Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the external target experiment for heavy ion collisions in the HIRFL-CSR, Multi-Wire Drift Chambers are used to measure the drift time of charged particles to obtain the track information. This 128-channel high precision time measurement module is designed to perform the time digitization. The data transfer is based on a PXI interface to guarantee a high data rate. Test results show that a 100 ps resolution with a data transfer rate up to 40 MBps has been achieved; this module has also been proven to function well with the detector through a commissioning test.

Go to article

Authors and Affiliations

Longfei Kang
Lei Zhao
Jiawen Zhou
Qi An
Download PDF Download RIS Download Bibtex

Abstract

The non-contact current measurement method with magnetic sensors has become a subject of research. Unfortunately, magnetic sensors fail to distinguish the interested magnetic field from nearby interference and suffer from gauss white noise due to the intrinsic noise of the sensor and external disturbance. In this paper, a novel adaptive filtering-based current reconstruction method with a magnetic sensor array is proposed. Interference-rejection methods based on two classic algorithms, the least-mean-square (LMS) and recursive-least-square (RLS) algorithms, are compared when used in the parallel structure and regular triangle structure of three-phase system. Consequently, the measurement range of RLS-based algorithm is wider than that of LMS-based algorithm. The results of carried out simulations and experiments show that RLS-based algorithms can measure currents with an error of around 1%. Additionally, the RLS-based algorithm can filter the gauss white noise whose magnitude is within 10% of the linear magnetic field range of the sensor.

Go to article

Authors and Affiliations

Yafeng Chen
Qi Huang
Download PDF Download RIS Download Bibtex

Abstract

In order to provide sufficient cooling capacity for working and heading faces of the coal mine, chilled water is often transported a long distance along pipelines in deep mine, which inevitably results in its temperature rising owing to heat transfer through pipe wall and the friction heat for flow resistance. Through theoretical models for temperature increasing of the chilled water were built. It is pointed out that the temperature rising of the chilled water should be considered as a result of the synergy effects of the heat transfer and the friction heat, but theoretical analysis shows that within engineering permitting error range, the temperature increasing can be regarded as the sum caused by heat transfer and fraction heat respectively, and the calculation is simplified. The calculation analysis of the above two methods was made by taking two type of pipe whose diameters are De273 × 7 mm and De377 × 10 mm, with 15 km length in coal mine as an example, which shows that the error between the two methods is not over 0.04°C within the allowable error range. Aims at the commonly used chilled water diameter pipe, it is proposed that if the specific frictional head loss is limited between 100 Pa/m and 400 Pa/m, the proportion of the frictional temperature rising is about 24%~81% of the total, and it will increase with high flow velocity and the thin of the pipe. As a result, the friction temperature rising must not be ignored and should be paid enough attention in calculation of the chilled water temperature rising along pipe.

Go to article

Authors and Affiliations

Qi Yudong
Cheng Weimin
Xin Song
Download PDF Download RIS Download Bibtex

Abstract

To investigate the effect of different proximate index on minimum ignition temperature(MIT) of coal dust cloud, 30 types of coal specimens with different characteristics were chosen. A two-furnace automatic coal proximate analyzer was employed to determine the indexes for moisture content, ash content, volatile matter, fixed carbon and MIT of different types of coal specimens. As the calculated results showed that these indexes exhibited high correlation, a principal component analysis (PCA) was adopted to extract principal components for multiple factors affecting MIT of coal dust, and then, the effect of the indexes for each type of coal on MIT of coal dust was analyzed. Based on experimental data, support vector machine (SVM) regression model was constructed to predicate the MIT of coal dust, having a predicating error below 10%. This method can be applied in the predication of the MIT for coal dust, which is beneficial to the assessment of the risk induced by coal dust explosion (CDE).

Go to article

Authors and Affiliations

Dan Zhao
ORCID: ORCID
Hao Qi
Jingtao Pan
Download PDF Download RIS Download Bibtex

Abstract

This paper established a radio-frequency electrode model and human head model used in RF cosmetic instruments. The distribution of electric field strength, a specific absorption rate (SAR), and temperature distribution in the human brain at 1 MHz and 6 MHz were studied and the results compared with the International Commission on Nonionizing Radiation Protection (ICNIRP) guidelines. The results showed that under those two frequencies the maximum value of electric field strength in the human brain was 1.52 V/m and it was about 5.4% of the ICNIRP basic restrictions, the maximum SAR in human brain was about 2:21 ? 10??3 W/kg, which was far less than 2 W/kg of ICNIRP basic restrictions, the maximum temperature of the human brainwas 37:6? located in thewounded skin, which was the same as the normal temperature 37?. Since all the results were within the ICNIRP basic restrictions, the electromagnetic exposure generated by the RF cosmetic electrode will not pose a threat to the human health.
Go to article

Bibliography

[1] Bidi M., Biological risk assessment of high-voltage transmission lines on worker’s health of electric society, Archives of Electrical Engineering, vol. 69, no. 1, pp. 57–68 (2020).
[2] Deltuva R., Lukocius R., Electric and magnetic field of different transpositions of overhead power line, Archives of Electrical Engineering, vol. 66, no. 3, pp. 595–605 (2017).
[3] Alam M., Levy R., Pajvani U., Ramierez A., Guitart J., Veen H., Gladstone B., Safety of radiofrequency treatment over human skin previously injected with medium-term injectable soft-tissue augmentation materials: a controlled pilot trial, Lasers in Surgery and Medicine, vol. 39, no. 5, pp. 468–468 (2007).
[4] Suh D.H., Byun J.E., Lee J.S., Song Y.K., Kim S.H., Clinical efficacy and safety evaluation of a novel fractional unipolar radiofrequency device on facial tightening: A preliminary report, Journal of Cosmetic Dermatology, vol. 16, no. 2, pp. 199–204 (2017).
[5] Lee S.H., Lee D.H., Won C.H., Chang H.W., Kwon H.H., Kim K.H., Chung J.H., Fractional rejuvenation using a novel bipolar radiofrequency system in Asian skin, Dermatol Surgery, vol. 37, no. 11, pp. 1611–1619 (2011).
[6] International Commission on Non-ionizing Radiation Protection Guidelines for limiting exposure to time-varying electric and magnetic fields (up to 300GHz), Health Physics, vol. 74, no. 4, pp. 494–522 (1998).
[7] Alhalabi S.M., Agha O.Q., Hantash B.M., Nonablative radiofrequency for skin rejuvenation: a review of the literature, Expert Review of Dermatology, vol. 7, no. 7, pp. 589–599 (2012).
[8] Sadick N., Tissue tightening technologies: Fact or fiction, Aesthetic Surgery Journal, vol. 28, no. 2, pp. 180–188 (2008).
[9] Nelson A., Beynet D., Lask G., A novel non-invasive radiofrequency dermal heating device for skin tightening of the face and neck, Journal of Cosmetic and Laser Therapy, vol. 17, no. 6, pp. 1–6 (2015).
[10] Friedman J., Gilead L., The Use of Hybrid Radiofrequency Device for the Treatment of Rhytids and Lax Skin, Dermatologic Surgery, vol. 33, no. 5, pp. 547–551 (2007).
[11] Brightman L., Goldman MP., Taub A.F., Sublative Rejuvenation: Experience with a New Fractional Radiofrequency System for Skin Rejuvenation and Repair, Journal of Drugs in Dermatology, vol. 8, no. 11, pp. 9–13 (2009).
[12] Hsu T.S., Kaminer M.S., The use of nonablative radiofrequency technology to tighten the lower face and neck, Seminars in Cutaneous Medicine and Surgery, vol. 22, no. 2, pp. 1–123 (2003).
[13] Rush S., Driscoll D.A., EEG electrode sensitivity–an application of reciprocity, IEEE Transactions on Biomedical Engineering, vol. 16, no. 1, pp. 15–22 (1968).
[14] Huclova S., Baumann D., Talary M., Frohlich J., Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin, Physics in Medicine and Biology, vol. 56, no. 24, pp. 7777–7793 (2011).
[15] Gabriel C., Bentall R., Grant E.H., Comparison of the dielectric properties of normal and wounded human skin material, Bioelectromagnetics, vol. 8, no. 1, pp. 23–27 (1987).
[16] Huclova S., Erni D., Frohlich J., Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition, Journal of Physics D Applied Physics, vol. 45, no. 45 (2012), DOI: 10.1088/0022-3727/45/2/025301.
[17] Cole K., Cole R., Dispersion and absorption in dielectrics: I. Alternating current characteristics, Journal of Chemical Physics, vol. 9, no. 4, pp. 341–351 (1941).
[18] http://www.itis.ethz.ch/database.pl, accessed January 2020.
[19] http://cn.comsol.com/pl, accessed January 2020.
[20] Rush S., Driscoll D.A., Current distribution in the brain from surface electrodes, Anesthesia and Analgesia, vol. 47, no. 6, pp. 717–723 (1968).
[21] Tamnes K., Ostby Y., Fjell A.M., Westlye L.T., Due P., Walhovd K., Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure, Cerebral Cortex, vol. 20, no. 3, pp. 534–548 (2010).
[22] Gabriel S., Lau W., Gabriel C., The dielectric properties of biological tissues: III parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol. 41, no. 11, pp. 2271–2293 (1996).
[23] Hruza G., Taub F., Collier S., Mulholland R., Skin rejuvenation and wrinkle reduction using a fractional radiofrequency system, Journal of Drugs in Dermatology, vol. 8, no. 3, pp. 259–265 (2009).









