Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of researches of sorption processes of surface layers of components of sand moulds covered by protective coatings are

presented in the hereby paper. Investigations comprised various types of sand grains of moulding sands with furan resin: silica sand,

reclaimed sand and calcined in temperature of 700oC silica sand. Two kinds of alcoholic protective coatings were used – zirconium and

zirconium – graphite. Tests were performed under condition of a constant temperature within the range 30 – 35oC and high relative air

humidity 75 - 80%. To analyze the role of sand grains in sorption processes quantitavie moisture sorption with use of gravimetric method

and ultrasonic method were used in measurements. The tendency to moisture sorption of surface layers of sand moulds according to the

different kinds of sand grains was specified. The effectiveness of protective action of coatings from moisture sorption was analyzed as

well.

Knowledge of the role of sand grains from the viewpoint of capacity for moisture sorption is important due to the surface casting defects

occurrence. In particular, that are defects of a gaseous origin caused by too high moisture content of moulds, especially in surface layers.

Go to article

Authors and Affiliations

N. Kaźnica
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

The new investigation method of the kinetics of the gas emission from moulding sands used for moulds and cores is presented in this

paper. The gas evolution rate is presented not only as a function of heating time but also as a function of instantaneous temperatures. In

relation to the time and heating temperature the oxygen and hydrogen contents in evolving gases was also measured. This method was

developed in the Laboratory of Foundry Moulds Technology, Faculty of Foundry Engineering, AGH. Gas amounts which are emitted from

the moulding sand at the given temperature recalculated to the time unit (kinetics) are obtained in investigations. Results of investigations

of moulding sand with furan resin are presented - as an example - in the paper.

Go to article

Authors and Affiliations

J. Zych
J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

The obtained results of heating of sand moulds with binders by means of a thermal radiation of liquid metal are presented in this study.

Standard samples for measuring Rg made of the tested moulding sands were suspended at the lower part of the cover which was covering

the crucible with liquid metal (cast iron), placed in the induction furnace. The authors own methodology was applied in investigations. The

progressing of the samples surface layers heating process was determined as the heating time function. Samples of a few kinds of

moulding sands with chemical binders were tested. Samples without protective coatings as well as samples with such coatings were tested.

The influence of the thermal radiation on bending resistance of samples after their cooling was estimated. The influence of several

parameters such as: time of heating, distance from the metal surface, metal temperature, application of coatings, were tested. A very fast

loss of strength of moulding sands with organic binders was found, especially in cases when the distance between metal and sample

surfaces was small and equaled to 10÷15 mm. Then, already after app. 15 seconds of the radiation (at Tmet=1400o

C), the resistance

decreases by nearly 70%. Generally, moulding sands with organic binders are losing their strength very fast, while moulding sands with

water glass at first increase their strength and later slightly lose. The deposition of protective coatings increases the strength of the mould

surface layers, however does not allow to retain this strength after the metal thermal radiation.

Go to article

Authors and Affiliations

J. Zych
J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

The influence of the chill on the AlSi7Mg alloy properties after the heat treatment T6, was realised in the system of the horizontally cast plate of dimensions 160x240 mm and thickness of 10 and 15 m. The cooling course in individual casting zones was recorded, which allowed to determine the solidification rate. Castings were subjected to the heat treatment T6 process. Several properties of the alloy such as: hardness BHN, density, tensile strength UTS, elongation %E were determined. The microstructure images were presented and the structural SDAS parameter determined. The performed investigations as well as the analysis of the results allowed to determine the influence zone of the chill. The research shows that there is a certain dependence between the thickness of the casting wall and the influence zone of the chill, being not less than 2g, where g is the casting wall thickness. The next aim of successive investigations will be finding the confirmation that there is the dependence between the casting wall thickness and the influence zone of the chill for other thicknesses of walls. We would like to prove that this principle is of a universal character.

