. applied voltage for MWIR (U = 15 V) and LWIR (U = –6 V) ranges were performed. The influence of low and high doping in both active layers and barrier on the current gain and excess noise is shown. It was presented that an increase of the APD active layer doping leads to an increase in the photocurrent gain in the LWIR detector and a decrease in the MWIR device. The dark current and photocurrent gains were compared. Photocurrent gain is higher in both spectral ranges.
Go to article

Authors and Affiliations

Tetiana Manyk
1
ORCID: ORCID
Kinga Majkowycz
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The temperature dependence of photoluminescence spectra has been studied for the HgCdTe epilayer. At low temperatures, the signal has plenty of band-tail states and shallow/deep defects which makes it difficult to evaluate the material bandgap. In most of the published reports, the photoluminescence spectrum containing multiple peaks is analyzed using a Gaussian fit to a particular peak. However, the determination of the peak position deviates from the energy gap value. Consequently, it may seem that a blue shift with increasing temperature becomes apparent. In our approach, the main peak was fitted with the expression proportional to the product of the joint density of states and the Boltzmann distribution function. The energy gap determined on this basis coincides in the entire temperature range with the theoretical Hansen dependence for the assumed Cd molar composition of the active layer. In addition, the result coincides well with the bandgap energy determined on the basis of the cut-off wavelength at which the detector response drops to 50% of the peak value.
Go to article

Authors and Affiliations

Krzysztof Murawski
1
ORCID: ORCID
Małgorzata Kopytko
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Kinga Majkowycz
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more