Go to article

Authors and Affiliations

Xinzhe Qi
1
Mai Lu
1
ORCID: ORCID

  1. Key Laboratory of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

The ground disturbance caused by the tunnel construction will inevitably have an impact on the upper part of the constructed tunnel structure, and the railroad tunnel requires a very high level of control over the structural settlement deformation. For the problem of double-hole tunnel under the built tunnel, this paper takes Chongqing Mingyue Mountain Tunnel under the built Shanghai-Rong Railway Paihua Cave tunnel and Zheng-Yu Railway tunnel as the engineering background, and starts from the mechanism of ground loss caused by tunnel excavation, firstly, the settlement at the height of the existing tunnel strata is obtained through theoretical analysis, and the new Mingyue Mountain Tunnel under the Shanghai-Rong Railway tunnel is determined to be a more dangerous section. Further simulate and calculate the dynamic excavation process of the new double-hole tunnel underpass, and study the settlement deformation law of the Mingyue Mountain Tunnel underpassing the Hurong Railway Tunnel. According to the requirements of railroad tunnel for settlement deformation control, the new tunnel is determined to be constructed by step method to ensure the safety of railroad tunnel. The shortcomings of the theoretical calculation are analyzed to illustrate the important role of numerical simulation in the evaluation of tunnel underpass projects.
Go to article

Authors and Affiliations

Fengfeng Guo
1
Yupeng Chen
2
Yongjie Zhang
1
Qi Feng
3
Da Cui
4

  1. Tunnel Engineering Company, Ltd. of CCCC, Beijing, China
  2. Power China Railway Construction Investment GroupCo., LTD, Beijing, China
  3. College of Pipeline and Civil Engineering, China University of Petroleum. Qingdao, China
  4. No. 7 Engineering Co., LTD, CCCC First Highway Engineering Group Co., LTD. Zhengzhou, China
Download PDF Download RIS Download Bibtex

Abstract

To prepare a high-quality asymmetrical bending pipe of aluminum alloy by casting, the parting surfaces of the asymmetrical parts were determined based on the characteristics of the parts. Also, the forming process was designed and calculated. After that, the different types of gating systems were designed and the casting process was calculated by ProCAST, and then the influence of different casting gating systems on asymmetrical bending pipes was analyzed. The simulation results show that in the solidification process, although the filling speed of the single runner was slow, but the filling was stable. The gating system with a single runner-round flange filling system would lead to being more uniform for filling flow field and be sequential solidification of temperature field distribution, and stronger of the feeding ability. During the solidification process, the solid phase ratio of the single runner-round flange casting system is larger, and the shrinkage volume is smaller, which made the quality of castings better. Finally, a metal mold and core were made to cast a perfect asymmetric bending pipe of aluminum alloy product in a die casting machine. So the single runner-round flange filling system is suitable for asymmetrical bending pipe casting.
Go to article

Authors and Affiliations

Ning Wang
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
ZiQi Zhang
1
Qi. Zeng
2
ORCID: ORCID

  1. School of Mechanical & Electrical Engineering, Guizhou Normal University
  2. Guiyang Huaheng Mechanical Manufacture CO., LTD, China
Download PDF Download RIS Download Bibtex

Abstract

The single-phase voltage loss is a common fault. Once the voltage-loss failure occurs, the amount of electrical energy will not be measured, but it is to be calculated so as to protect the interest of the power supplier. Two automatic calculation methods, the power substitution and the voltage substitution, are introduced in this paper. Considering the lack of quantitative analysis of the calculation error of the voltage substitution method, the grid traversal method and MATLAB tool are applied to solve the problem. The theoretical analysis indicates that the calculation error is closely related to the voltage unbalance factor and the power factor, and the maximum calculation error is about 6% when the power system operates normally. To verify the theoretical analysis, two three-phase electrical energy metering devices have been developed, and verification tests have been carried out in both the lab and field conditions. The lab testing results are consistent with the theoretical ones, and the field testing results show that the calculation errors are generally below 0.2%, that is correct in most cases.

Go to article

Authors and Affiliations

Han-miao Cheng
Zhong-dong Wang
Qi-xin Cai
Xiao-quan Lu
Yu-xiang Gao
Rui-peng Song
Zheng-qi Tian
Xiao-xing Mu
Download PDF Download RIS Download Bibtex

Abstract

In this work we discussed the safety of the electric field environment in the No.3 carriage where the pantograph is located. DSA380 pantograph, CRH5 EMU carriage and passengers’ models were established to study the electric field exposure of passengers at different positions. The results showed that Emax in the carriage without passengers is 1.173 x 10 6 mV/m. Then we set the passengers’ positions according to the electric field distribution in the carriage without passengers and obtained that Emax in the carriage with passengers is 3.195 x 10 6 mV/m. It can be seen that the maximum induced electric field intensity of passengers at different positions appears on the soles of shoes, the maximum value is 3.028 x 105 mV/m, the maximum induced current density occurs at the ankle, its maximum value is 3.476 x 10 -5 A/m 2. It can be concluded that the maximum induced electric field intensity of passenger’s head appears in the cerebrospinal fluid area, with a maximum value of 202.817 mV/m, and the maximum induced electric field intensity of passenger’s head at the door is larger than that in the middle of the carriage. The maximum values of the induced electric field intensity in all tissues of passengers are much smaller than the basic limits of electromagnetic exposure to the public set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). This study indicated that the pantograph has little influence on the electric field environment in the carriage under working state, and will not cause any health hazard to the passengers in this working frequency electric field environment.
Go to article

Authors and Affiliations

Rui Tian
1
Jia-qi Zhang
1
Mai Lu
1
ORCID: ORCID

  1. Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Gansu Province, China
Download PDF Download RIS Download Bibtex

Abstract

Satellite remote sensing provides a synoptic view of the land and a spatial context for measuring drought impacts, which have proved to be a valuable source of spatially continuous data with improved information for monitoring vegetation dynamics. Many studies have focused on detecting drought effects over large areas, given the wide availability of low-resolution images. In this study, however, the objective was to focus on a smaller area (1085 km2) using Landsat ETM+ images (multispectral resolution of 30 m and 15 m panchromatic), and to process very accurate Land Use Land Cover (LULC) classification to determine with great precision the effects of drought in specific classes. The study area was the Tortugas-Tepezata sub watershed (Moctezuma River), located in the state of Hidalgo in central Mexico. The LULC classification was processed using a new method based on available ancillary information plus analysis of three single date satellite images. The newly developed LULC methodology developed produced overall accuracies ranging from 87.88% to 92.42%. Spectral indices for vegetation and soil/vegetation moisture were used to detect anomalies in vegetation development caused by drought; furthermore, the area of water bodies was measured and compared to detect changes in water availability for irrigated crops. The proposed methodology has the potential to be used as a tool to identify, in detail, the effects of drought in rainfed agricultural lands in developing regions, and it can also be used as a mechanism to prevent and provide relief in the event of droughts.

Go to article

Authors and Affiliations

Andres Sierra-Soler
Jan Adamowski
Zhiming Qi
Hossein Saadat
Santosh Pingale
Download PDF Download RIS Download Bibtex

Abstract

The aluminum alloy performance gradient plate was prepared by friction stir joining. Analysis results of the macro morphology, microstructure, and hardness of the aluminum alloy performance gradient plate prepared under various parameters show that when the feed speed of the stirring tool is 250 mm/min, the downward pressure of the stirring tool is 6.6 mm, and the rotation speed of the stirring tool changes from 200 rpm to 800 rpm. The macroscopic morphology of the aluminum alloy gradient plates prepared by the method first changed from burr to smooth, and vice versa. There is a different cross-section morphology of the prepared aluminum alloy gradient plates, however, the aluminum alloy plates are stirred and involved with each other, and the grains of the prepared plates are refined. The hardness of the upper and lower surfaces of the aluminum alloy gradient sheet decreases, whereas that of the upper surface of the side increases, and that of the middle and bottom sides also decreases. However, the hardness of the middle side of the sheet prepared with the rotation speed of the stirring tool at 800 rpm increases, but that of the bottom side still decreases. Obtained through analysis that the performance of the aluminum alloy gradient sheet prepared at the stirring tool rotation speed of 500 rpm increases in equal proportion to achieve a good performance gradient change.
Go to article

Authors and Affiliations

Song Weiwei
1 2 3
Pu Jiafei
1 2 3
Jiang Di
1 2 3
Ge Xiaole
1 2 3
Dong Qi
1 2 3
Wang Hongfeng
1 2 3

  1. Huangshan University, School of Mechanical and Electrical Engineering, Huangshan 245041, P.R. China
  2. Anhui Simulation Design and Modern Engineering Research Center, Huangshan 245041, P.R. China
  3. Anhui Province Tea Chrysanthemum Intelligent Processing Equipment Engineering Research Center, Huangshan 245041, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Tunnel construction survey must be necessary to be very quick so that the results can be known as soon as possible. This aim can be achieved through the intelligent positioning method of tunnel excavation face. In this study, the plane parameters of the tunnel cross-section were transformed into the coordinates of the points on the cross-section to realize the automatic transformation of graphic data. According to the theoretical calculation of the lofting point accuracy, the appropriate measurement control network level and measurement accuracy and the appropriate measurement instruments were selected. The fast and intelligent positioning and setting out of tunnel excavation face was realized base on the technology of data communication between computer and measuring instruments. The intelligent positioning method of tunnel excavation face could greatly reduce the time of measurement and positioning, speed up the project progress, reduce the project risk, shorten the construction period and reduce the project cost.
Go to article

Bibliography

[1] K. Rabensteiner, “Automated surveying speeds construction”, Tunnels & Tunnelling, 1996, vol. 28, no. 1, pp. 40–41.
[2] H.E. Bin, “Application of CASIO Measurement Program Assisted by Total Station in Survey of Tunnel Cross-Section”, Tunnel Construction, 2009, vol. 29, no. 1, pp. 120–122.
[3] Z. Lei, “Application of Total Station ’s Surrounding Measurement Function in Highway Survey and Design”, Peak Data Science, 2017, vol. 6, no. 4, pp. 105–107.
[4] L.F. Geng, “Analysis of mechanical properties of full section excavation of single arch four-lane highway tunnel”, Shanxi Architecture, 2009, vol. 2.
[5] Y.H. Deng, “Determination of full section excavation boundary of transition curve tunnel”, Mine Surveying, 2004, vol. 2004, no. 2, pp. 34–36.
[6] W.W. Yan, “Application of CASIO Series Programming Calculator in the Measurement of Tunnel Sections”, Shanxi ence and Technology, 2011, vol. 26, no. 4, pp. 123–124.
[7] W.B. Luo, “The realization of real-time communication between mobile intelligent equipment and total station under net environment”, Surveying and mapping equipment, 2007, vol. 9, no. 4, pp. 42–43.
[8] C.X. Niu, “Construction Survey of Tanba No. 4 Spiral Tunnel on Xiaohe-Ankang Highway”, Tunnel Construction, 2014, vol. 34, no. 2, pp. 163–166, DOI: 10.3973/j.issn.1672-741X.2014.02.013.
[9] L.H. Luo, S.L. Wei, “Application of Surveying Robot in Pipe Jacking Crossing Subway Tunnel Project”, Jiangsu Construction, 2018, vol. 2018, no. 6, pp. 65–66.
[10] W. He, C. Song, B. Du, “Chinese Longest Sea-crossing Metro Tunnel: Wuyuan Bay Station-Liuwudian Station Section of Xiamen Metro Line 3”, Tunnel Construction, 2018, vol. 38, no. 3, pp. 501–505.
[11] Y.X. Hu, Y. Yue, H.D. Zhang, et al., “Application of Gyroscope in Directional Measurement of Long Distance Cross Sea Metro Tunnel”, Urban Geotechnical Investigation & Surveying, 2019, vol. 2019, no. 6, pp. 172–175.
[12] Y. Zhou, S. Wang, M. Xi, et al., “Railway Tunnel Clearance Inspection Method Based on 3D Point Cloud from Mobile Laser Scanning”, Sensors, 2017, vol. 17, no. 9, DOI: 10.3390/s17092055.
[13] W.Wei, “3D Laser scanning technique is applied to the measurement of tunnel section deformation”, Beijing Surveying and Mapping, 2020, vol. 34, no. 4, pp. 561–565.
Go to article

Authors and Affiliations

Jiesheng Zhang
1
ORCID: ORCID
Yongzheng Qi
2
ORCID: ORCID

  1. The First Engineering Co., LTD. of CTCE Group, No. 434 Fuyang North Road, Hefei 230041, China
  2. Jiangsu University of Science and Technology, School of Civil Engineering and Architecture, No. 2 Mengxi Road, Zhenjiang 212003, China
Download PDF Download RIS Download Bibtex

Abstract

To promote the application of aeolian sand resources for steel-concrete composite structures, an aeolian sand reinforced concrete column with I-shaped structural steel is proposed in this study. Four specimens are designed and manufactured with different replacement rates of aeolian sand. The seismic behaviour and damage evolution process of the specimens are studied by low-cycle repeated loading tests. Based on the test results, the mechanical characteristics, failure modes, hysteresis curves, skeleton curves, energy dissipation capacity, displacement ductility, and stiffness degradation of the specimens with different replacement rates of aeolian sand are analysed. In addition, the effects of the design parameters on the seismic behaviour of the specimens are also studied. The results show that the indexes of the seismic behaviour can be significantly improved by adding steel. Moreover, a revised damage model is proposed, to better reflect the evolution law of seismic damage of aeolian sand reinforced concrete columns with steel. The proposed model can provide an important reference for seismic damage assessment of the columns.

Go to article

Authors and Affiliations

Yaohong Wang
Heyan Wang
Yanpeng Wang
Meng Zhao
Jin Qi
Guangzong Huo
Peiqi Liu
Download PDF Download RIS Download Bibtex

Abstract

This paper conducts low temperature welding tests on Q460GJC thick plate (60 mm), and based on the basic theory of phase transformation structure evolution, a three-dimensional microstructure evolution analysis method for large welded joints is established, and the analysis of the evolution process of multi-layer and multi-pass weld structure under the low temperature environment of thick plates is completed. The comparison and analysis of test and numerical simulation results are in good agreement, which proves that the welding phase transformation model realizes the digitalization of metallurgical phase transformation in steel structure welding, and optimizes welding process parameters. It is of great significance to improve the quality of welding products and lay a foundation for predicting the performance of welded joints from the micro level.
Go to article

Authors and Affiliations

Xin Li
1
ORCID: ORCID
Meng Wang
1
Han Qi
2
Jie Li
3
Changchun Pan
4
Jing Zhang
3
Jingman Lai
3

  1. Beijing Construction Engineering Group Co., LTD, Beijing, 100032, P.R. China
  2. Beijing Third Construction Engineering Co., LTD, Beijing, 100032, P.R. China
  3. Central Research Institute of Building and Construction Co., Ltd. MCC, Beijing, 100032, P.R. China
  4. China State Shipbuilding International Engineering Co., Ltd. CSIE, Beijing, 100000, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

For fault detection of doubly-fed induction generator (DFIG), in this paper, a method of sliding mode observer (SMO) based on a new reaching law (NRL) is proposed. The SMO based on the NRL (NRL- SMO) theoretically eliminates system chatter caused by the reaching law and can be switched in time with system interference in terms of robustness and smoothness. In addition, the sliding mode control law is used as the index of fault detection. Firstly, this paper gives the NRL with the theoretically analyzes. Secondly, according to the mathematical model of DFIG, NRL-SMO is designed, and its analysis of stability and robustness are carried out. Then this paper describes how to choose the optimal parameters of the NRL-SMO. Finally, three common wind turbine system faults are given, which are DFIG inter-turn stator fault, grid voltage drop fault, and rotor current sensor fault. The simulation models of the DFIG under different faults is established. The simulation results prove that the superiority of the method of NRL-SMO in state tracking and the feasibility of fault detection.
Go to article