Go to article

Authors and Affiliations

M. Piękoś
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

Abstract The influence of selected factors on drying ceramic moulds applied in the investment casting technology was determined by the gravimetric method. Moulds produced of ceramic sands based on the new generation binders - colloidal silica, were investigated. It was found that each successive layer, of a similar thickness, is drying longer than the previous one. The drying time of layers forming closed spaces is several times longer as compared with drying open surfaces (external). Grain size of matrix used for moulds sprinkling has none significant influence on drying rates.
Go to article

Authors and Affiliations

J. Zych
J. Kolczyk
Download PDF Download RIS Download Bibtex

Abstract

Cast iron destined for spheroidization is usually characterized by a near-eutectic chemical composition, which is a result of the necessity of maintaining its high graphitizing ability. This graphitizing ability depends mainly on the chemical composition but also on the so-called physical-chemical state. This, in turn, depends on the melting process history and the charge structure. It happens quite often, that at very similar chemical compositions cast irons are characterized by different graphitizing abilities. The hereby work concerns searching for the best method of assessing the graphitizing abilities of near-eutectic cast iron. The assessment of the graphitizing ability was performed for cast iron obtained from the metal charge consisting of 100% of special pig iron and for synthetic cast iron obtained from the charge containing 50% of pig iron + 50% of steel. This assessment was carried out by a few methods: wedge tests, thermal analysis, microstructure tests as well as by the new ultrasonic method. The last method is the most sensitive and accurate. On the basis of the distribution of the wave velocity, determined in the rod which one end was cast on the metal plate, it is possible to determine the graphitizing ability of cast iron. The more uniform structure in the rod, in which directional solidification was forced and which had graphite precipitates on the whole length, the higher graphitizing ability of cast iron. The homogeneity of the structure is determined by the indirect ultrasonic method, by measurements of the wave velocity. This new ultrasonic method of assessing the graphitizing ability of cast iron of a high Sc (degree of eutectiveness) and CE (carbon equivalent) content, can be counted among fast technological methods, allowing to assess the cast iron quality during the melting process.
Go to article

Bibliography

[1] Janerka, K. (2010). Carburizing of iron alloys. Gliwice: Wydawnictwa Politechniki Śląskiej. (in Polish).
[2] Janerka, K. (2019). The rate effectiveness of carbonization to the sort of carburizer. Archives of Foundry Engineering. 7(4), 95-100.
[3] Karsay, S.J. (1992). Ductile Iron I, Production. Canada: QIT –Fer & Titane.
[4] Fraś, E., Podrzucki, Cz. (1981). Modified cast iron. Kraków: Skrypt AGH. (in Polish).
[5] Riposan, I., Chisamera, M., Stan, S., Adam, N. (2004). Influencing Factors on the High Purity - Steel Scrap Optimum Ratio in Ductile Iron Production. Ductile Iron News. 2, 10-19.
[6] Riposan, I., Chisamera, M., Stan, S., Constantin, V., Adam, N. & Barstow, M. (2006). Beneficial remnant effect of high purity pig iron in industrial production of ductile iron. AFS Transactions. 114, 657-666.
[7] Fraś, E. (1978). Przegląd Odlewnictwa. 6,133. (in Polish).
[8] Podrzucki, Cz. (1991). Cast iron - structure - properties – application. Kraków: Wyd. ZG STOP. (in Polish).
[9] Podrzucki, Cz., Falęcki, Z., Wiśniewski, B. (1966). Przegląd Odlewnictwa. 7-8, 248. (in Polish).
[10] ASTM Standards of iron casting, (1957). Tentative methods of testing of cast iron. 76, A 367-55T.
[11] Podrzucki Cz., Kalata Cz. (1976). Metallurgy and iron founding. Katowice: Wyd. Śląsk. (in Polish).
[12] Zych ,J. (2000). The study of the sensitivity of cast iron to the cooling rate using the ultrasonic method. Solidification of Metals and Alloys. 43, 543-552. (in Polish).
[13] Zych, J. (2001). Multi-stage, ultrasonic control of the ductile iron castings production process. Archives of Foundry. 1(1/2), 227-235. (in Polish).
Go to article

Authors and Affiliations

J. Zych
1
ORCID: ORCID
M. Myszka
1
T. Snopkiewicz
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new stand for studying the linear shrinkage kinetics of foundry alloys. The stand is equipped with a laser displacement sensor. Thanks to this arrangement, the measurement is of a contactless nature. This solution allows for the elimination of errors which occur in measurements made using intermediary elements (steel rods). The supposition of the expansion (shrinkage) of the sample and the expansion of the heated rod lead to the distortion of the image of the actual dimensional changes of the studied sample. A series of studies of foundry alloys conducted using the new stand allowed a new image of shrinkage kinetics to be obtained, in particular regarding cast iron. The authors introduce in the study methodology a real-time measurement of two linked quantities; shrinkage (the displacement of the free end of the sample) and temperature in the surface layer of the sample casting. This generates not only a classic image of shrinkage (S) understood as S = f (t), but also the view S = f (T). The latter correlation, developed based on results obtained using the contactless method, provide a new, so far poorly known image of the course of shrinkage in foundry alloys, especially cast iron with graphite in the structure. The study made use of hypo- and hypereutectic cast iron in order to generate an image of the differences which occur in the kinetics of shrinkage (as well as in pre-shrinkage expansion - expansion occurs during solidification).

Go to article

Authors and Affiliations

J. Zych
ORCID: ORCID
T. Snopkiewicz
Download PDF Download RIS Download Bibtex

Abstract

A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass) are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

Go to article

Authors and Affiliations

N. Kaźnica
J. Zych
J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

The investigation results of the kinetics of binding ceramic moulds, in dependence on the solid phase content in the liquid ceramic slurries being 67, 68 and 69% - respectively, made on the basis of the aqueous binding agents Ludox AM and SK. The ultrasonic method was used for assessing the kinetics of strengthening of the multilayer ceramic mould. Due to this method, it is possible to determine the ceramic mould strength at individual stages of its production. Currently self-supporting moulds, which must have the relevant strength during pouring with liquid metal, are mainly produced. A few various factors influence this mould strength. One of them is the ceramic slurry viscosity, which influences a thickness of individual layers deposited on the wax model in the investment casting technology. Depositing of layers causes increasing the total mould thickness. Therefore, it is important to determine the drying time of each deposited layer in order to prevent the mould cracking due to insufficient drying of layers and thus the weakening of the multilayer mould structure.

Go to article

Authors and Affiliations

J. Kolczyk
Ł. Jamrozowicz
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

The graphite form in cast iron is the structure parameter deciding on its all physical and mechanical properties. Three basic forms of graphite: flake, vermicular (compact) and nodular (spheroidal) are singled out in standard cast iron grades, without a heat treatment. Standards of individual grades of cast iron the most often allow only the homogeneous graphite form, sometimes with addition of 5÷10% of the other form. The interesting and - in the authors opinion - future-oriented material can constitute cast iron in which various forms of graphite are present, e.g. in comparative amounts: spherical and vermicular cast irons. Cast iron within which graphite occurs in two or three forms was named „Vari-Morph” (VM) cast iron, i.e. the one in which spherical and vermicular or vermicular and flake graphite occur in a wide range of proportions. The results of investigations of these new cast iron grades and their properties are presented in the hereby paper.

Go to article

Authors and Affiliations

J. Zych
M. Myszka
N. Kaźnica
Download PDF Download RIS Download Bibtex

Abstract

The new investigation method of a permeability of ceramic moulds applied in the investment casting technology, is presented in the paper. Some concepts of performing permeability measurements are shown. Investigations in which the influence of the solid phase fraction in the liquid ceramic moulding sand (LCMS) on a permeability of a multi-layer ceramic mould were performed and discussed. The permeability was estimated during two the most important stages of the technological process: in the first – after wax melting and in the second – after mould annealing. Also an influence of the matrix grain sizes (material for sprinkling) on a ceramic mould permeability was estimated.
Go to article

Authors and Affiliations

J. Zych
J. Kolczyk
T. Snopkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Gas emission from casting moulds, cores and coatings applied for sand and permanent moulds is one of the fundamental reasons of casting defects occurrence. In the previous studies, gas emission was measured in two ways: normalized, in which the evolving gas volume was measured during heating of the moulding sand sample in a sealed flask, or by measuring the amount of gas from sand core (sample) which is produced during the pouring of liquid metal. After the pouring process the sand mould is heated very unequally, the most heated areas are layers adjacent to the liquid metal. The emission of gas is significantly larger from the surface layer than from the remaining ones. New, original method of measuring kinetics of gas emission from very thin layers of sand moulds heated by liquid metal developed by the authors is presented in the hereby paper. Description of this new method and the investigation results of kinetics of gas emission from moulding sand with furan and alkyd resin are shown. Liquid grey cast iron and Al-Si alloy were used as a heat source in the sand moulds. Comparison of the kinetics of gas emission of these two kinds of moulding sands filled with two different alloys was made. The momentary metal temperature in sand mould was assigned to the kinetics of gas emission, what creates a full view of the possibility of formation of casting defects of the gaseous origin. Moulding sand with alkyd resin is characterized by larger gas emission; however gases are emitted slower than in the case of moulding sands with furan resin. This new investigation method has a high repeatability and is the only one which gives a full view of phenomenon’s in the surface layer which determines quality of the casings. The obtained results are presented on several graphs and analyzed in detail. They have a great application value and can be used in the production of iron as well as light metal alloy castings.

Go to article

Authors and Affiliations

J. Zych
J. Mocek
N. Kaźnica
Download PDF Download RIS Download Bibtex

Abstract

The results of testing of the selected group of wax mixtures used in the investment casting technology, are presented in the paper. The measurements of the kinetics of the mixtures shrinkage and changes of viscous-plastic properties as a temperature function were performed. The temperature influence on bending strength of wax mixtures was determined.
Go to article

Authors and Affiliations

J. Zych
J. Kolczyk
T. Snopkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of humidity migration in near surface layers of sand mould during processes of penetration and drying of protective coatings are presented in the hereby paper. The process of the humidity exchanging between surroundings and moulding sands as porous materials, is widely described in the introduction. In addition, the humidity flow through porous materials, with dividing this process into stages in dependence of the humidity movement mechanism, is presented. Next the desorption process, it means the humidity removal from porous materials, was described. Elements of the drying process intensity as well as the water transport mechanisms at natural and artificial drying were explained. The innovative research stands for measuring resistance changes of porous media due to humidity migrations was applied in investigations. Aqueous zirconium coatings of two apparent viscosities 10s and 30s were used. Viscosity was determined by means of the Ford cup of a mesh clearance of 4mm. Coatings were deposited on cores made of the moulding sand containing sand matrix, of a mean grain size dL = 0.25 mm, and phenol-formaldehyde resin. Pairs of electrodes were placed in the core at depths: 2, 3, 4, 5, 8, 12 and 16 mm. Resistance measurements were performed in a continuous way. The course of the humidity migration process in the core surface layer after covering it by protective coating was determined during investigations. Investigations were performed in the room where the air temperature was: T = 22˚C but the air humidity was not controlled, as well as in the climatic chamber where the air temperature was: T = 35˚C and humidity: H = 45%. During the research, it was shown that the process of penetration (sorption) of moisture into the moulding sand is a gradual process and that the moisture penetrates at least 16 mm into the sand. In the case of the drying (desorption) process, moisture from the near-surface layers of the moulding sand dries out much faster than moisture that has penetrated deeper into the sand. Keywords: Core, Sand mould, Porous medium, Humidity migration, Protective coatings, Resistance measurement
Go to article

Bibliography

[1] Pigoń, K., Ruziewicz, Z. (2005). Physical chemistry. Phenomenological foundations. Warszawa: PWN, (in Polish) [2] Zarzycki, R. (2005). Heat transfer and mass movement in environmental engineering. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish) [3] Płoński, W., Pogorzelski, J. (1979). Building physics. Warszawa: Arkady. (in Polish) [4] Świrska-Perkowska, J. (2012). Adsorption and movement of moisture in porous building materials under isothermal conditions. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN. (in Polish) [5] Kubik, J. (2000). Moisture flows in building materials. Opole: Oficyna Wydawnicza Politechniki Opolskiej. (in Polish) [6] Gawin, D. (2000). Modeling of coupled hygrothermal phenomena in building materials and elements. Łódź: Politechnika Łódzka. (in Polish) [7] Rose, D. (1963). Water movement in porous materials. Part 1: isothermal vapour transfer. British Journal of Applied Physics. (14), 256-262. DOI:10.1088/0508-3443/14/5/308. [8] Rose, D. (1963): Water movement in porous materials. part 2: the separation of the components of water movement. British Journal of Applied Physics. (14), 491-496. DOI: 10.1088/0508-3443/14/8/310. [9] Marynowicz, A., Wyrwał, J. (2005). Testing the moisture properties of selected building materials under isothermal conditions. Warszawa: INB ZTUREK. (in Polish) [10] Kiessl, K. (1983) Kapillarer und dampffoermiger Fauchtetransport in mahrschichtigen Bauteilen. Essen: Dissertation. University Essen. [11] Politechnika Gdańska. The process of drying food substances - laboratory exercises. Retrieved January, 2022, from https://mech.pg.edu.pl/documents/4555684/4565480/suszenie.pdf (in Polish). [12] Baranowski, J., Melech, S., Adamski, P. (2002). Temperature and humidity control systems in the processes of drying food products. Zielona Góra: VI Sympozjum Pomiary i Sterowanie w Procesach Przemysłowych. (in Polish) [13] Ważny, J., Karyś, J. (2001). Protection of buildings against biological corrosion. Warszawa: Arkady. (in Polish) [14] Brooker, D., Bakker-Arkema, F., Hall, C. (1992). Drying and Storage of Grains and Oilseeds. New York: Van Nostrand Reinhold. [15] Reeds, J. (1991). Drying. ASM International Handbook Committee. 131-134. [16] Pel, L., Sawdy, A. & Voronina, V. (2010). Physical principles and efficiency of salt extraction by poulticing. Journal of Cultural Heritage. 11(1), 59-67. DOI:10.1016/j.culher. 2009.03.007. [17] Hii, C., Law, C. & Cloke, M. (2008). Modelling of thin layer drying kinetics of cocoa beans during artificial and natural drying. Journal of Engineering Science and Technology. 3(1), 1-10. [18] Zych, J. & Kolczyk, J. (2013). Kinetics of hardening and drying of ceramic moulds with the new generation binder – colloidal silica. Archives of Foundry Engineering. 13(4), 112-116. DOI: 10.2478/afe-2013-0093. [19] Kolczyk J. & Zych J. (2014). The kinetics of hardening and drying of ceramic molds with a new generation binder - colloidal silica. Przegląd Odlewnictwa. 64(3-4), 84-92. (in Polish) [20] Zych, J., Kolczyk, J. & Jamrozowicz, Ł. (2015). The influence of the shape of wax pattern on the kinetics of drying of ceramic moulds. Metalurgija. 54(1), 15-18. ISSN 0543-5846. [21] Jamrozowicz, Ł., Zych, J. & Kolczyk, J. (2015). The drying kinetics of protective coatings used on sand molds. Metalurgija. 54(1), 23-26. ISSN 0543-5846. [22] Jamrozowicz, Ł. & Siatko, A. (2020). The assessment of the permeability of selected protective coatings used for sand moulds and cores. Archives of Foundry Engineering. 20(1), 17-22. DOI: 10.24425/afe.2020.131276. [23] Jamrozowicz, Ł., Kolczyk-Tylka, J. & Siatko, A. (2018) Investigations of the thickness of protective coatings deposited on moulds and cores. Archives of Foundry Engineering. 18(4), 131-136. DOI: 10.24425/afe.2018. 125182. [24] Zych, J. & Snopkiewicz, T. (2010). Drying and hardening of ceramic moulds used in a modern investemnt casting technique – investigations of the process kinetics. Foundry Journal of the Polish Foundrymen's Association. 9-10, 506-512. [25] Zych, J., Snopkiewicz, T. (2018). Method for study the drying process self-hardening molding sand or core compound. Patent PL 228373 B1.
Go to article

Authors and Affiliations

Ł. Jamrozowicz
1
ORCID: ORCID
J. