Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In order for a quadruped robot to be able to move on wheels while keeping its platform in horizontal position, and to walk, the kinematic system of its limbs should be so designed that each of the wheels has at least four degrees of freedom. Consequently, the designed system will have many DOFs and many controlled drives. This paper presents a novel solution in which, thanks to a suitable limb kinematic system geometry, the number of drives for the robot travel function, i.e. travelling on an uneven surface with the robot platform kept horizontal, has been reduced by four which are used only for walking. The robot structure, the required geometry of the limb links and the driving torque characteristics are presented. Moreover, an idea of the control system is sketched. Finally, selected results of the tests carried out on the robot prototype are reported.

Go to article

Authors and Affiliations

Antoni Gronowicz
Jarosław Szrek
Download PDF Download RIS Download Bibtex

Abstract

Moving with the wheelchair can be a serious problem, especially when the obstacle occurs on its way. An alternative solution would be to equip the wheelchair with appropriate mechanical device, thanks to that it becomes possible to overcome barriers such as kerbs or doorsteps. In this paper, the authors present an idea of mechanism overcoming barriers by the wheelchair. Type and geometrical synthesis have been presented. The mechanism is modelled in a multibody computer analysis system and sample simulation research results are reported.

Go to article

Authors and Affiliations

Jacek Bałchanowski
Jarosław Szrek
Sławomir Wudarczyk

This page uses 'cookies'. Learn more