Bibliography

  1.  Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song. “Condition monitoring and fault detection of wind turbines and related algorithms: A review”, Renew. Sust. Energ. Rev. 13(1), 1‒39 (2009).
  2.  A. Stefani, A. Yazidi, C. Rossi, F. Filippetti, D. Casadei, and G.A. Capolino, “Doubly fed induction machines diagnosis based on signature analysis of rotor modulating signals”, IEEE Trans. Ind. Appl. 44(6), 1711‒1721(2008).
  3.  D. Shah, S. Nandi, and P. Neti, “Stator-interturn-fault detection of doubly fed induction generators using rotor-current and search-coil- voltage signature analysis”, IEEE Trans. Ind. Appl. 45(5), 1831‒1842 (2009).
  4.  G. Stojčić, K. Pašanbegović, and T.M. Wolbank, “Detecting faults in doubly fed induction generator by rotor side transient current measurement”, IEEE Trans. Ind. App. 50(5), 3494‒3502 (2014).
  5.  R. Roshanfekr and A. Jalilian, “Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive asymmetrical faults in stator windings of doubly fed induction generators, a simulation study”, IET Gener. Transm. Distrib. 10(2), 374‒381 (2016).
  6.  M.B. Abadi et al., “Detection of stator and rotor faults in a DFIG based on the stator reactive power analysis”, in IECON 2014‒40th Annual Conference of the IEEE Industrial Electronics Society 2014 pp. 2037‒2043.
  7.  S. He, X. Shen, and Z. Jiang, “Detection and Location of Stator Winding Interturn Fault at Different Slots of DFIG”, IEEE Access 7, 89342‒89353 (2019).
  8.  I. Erlich, C. Feltes, and F. Shewarega, “Enhanced voltage drop control by VSC–HVDC systems for improving wind farm fault ridethrough capability”, IEEE Trans. Power Deliv. 29(1), 378‒385 (2013).
  9.  Ö. Göksu, R. Teodorescu, C.L. Bak, F. Iov, and P.C. Kjær, “Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution”, IEEE Trans. Power Syst. 29(4), 1683‒1691 (2014).
  10.  Z. Fan, G. Song, X. Kang, J. Tang, and X. Wang, “Three-phase fault direction identification method for outgoing transmission line of DFIG-based wind farms”, J. Mod. Power Syst. 7(5), 1155‒1164 (2019).
  11.  L.G. Meegahapola, T. Littler, and D. Flynn, “Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults”, IEEE Trans. Sustain. Energy 1(3), 152‒162 (2010).
  12.  F. Aguilera, P.M. De la Barrera, C.H. De Angelo, and D.E. Trejo, “Current-sensor fault detection and isolation for induction-motor drives using a geometric approach”, Control Eng. Pract. 53, 35‒46 (2016).
  13.  S. Abdelmalek, S. Rezazi, and A.T. Azar, “Sensor faults detection and estimation for a DFIG equipped wind turbine”, Energy Procedia 139, 3‒9 (2017).
  14.  M. Liu and P. Shi, “Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach”, Automatica 49(5), 1242‒1250 (2013).
  15.  Y.J. Kim, N. Jeon, and H. Lee, “Model based fault detection and isolation for driving motors of a ground vehicle”, Sens. Transducers 199(4), 67 (2016).
  16.  K. Xiahou, Y. Liu, L. Wang, M.S. Li, and Q.H. Wu, “Switching fault-tolerant control for DFIG-based wind turbines with rotor and stator current sensor faults”, IEEE Access 7, 103390‒103403 (2019).
  17.  K.S. Xiahou, Y. Liu, M.S. Li, and Q.H. Wu, “Sensor fault-tolerant control of DFIG based wind energy conversion systems”, Int. J. Electr. Power Energy Syst. 117, 105563 (2020).
  18.  Z.Y. Xue, K.S. Xiahou, M.S. Li, T.Y. Ji, and Q.H. Wu, “Diagnosis of multiple open-circuit switch faults based on long short-term memory network for DFIG-based wind turbine systems”, IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2600‒2610 (2019).
  19.  L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox”, Measurement 111, 1‒10 (2017).
  20.  W. Teng, H. Cheng, X. Ding, Y. Liu, Z. Ma, and H. Mu, “DNN-based approach for fault detection in a direct drive wind turbine”, IET Renew. Power Gener. 12(10), 1164‒1171 (2018).
  21.  M.N. Akram and S. Lotfifard, “Modeling and health monitoring of DC side of photovoltaic array”, IEEE Trans. Sustain. Energy 6(4), 1245‒1253 (2015).
  22.  W. Gao and J.C. Hung, “Variable structure control of nonlinear systems, A new approach”, IEEE Trans. Ind. Electron. 40(1), 45‒55 (1993).
  23.  C.J. Fallaha, M. Saad, H.Y. Kanaan, and K. Al-Haddad, “Sliding-mode robot control with exponential reaching law”, IEEE Trans. Ind. Electron. 58(2), 600‒610 (2010).
  24.  Y. Liu, Z. Wang, L. Xiong, J. Wang, X. Jiang, G. Bai, R. Li, S. Liu, “DFIG wind turbine sliding mode control with exponential reaching law under variable wind speed”, Int. J. Electr. Power Energy Syst. 96, 253‒260 (2018).
  25.  Z. Lan, L. Li, C. Deng, Y. Zhang, W. Yu, and P. Wong, “A novel stator current observer for fault tolerant control of stator current sensor in DFIG”, in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 790‒797.
Go to article

Authors and Affiliations

RuiQi Li
1 2
Wenxin Yu
1 2
JunNian Wang
3 2
Yang Lu
1 2
Dan Jiang
1 2
GuoLiang Zhong
1 2
ZuanBo Zhou
1 2

  1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  2. Key Laboratory of Knowledge Processing Networked Manufacturing, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  3. School of Physics and Electronics, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
Download PDF Download RIS Download Bibtex

Abstract

In order to expand the application range of casting aluminum alloy ZL105, the stirring fusion casting method was used to add carbon nanotubes (CNTs) with different content and aspect ratio into the ZL105 aluminum matrix. And then the effect of the reinforcement on the mechanical properties of the alloy was compared and analyzed. The research results show that the tensile strength and hardness of the carbon nanotube composites with different contents will be improved, but to a certain extent the elongation of the composite material will be reduced, and there is an optimal addition amount. The mechanical properties of composite materials prepared by adding CNTs with relatively small length and diameter are better. There are different forms of reinforcement mechanisms for CNTs to reinforce cast aluminum alloys, and the improvement of composite material performance is the result of the combined effect of multiple strengthening methods. The research has made a meaningful exploration for the realization of carbon nanotube reinforced aluminum matrix composites under the casting method.
Go to article

Authors and Affiliations

Zhilin Pan
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
Qi Zeng
2
ORCID: ORCID

  1. Guizhou Normal University, School of Mechanical & Electrical Engineering, Contribution China
  2. Manager Section, Guiyang Huaheng Mechanical Manufacture CO. LTD China
Download PDF Download RIS Download Bibtex

Abstract

The speed of test vehicles on the high-speed car track of the automobile test field is very high. Reducing the construction error of asphalt pavement is very important to ensure the safety of the test vehicle. In order to realize the paving of asphalt concrete pavement with super-large lateral inclination in the curve section of the high-speed car track in the automobile test field, a special paving control device and control method for the construction on the curve section with super-large lateral inclination were developed. Use the direction of the hanging hammer under the GPS device of paver to adjust the position of GPS device in real time, so that the geometric centre line of GPS device is always perpendicular to the horizontal plane. The reference control line is preset in the paver operation control device, and the lateral displacement deviation of the paver is adjusted to synchronize the data of the paver control device with the travel route. The precise control of the paver’s forward route is realized, the construction precision of the super-large inclined asphalt pavement on the high-speed car track of the automobile test field is achieved, and the construction efficiency is greatly improved. It has important reference value for similar projects such as automobile testing field and racing track.
Go to article

Authors and Affiliations

Yongzheng Qi
1 2
ORCID: ORCID
Wengang Ma
3
ORCID: ORCID
Jiesheng Zhang
4
ORCID: ORCID

  1. Key Laboratory of Flood & Drought Disaster Defense, the Ministry of Water Resources, Nanjing 210029, China
  2. Jiangsu University of Science and Technology, School of Civil Engineering and Architecture, No. 2 Mengxi Road, Zhenjiang 212003, China
  3. Institute of Civil Engineering and Intelligent Management, Nanjing Institute of Technology, Nanjing 211167, China
  4. The First Engineering Co., LTD. of CTCE Group, No. 434 Fuyang North Road, Hefei 230041, China
Download PDF Download RIS Download Bibtex

Abstract

The static series synchronous compensator (SSSC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to analyze the dynamic interaction stability mechanism of a hybrid renewable energy system connected with doubly-fed induction generators (DFIGs) and solid oxide fuel cell (SOFC) energy with the SSSC. For this purpose, a linearized mathematical model of this modified hybrid single-machine infinite-bus (SMIB) power system is developed to analyze the physical mechanism of the SSSC in suppressing oscillations and the influence on the dynamic stability characteristics of synchronization. Typical impacting factors such as the series compensation level, the SOFC penetration and tie-line power are considered in the SMIB and two-area systems. The impact of dynamic interactions on enhancing damping characteristics and improving transient performance of the studied systems is demonstrated using eigenvalue analysis and dynamic time-domain simulations, which validates the validity of the proposed physical mechanism simultaneously.
Go to article

Bibliography

[1] Yu S.L., Fernando T., Iu H.-H.-C., Dynamic behavior study and state estimator design for solid oxide fuel cells in hybrid power systems, IEEE Transaction on Power Systems, vol. 31, no. 6, pp. 5190–5199 (2016).
[2] He P., Arefifar S.A., Li C.S., Small signal stability analysis of doubly-fed induction generator-integrated power systems based on probabilistic eigenvalue sensitivity indices, IET Generation, Transmission and Distribution, vol. 13, no. 14, pp. 3127–3137 (2019).
[3] YangY., Zhao J., Liu H., A matrix-perturbation-theory-based optimal strategy for small-signal stability analysis of large-scale power grid, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 353–363 (2015).
[4] Liu J., Su C.,Wang C., Influence of solid oxide fuel cell on power system transient stability, The Journal of Engineering, vol. 2019, no. 16, pp. 1081–1086 (2019).
[5] Magdy G., Shabib G., Elbaset A.A., Optimized coordinated control of LFC and SMES to enhance frequency stability of a real multi-source power system considering high renewable energy penetration, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 407–421 (2018).
[6] Du W.J., Wang H.F., Cai H., Modelling a grid-connected SOFC power plant into power systems for small-signal stability analysis and control, International Transactions on Electrical Energy Systems, vol. 23, no. 3, pp. 330–341 (2012).
[7] He P., Wu X.X., Li C.S., Damping characteristics improvement and index evaluation of a windpv- thermal-bundled power transmission system by combining PSS and SSSC, Archives of Electrical Engineering, vol. 69, no. 3, pp. 705–721 (2020).
[8] Vikash A., Sanjeev K.M., Power flow analysis and control of distributed FACTS devices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018).
[9] Bhushan R., Chatterjee K., Effects of parameter variation in DFIG-based grid connected system with a FACTS device for small-signal stability analysis, IET Generation, Transmission and Distribution, vol. 11, no. 11, pp. 2762–2777 (2017).
[10] Verveckken J., Silva F., Barros D., Direct power control of series converter of unified power-flow controller with three-level neutral point clamped converter, IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 1772–1782 (2012).
[11] Wang L., Vo Q.S., Power Flow Control and Stability Improvement of Connecting an Offshore Wind Farm to a One-Machine In?nite-Bus System Using a Static Synchronous Series Compensator, IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 358–369 (2013).
[12] Das D., Haque M.E., Gargoom A., Operation and control of grid integrated hybrid wind-fuel cell system with STATCOM, 22nd Australasian Universities Power Engineering Conference (AUPEC), Bali, pp. 1–6 (2012).
[13] Mahapatra S., Panda S., Swain S.C., A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design, Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1177–1188 (2014).
[14] Al-Sarray M., McCann R.A., Control of an SSSC for oscillation damping of power systems with wind turbine generators, IEEE Power and Energy Society Innovation Smart Grid Technologies Conference (ISGN), Washington, USA, pp. 1–5 (2017).
[15] Darabian M., Jalilvand A., Improving power system stability in the presence of wind farms using STATCOMand predictive control strategy, IETRenewable Power Generation, vol. 12, no. 1, pp. 98–111 (2018).
[16] Movahedi A., Halvaei Niasar A., Gharehpetian G.B., LVRT improvement and transient stability enhancement of power systems based on renewable energy resources using the coordination of SSSC and PSSs controllers, IET Renewable Power Generation, vol. 13, no. 11, pp. 1849–1860 (2019).
[17] Truong D.N., Ngo V.T., Designed damping controller for SSSC to improve stability of a hybrid offshore wind farms considering time delay, International Journal of Electrical Power and Energy Systems, vol. 65, no. 2, pp. 425–431 (2015).
[18] PramodKumar,Namrata K., Voltage control and power oscillation damping of multi-area power system using static synchronous series compensator, Journal of Electrical and Electronics Engineering, vol. 1, no. 5, pp. 26–33 (2012).
[19] Sahu P.R., Hota P.K., Panda S., Power system stability enhancement by fractional order multi input SSSC based controller employing whale optimization algorithm, Journal of Electrical Systems and Information Technology, vol. 5, no. 2018, pp. 326–336 (2018).
[20] Yu Y.N., Electric Power System Dynamics, Academic Press Inc (1983).
[21] He P.,Wen F.S., Ledwich G., An investigation on interarea mode oscillations of interconnected power systems with integrated wind farms, International Journal of Electrical Power and Energy Systems, vol. 78, no. 2, pp. 148–157 (2016).
[22] Wang L., Wang K.H., Dynamic stability analysis of a DFIG-based offshore wind farm connected to a power grid through an HVDC link, IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1501–1510 (2011).
[23] Sedghisigarchi K., Feliachi A., Dynamic and transient analysis of power distribution systems with fuel cells-Part II: Fuel-cell dynamic model, IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 429–434 (2016).
[24] Benabid R., Boudour M., Abido M.A., Development of a new power injection model with embedded multi-control functions for static synchronous series compensator, IET Generation, Transmission and Distribution, vol. 6, no. 7, pp. 680–692 (2012).
[25] Pradhan A.C., Lehn P.W., Frequency-domain analysis of the static synchronous series compensator, IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 440–449 (2006). [26] Kundur P., Power system stability and control, McGraw-Hill Press (1994).

Go to article

Authors and Affiliations

Ping He
1
ORCID: ORCID
Pan Qi
1
ORCID: ORCID
Yuqi Ji
1
ORCID: ORCID
Zhao Li
1
ORCID: ORCID

  1. Zhengzhou University of Light Industry, No.5 Dongfeng Road, Jinshui District, Zhengzhou, 450002, China
Download PDF Download RIS Download Bibtex

Abstract

In order to identify the influence of different Mn, Cd, V and Zr content on the properties of Al-Cu casting alloys in hydraulic valves, orthogonal test methods were used to prepare alloy test bars with different elements and contents. Tensile tests were performed on the test bars so obtained. The microstructure of alloys with different compositions is studied. The results show that adding approximately 0.4% of Mn can not only form a strengthening phase but also reduce the excessive segregation of the matrix along the grain boundary. A Cd content of 0.2% can promote the formation of micro Cd spheres in the softer aluminum matrix. Hard spots increase the wear resistance of the material; however, an excess of Cd will cause element segregation and deteriorate the mechanical properties of the valve body. Zr and V refine the grains in the alloy; however, an excess of these elements will lead to a large area of segregation. If proper heat treatment is lacking, the mechanical properties of the valve body deteriorate.

Go to article

Authors and Affiliations

Rong Li
ORCID: ORCID
Lunjun Chen
Qi. Zeng
ORCID: ORCID
Ming Su
Zhiping Xie
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Carbon nanotubes (CNTs) are a good reinforcement for metal matrix composite materials; they can significantly improve the mechanical, wear-resistant, and heat-resistant properties of the materials. Due to the differences in the atomic structure and surface energy between CNTs and aluminum-based materials, the bonding interface effect that occurs when nanoscale CNTs are added to the aluminum alloy system as a reinforcement becomes more pronounced, and the bonding interface is important for the material mechanical performance. Firstly, a comparative analysis of the interface connection methods of four CNT-reinforced aluminum matrix composites is provided, and the combination mechanisms of various interface connection methods are explained. Secondly, the influence of several factors, including the preparation method and process as well as the state of the material, on the material bonding interface during the composite preparation process is analyzed. Furthermore, it is explained how the state of the bonding interface can be optimized by adopting appropriate technical and technological means. Through the study of the interface of CNT-reinforced aluminum-based composite materials, the influence of the interface on the overall performance of the composite material is determined, which provides directions and ideas for the preparation of future high-performance CNT-reinforced aluminum-based composite materials.
Go to article

Bibliography

[1] Shao, H.Q. & Li, Q. J. (2020). Effect of stirring casting process parameters on properties of aluminum matrix composites for mechanical shield. Hot Working Technology. 23, 67-69+75.
[2] Krishna, A.R., Arun, A., Unnikrishnan, D. & Shankar. K.V. (2018). An investigation on the mechanical and tribological properties of alloy A356 on the addition of WC. Materials Today: Proceedings. 5(5), 12349-12355. DOI: 10.1016/j.matpr.2018.02.213.
[3] Joseph, J., Pillai, B.S., Jayanandan, J., Jayagopan, J., Nivedh, S., Balaji, U.S.S. & Shankar, K.V. (2021). Mechanical behaviour of age hardened A356/TiC metal matrix composite. Materials Today: Proceedings. 38, 2127-2132. DOI: 10.1016/j.matpr.2020.05.013.
[4] Kumar, V.A., Kumar, V.V.V., Menon, G.S., Bimaldev, S., Sankar, M., Shankar, K.V. & Balachandran, M. (2020). Analyzing the effect of B4C/Al2O3 on the wear behavior of Al-6.6Si-0.4Mg alloy using response surface methodology. International Journal of Surface Engineering and Interdisciplinary Materials Science. 8(2). 66-79. DOI: 10.4018/ijseims.2020070105.
[5] Anilkumar, V., Shankar, K.V., Balachandran, M., Joseph, J., Nived, S., Jayanandan, J., Jayagopan, J. & Surya Balaji, U.S. (2021). Impact of heat treatment analysis on the wear behaviour of Al-14.2Si-0.3Mg-TiC composite using response surface methodology. Tribology in industry. 43(3), 590-602. DOI: 10.24874/ti.988.10.20.04.
[6] Zhao, S., Liu, Z., &.Zhang, X. B. (2006). Technical process and mechanical properties of carbon nanotubes reinforced aluminium matrix composites. Foundry Technology. 2, 135-138.
[7] Nam, D.H., Cha, S.I., Lim, B.K,, Park, H.M., Han, D.S. & Hong, S.H. (2012). Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon. 50(7), 2417-2423. DOI: 10.1016/j.carbon. 2012.01.058.
[8] Sun, Y.G., Liu, P., Chen, X.H., Liu, X.K., Li, W., Ma, F.C. & He, D,H. (2012). Present situation of carbon nano-tube reinforced aluminum composite. Material & Heat Treatment. 41(24), 137-139+144.
[9] Bakshi, S.R. & Agarwal, A. (2011). An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon. 49(2), 533-544. DOI: 10.1016/j.carbon.2010.09.054.
[10] Nai, M.H., Wei, J. & Gupta, M. (2014). Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Materials & Design. 60, 490-495. DOI: 10.1016/j.matdes.2014.04.011.
[11] Fan, T.X., Liu, Y., Yang, K.M., Song, J. & Zhang, D. (2019). Research progress on the optimization of the interface structure of carbon/metal composites and the interface mechanism. Acta Metall Sinica. 55(1), 16-32.
[12] Cao, L., Chen, B., Guo, B.S. & Li, J.S. (2021). A review of carbon nanotube dispersion methods in carbon nanotube reinforced aluminium matrix composites manufacturing process. Journal of Netshape Forming Engineering. 13(3), 9-24. DOI: 10.3969/j.issn.1674-6457.2021.03.002.
[13] Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M. & Kondoh, K. (2015). Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Composites Science and Technology. 113, 1-8. DOI: 10.1016/j.compscitech.2015.03.009.
[14] Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Licea-Jiménez, L., Miki-Yoshida, M. & Martínez-Sánchez, R. (2013). Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying. Materials Characterization. 75, 13-19. DOI: 10.1016/j.matchar.2012.09.005.
[15] Shi, G. (2012). The study of coated carbon nanotube and reinforced magnesium matrix composites. Lanzhou University of Technolofy, Lanzhou, China.
[16] Aravind Senan, V.R., Anandakrishnan, G., Rahul, S.R., Reghunath, N. & Shankar, K.V. (2020). An investigation on the impact of SiC/B4C on the mechanical properties of Al-6.6Si-0.4Mg alloy. Materials Today: Proceedings. 26, 649-653. DOI: 10.1016/j.matpr.2019.12.359.
[17] Rohith, K.P., Sajay Rajan, E., Harilal, H., Jose, K. & Shankar, K.V. (2018).Study and comparison of A356-WC composite and A356 alloy for an off-road vehicle chassis. Materials Today: Proceedings. 5(11), 25649-25656. DOI: 10.1016/j.matpr.2018.11.006.
[18] Jiang, L., Wen, H., Yang, H., Hu, T., Topping, T., Zhang, D., Lavernia, E.J. & Schoenung, J.M. (2015). Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Materialia. 89, 327-343. DOI: 10.1016/j.actamat.2015.01.062.
[19] Aravind Senan, V.R., Akshay, M.C., & Shankar, K.V. (2019). Determination on the effect of Al2O3 / B4B on the mechanical behaviour of al-6.6si-0.5mg alloy cast in permanent mould. Materials Science Forum. 969, 398-403. DOI: 10.4028/www.scientific.net/MSF.969.398.
[20] Truong. H.T.X., Lagoudas, D,C., Ochoa, O.O. & Lafdi, K. (2013). Fracture toughness of fiber metal laminates: Carbon nanotube modified Ti–polymer–matrix composite interface. Journal of Composite Materials. 48(22), 2697-2710. DOI: 10.1177/0021998313501923.
[21] Trinh, P,V., Luan, N.V., Phuong, D.D., Minh. P. N., Weibel, A., Mesguich, D. & Laurent, C. (2018) Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy. Composites Part A: Applied Science and Manufacturing. 105, 126-137. DOI: 10.1016/j.compositesa.2017.11.022.
[22] Laha, T., Chen, Y., Lahiri, D. & Agarwal, A. (2009). Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites Part A: Applied Science and Manufacturing. 40(5), 589-594. DOI: 10.1016/j.compositesa.2009.02.007.
[23] Bakshi, S.R., Singh, V., Seal, S. & Agarwal, A. (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surface and Coatings Technology. 203(10-11), 1544-1554. DOI: 10.1016/j.surfcoat.2008.12.004.
[24] Liu, Z.Y., Xiao, B.L., Wang, W.G. & Ma, Z.Y. (2013). Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon. 62, 35-42. DOI: 10.1016/j.carbon.2013.05.049.
[25] Yang, X., Liu, E., Shi, C., He, C., Li, J., Zhao, N. & Kondoh, K. (2013). Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility. Journal of Alloys and Compounds. 563, 216-220. DOI: 10.1016/j.jallcom.2013.02.066.
[26] Gao, M., Gao, P., Wang, Y., Lei, T. & Ouyang. C. (2020). Study on metallurgically prepared copper-coated carbon fibers reinforced aluminum matrix composites. Metals and Materials International. 12. DOI: 10.1007/s12540-020-00897-1.
[27] Li, S., Su, Y., Zhu, X., Jin, H., Ouyang, Q. & Zhang, D. (2016). Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites. Materials & Design. 107, 130-138. DOI: 10.1016/j.matdes.2016.06.021.
[28] Mansoor, M., Khan, S., Ali, A. & Ghauri, K.M. (2019). Fabrication of aluminum-carbon nanotube nano-composite using aluminum-coated carbon nanotube precursor. Journal of Composite Materials. 53(28-30), 4055-4064. DOI: 10.1177/0021998319853341.
[29] Kucukyildirim, B.O. & Eker, A.A. (2012). Fabrication and mechanical properties of CNT/6063Al composites prepared by vacuum assisted infiltration technique using CNT-Al preforms. Advanced Composites Letters. 133(1), 125-130.
[30] Kang, K., Bae, G., Kim, B. & Lee, C. (2012). Thermally activated reactions of multi-walled carbon nanotubes reinforced aluminum matrix composite during the thermal spray consolidation. Materials Chemistry and Physics. 133(1), 495-499. DOI: 10.1016/j.matchemphys.2012.01.071.
[31] Isaza, M.C.A., Ledezma Sillas, J.E., Meza, J.M. & Herrera Ramírez, J.M. (2016). Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. Journal of Composite Materials. 51(11), 1619-1629. DOI: 10.1177/0021998316658784.
[32] Kurita, H., Estili, M., Kwon, H., Miyazaki, T., Zhou, W., Silvain, J-F. & Kawasaki, A. (2015). Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Composites Part A: Applied Science and Manufacturing. 68, 133-139. DOI: 10.1016/j.compositesa.2014.09.014.
[33] Shin, S.E. & Bae, D.H. (2013). Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites. Materials Characterization. 83, 170-177. DOI: 10.1016/j.matchar.2013.05.018.
[34] Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y. & Kawasaki, A. (2016). Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon. 96, 919-928. DOI: 10.1016/j.carbon.2015.10.016.
[35] Liu, Z.Y., Xiao, B.L., Wang, W.G. & Ma, Z.Y. (2012). Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 50(5), 1843-1852. DOI: 10.1016/j.carbon.2011.12.034.
[36] Li, Z.W., Lin, R.B., Hu, L., Yu, Z.Y., Yan, L.P., Tan, Z.Q., Fan, G.L., Li, Z.Q. & Zhang, D. (2017). CNTs/Al interfacial reaction degree and the relationship with mechanical performance of composite. Materials For Mechanical Engineering. 41(11), 19-22+28. DOI: 10.11973/jxgcc1201711003.
[37] Zhang, X.X., Wei, H.M., Li, A.B., Fu, Y.D. & Geng, L. (2013). Effect of hot extrusion and heat treatment on CNTs–Al interfacial bond strength in hybrid aluminium composites. Composite Interfaces. 20(4), 231-239. DOI: 10.1080/15685543.2013.793093.
[38] Wu, G. H., Jiang, L.T., Chen, G.Q. & Zhang, Q. (2012). Research progress on the control of interfacial reactions in metal matrix composites. Materials China. 31(7), 51-58. DOI: CNKI:SUN:XJKB.0.2012-07-009.
[39] Chen, B., Shen, J., Ye, X., Imai, H., Umeda, J., Takahashi, M. & Kondoh, K. (2017). Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon. 114, 198-208. DOI: 10.1016/j.carbon.2016.12.013.
[40] Ci, L., Ryu, Z., Jin-Phillipp, N.Y. & Rühle, M. (2006). Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Materialia. 54(20), 5367-5375. DOI: 10.1016/j.actamat.2006.06.031.
[41] Jiang, L., Li, Z., Fan, G., Cao, L. & Zhang, D. (2012). Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Materialia. 66(6), 331-334. DOI: 10.1016/j.scriptamat.2011.11.023.
[42] Xu, S.J., Xiao, B.L., Liu, Z.Y., Wang, W.G. & Ma, Z.Y. (2012). Micorstrures and mechanical properties of CNT/Al conposites fabricated by high energy ball-milling method. Acta Metallurgica Sinica. 48(7), 882-888. DOI: 10.3724/SP.J.1037.2012.00140.
[43] Raviathul Basariya, M., Srivastava, V.C. & Mukhopadhyay, N.K. (2014). Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Materials & Design. 64, 542-549. DOI: 10.1016/j.matdes.2014.08.019.
[44] Yoo, S.J., Han, S.H. & Kim, W.J. (2013). Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scripta Materialia. 68(9), 711-714. DOI: 10.1016/j.scriptamat.2013.01.013.
[45] Le, G., Cai, X.L., Wang, K.J., Wang, X.F., Sun, H.P. & Chen, Y,G. (2013). Experimental study on interfacial reaction of CNTs/Al matrix composites. Mining And Metallurgical Engineering. 33(1), 109-112. DOI: 10.3969/j.issn.0253-6099.2013.01.027.
[46] Majid, M., Majzoobi, G.H., Noozad, G.A., Reihani, A., Mortazavi, S.Z. & Gorji, M.S. (2012). Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion. Rare Metals. 31(4), 372-378. DOI: 10.1007/s12598-012-0523-6.
[47] Zhu, X., Zhao, Y.G., Wu, M., Wang, H.Y. & Jiang, Q.C. (2016), Effect of initial aluminum alloy particle size on the damage of carbon nanotubes during ball milling. Materials (Basel). 9(3), 173. DOI: 10.3390/ma9030173.
[48] Ji, W., Wang, W.J., Meng, F.D., Huang, J.J., Wu, Z.Q., He, W. & Wu, H. (2021), Study on interfacial bonding of aluminum matrix composites reinforced by carbon nanotubes with potassium fluoroaluminate. Hot Working Technology. 50(6), 71-74. DOI: 10.14158/j.cnki.1001-3814.20193526.
[49] Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. & Lanka, S. (2010). Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology. 70(16), 2237-2241. DOI: 10.1016/j.compscitech.2010.05.004.
[50] Peng, T. & Chang, I. (2014). Mechanical alloying of multi-walled carbon nanotubes reinforced aluminum composite powder. Powder Technology. 266, 7-15. DOI: 10.1016/j.powtec.2014.05.068.
[51] Kwon, H., Saarna, M., Yoon, S., Weidenkaff, A. & Leparoux, M. (2014). Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials. Materials Science and Engineering: A. 590, 338-345. DOI: 10.1016/j.msea.2013.10.046.
[52] Tang, J.J, Li, C.J. & Zhu, X.K. (2012). Progress of the current interface research on carbon nanotubes reinforced Aluminum-matrix composites. Materials Review. 26(11), 149-152. DOI: CNKI:SUN:CLDB.0.2012-11-033.
[53] Li, J.R., Jiang, X.S., Liu, W.X., Li, X. & Zhu, D.G. (2015). Research progress of the interface characteristic and strengthening mechanism in carbon nanotube reinforced Aluminum matrix composites. Materials Review. 29(1), 31-35+42. DOI: 10.11896/j.issn.1005-023X.2015.01.005.
[54] So, K.P., Lee, I.H., Duong, D.L., Kim, T.H., Lim, S.C., An, K.H. & Lee, Y.H. (2011). Improving the wettability of aluminum on carbon nanotubes. Acta Materialia. 59(9), 3313-3320. DOI: 10.1016/j.actamat.2011.01.061.
[55] Zeng, M.Q. & Ou Yang, L. Z. (2002). Progress in research on interface of composite material. China Foundy Machinery & Technoligy. 6, 23-26. DOI: CNKI:SUN:ZZSB.0.2002-06-008.
[56] Jiang, L., Fan, G., Li, Z., Kai, X., Zhang, D., Chen, Z., Humphries, S., Heness, G. & Yeung, W.Y. (2011). An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon. 49(6), 1965-1971. DOI: 10.1016/j.carbon.2011.01.021.
[57] Huang, Y., Ouyang, Q., Zhang, D., Zhu, J., Li, R. & Yu, H. (2014). Carbon materials reinforced aluminum composites: a review. Acta Metallurgica Sinica (English Letters). 27(5), 775-786. DOI: 10.1007/s40195-014-0160-1.
[58] So, K.P., Biswas, C., Lim, S.C., An, K.H. & Lee, Y.H. (2011). Electroplating formation of Al–C covalent bonds on multiwalled carbon nanotubes. Synthetic Metals. 161(3-4), 208-212. DOI: 10.1016/j.synthmet.2010.10.023.
[59] Arai, S., Suzuki, Y., Nakagawa, J., Yamamoto, T. & Endo, M. (2012). Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum. Surface and Coatings Technology. 212, 207-213. DOI: 10.1016/j.surfcoat.2012.09.051.
[60] Jagannatham, M., Sankaran, S. & Haridoss, P. (2015). Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites. Materials Science and Engineering: A. 638, 197-207. DOI: 10.1016/j.msea.2015.04.070.
[61] So, K.P., Jeong, J.C., Park, J.G., Park, H.K., Choi, Y.H., Noh, D.H., Keum, D.H., Jeong, H.Y., Biswas, C., Hong, C.H. & Lee, Y,H. (2013). SiC formation on carbon nanotube surface for improving wettability with aluminum. Composites Science and Technology. 74, 6-13. DOI: 10.1016/j.compscitech.2012.09.014.
[62] Wang, H. & Zhu, Y.L. (2019). Pretreatment and copper plating of carbon nanotubes by electroless deposition. Surface Technology. 48(11), 211-218. DOI: 10.16490/j.cnki.issn.1001-3660.2019.11.022.
[63] Lahiri, D., Bakshi, S.R., Keshri, A.K., Liu, Y. & Agarwal. A. (2009). Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Materials Science and Engineering: A. 523(1-2), 263-270. DOI: 10.1016/j.msea.2009.06.006.
[64] Liu, B., Deng, F.M. & Qu, J.X. (2003). Design and research of carbon nanotubes reinforced aluminum matrix composite. Ordnance Material Science and Engineering. 6, 54-57+69. DOI: 10.14024/j.cnki.1004-244x.2003.06.016.
[65] Zheng, Q.W. & Fan, T.X. (2022). Experimental and simulation methods on liquid/solid interface wettability considering crystal surfaces. Materials Reports. 9, 1-23.
[66] Han, X.D., Li, Z.Q., Fan, G.L., Jiang, L. & Zhang, D. (2012). Progress in fabrication technique of carbon nanotubes reinforced Al matrix composites. Materials Reports. 26(21), 40-46.DOI: CNKI:SUN:CLDB.0.2012-21-010.
[67] Oh, S-I., Lim, J-Y., Kim, Y-C., Yoon, J., Kim, G-H., Lee, J., Sung, Y-M. & Han, J-H. (2012). Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. Journal of Alloys and Compounds. 542, 111-117. DOI: 10.1016/j.jallcom.2012.07.029.
[68] Bi, S., Xiao, B.L., Ji, Z.H., Liu, B.S., Liu, Z.Y. & Ma, Z.Y. (2020). Dispersion and damage of carbon nanotubes in carbon nanotube/7055Al composites during high-energy ball milling process. Acta Metallurgica Sinica (English Letters). 34(2), 196-204. DOI: 10.1007/s40195-020-01138-5.
[69] Guo, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T. & Du, Y. (2018). Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Materials Characterization. 136, 272-280. DOI: 10.1016/j.matchar.2017.12.032.
[70] Aristizabal, K., Katzensteiner, A., Bachmaier, A., Mücklich, F. & Suarez, S. (2017). Study of the structural defects on carbon nanotubes in metal matrix composites processed by severe plastic deformation. Carbon. 125, 156-161. DOI: 10.1016/j.carbon.2017.09.075.
[71] Li, H., Kang, J., He, C., Zhao, N., Liang, C. & Li, B. (2013). Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures. Materials Science and Engineering: A. 577, 120-124. DOI: 10.1016/j.msea.2013.04.035.
[72] Serp, P. & Castillejos, E. (2010). Catalysis in carbon nanotubes. ChemCatChem. 2(1), 41-47. DOI: 10.1002/cctc.200900283.
[73] Liyong, T., Xiannian, S. & Ping, T. (2008). Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. Journal of Composite Materials. 42(1), 5-23. DOI: 10.1177/0021998307086186.
[74] Wang, L., Choi, H., Myoung, J-M. & Lee, W. (2009). Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon. 47(15), 3427-3433. DOI: 10.1016/j.carbon.2009.08.007.
[75] Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. & Lanka, S. (2011). The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites Part A: Applied Science and Manufacturing. 42(3), 234-243. DOI: 10.1016/j.compositesa.2010.11.008.
[76] Hassan, M.T.Z., Esawi, A.M.K. & Metwalli, S. (2014). Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites. Journal of Alloys and Compounds. 607, 215-222. DOI: 10.1016/j.jallcom.2014.03.174.
[77] Jiang, J.L., Zhao, S.J., Yang, H. & Li, W. X. (2008). Mechanical properties of Al matrix composites reinforced with carbon nanotubes prepared by powdermetallurgy. Transactions Of Materials And Heat Treatment. 3, 6-9. DOI: 10.13289/j.issn.1009-6264.2008.03.002.
[78] Liao, J-Z., Tan, M-J. & Sridhar, I. (2010). Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Materials & Design. 31, S96-S100. DOI: 10.1016/j.matdes.2009.10.022.
[79] Chen, B., Imai, H., Umeda, J., Takahashi, M. & Kondoh, K. (2017). Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs). Jom. 69(4), 669-675. DOI: 10.1007/s11837-017-2263-4.
[80] Choi, H.J., Shin, J.H. & Bae, D. H. (2011). Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes. Composites Science and Technology. 71(15), 1699-1705. DOI: 10.1016/j.compscitech.2011.07.013.
[81] Etter, T., Schulz, P., Weber, M., Metz, J., Wimmler, M., Löffler, J.F. & Uggowitzer, P.J. (2007). Aluminium carbide formation in interpenetrating graphite/aluminium composites. Materials Science and Engineering: A. 448(1-2), 1-6. DOI: 10.1016/j.msea.2006.11.088.
[82] Huang, Y.P., Li, D.H. & Huang, W. (2004), Preparation and property of pure AMC reinforced by CNTs. New technology and new process. 12, 48-49. DOI: CNKI:SUN:XJXG.0.2004-12-021.
[83] Aborkin, A., Khorkov, K., Prusov, E., Ob'edkov, A., Kremlev, K., Perezhogin, I. & Alymov, M. (2019). Effect of increasing the strength of aluminum matrix nanocomposites reinforced with microadditions of multiwalled carbon nanotubes coated with TiC nanoparticles. Nanomaterials (Basel). 9(11), 1596. DOI: 10.3390/nano9111596.
[84] Zhou, W., Sasaki, S. & Kawasaki, A. (2014). Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon. 78, 121-129. DOI: 10.1016/j.carbon.2014.06.055.
[85] Wang, L., Ge, L., Rufford, T.E., Chen, J., Zhou, W., Zhu, Z. & Rudolph, V. (2011). A comparison study of catalytic oxidation and acid oxidation to prepare carbon nanotubes for filling with Ru nanoparticles. Carbon. 49(6), 2022-2032. DOI: 10.1016/j.carbon.2011.01.028.
[86] Kim, K.T., Cha, S.I., Gemming, T., Eckert, J. & Hong, S.H. (2008). The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small. 4(11), 1936-1940. DOI: 10.1002/smll.200701223.
[87] Liao, J. & Tan, M-J. (2011). Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technology. 208(1), 42-48. DOI: 10.1016/j.powtec.2010.12.001.
[88] Fan, B.B., Wang, B.B., Chen, H., Wang, G.J. & Zhang, Y. (2013). Preparation and properties of carbon CNTs/Al matrix composites. Journal Of Shenyang University (Natural Science). 25(2), 128-131. DOI: CNKI:SUN:SYDA.0.2013-02-011.
Go to article

Authors and Affiliations

Rong Li
1
ORCID: ORCID
Zhilin Pan
1
ORCID: ORCID
Qi. Zeng
ORCID: ORCID
Xiaoli Ye
1

  1. School of Mechanical & Electrical Engineering Guizhou Normal University, Guyiang, Guizhou, China
Download PDF Download RIS Download Bibtex

Abstract

The individual identification of communication emitters is a process of identifying different emitters based on the radio frequency fingerprint features extracted from the received signals. Due to the inherent non-linearity of the emitter power amplifier, the fingerprints provide distinguishing features for emitter identification. In this study, approximate entropy is introduced into variational mode decomposition, whose features performed in each mode which is decomposed from the reconstructed signal are extracted while the local minimum removal method is used to filter out the noise mode to improve SNR. We proposed a semi-supervised dimensionality reduction method named exponential semi-supervised discriminant analysis in order to reduce the high-dimensional feature vectors of the signals, and LightGBM is applied to build a classifier for communication emitter identification. The experimental results show that the method performs better than the state-of-the-art individual communication emitter identification technology for the steady signal data set of radio stations with the same plant, batch and model.
Go to article

Authors and Affiliations

Wei Ge
1 2
ORCID: ORCID
Lin Qi
1 2
Lin Tong
1 2
Jun Zhu
1 2
Jing Zhang
1 2
Dongyang Zhao
3
Ke Li
1 2
ORCID: ORCID

  1. School of Information & Computer Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
  2. Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, Anhui, 230601, China
  3. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, ShenZhen, GuangDong, 518000, China
Download PDF Download RIS Download Bibtex

Abstract

This paper studied the effect of laser welding technology on dissimilar metal welding joints of TA15 titanium alloy and Inconel 718 nickel-based alloy. The research results indicate that the laser welding of TA15 titanium alloy and Inconel 718 nickel-based alloy directly was difficult to form well, which due to the intermetallic compounds caused the joint brittle. When the pure Cu foil was used as the filling layer, the quality of the welding joints can be improved effectively. The experimental results also indicate that there were brittle intermetallic-compounds in the laser welding seam, and the laser power had an important influence on the performance and mechanical properties of the dissimilar metal joint. The maximum average tensile strength of the welding joint of 2300 W was increased to 252.32 MPa. Scanning electron microscope(SEM) results show that the fracture morphology was river pattern, a typical morphological of cleavage fracture, and the mode was brittle fracture.
Go to article

Authors and Affiliations

Qi An
1 2
ORCID: ORCID
Dongting Wu
1
ORCID: ORCID
Peng Liu
3
ORCID: ORCID
Yong Zou
4
ORCID: ORCID

  1. Shandong University, Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Jinan, 250061, China
  2. Shandong University, School of Materials Science and Engineering, Jinan, 250061, China
  3. Shandong Jianzhu University, School of Materials Science and Engineering, Jinan, 250101, China
  4. Shandong University, Jinan Shandong Engineering & Technology Research Center for Modern Welding, 250061, China
Download PDF Download RIS Download Bibtex

Abstract

To further improve the mechanical properties of carbon nanotubes (CNTs) modified aluminum alloy (ZL105), the first principle was used to build the atomic structure of the alloy system and the alloy system was simulated by the VASP. After that, the heat treatment process of the cast aluminium alloy material with CNTs to enhance the alloy performance by the orthogonal experiment. The results of the research show that: (1) The energy status of the alloy system could be changed by adding the C atoms, but it did not affect the formation and structural stability of the alloy system, and the strong bond compounds formed by C atoms with other elements inside the solid solution structure can significantly affect the material properties. (2) The time of solid solution has the greatest influence on the performance of material that was modified by CNTs. The solution temperature and aging temperature were lower strength affection, and the aging time is the lowest affection. This paper provides a new research method of combining the atomic simulation with the casting experiment, which can provide the theoretical calculations to reduce the experiment times for the casting materials’ performance improvement.
Go to article

Authors and Affiliations

Ziqi Zhang
1
Zhilin Pan
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
Qi Zeng
2
ORCID: ORCID
Yong Liu
3
ORCID: ORCID
Quan Wu
1

  1. School of Mechanical & Electrical Engineering, Guizhou Normal University, China
  2. Guiyang Huaheng Mechanical Manufacture CO., LTD, China
  3. Guizhou University, China
Download PDF Download RIS Download Bibtex

Abstract

Two-way curved arch bridges inherit the fine tradition of masonry structures, making full use of the advantages of prefabricated assembly, it adapts to the situation of no support construction and no large lifting machine and tools, and has the characteristics of convenient construction method and saving material consumption. In appearance, the two-way curved arch bridge has strong national cultural characteristics. The prefabricated components of the two-way curved arch bridge are fragmentary, complicated in bearing and poor in integrity. Most of the two-way curved arch bridges in service have been built for a long time and lack of maintenance and management. Increasing the cross-section reinforcement method is one of the two-way curved arch reinforcement methods. It has a significant effect, convenient construction, good rigidity and stability characteristics after the reinforcement. Through theoretical analysis, combined with a static load test results of the assessment of the bridge reinforcement effect. Through load test, it is found that the deflection of the arch rib after reinforcement is reduced by 9%~19% and the strain of the arch rib is reduced by 12%~22%. Through finite element calculation, the crack width of the reinforced arch rib decreases by 8.3%~14.2%. The results show that the stress and deflection are greatly improved by the method of increasing section.
Go to article

Authors and Affiliations

Kexin X. Zhang
1
ORCID: ORCID
Tianyu Y. Qi
2
ORCID: ORCID
Xingwei W. Xue
1
ORCID: ORCID
Yanfeng F. Li
1
ORCID: ORCID
Zhimin M. Zhu
3
ORCID: ORCID

  1. PhD., Eng., Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Master Degree Candidate, Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  3. Master, Liaoning Urban Construction Design Institute Co. LTD, Shenyang, No.77-1 Jinfeng Street, Shenyang, China

This page uses 'cookies'. Learn more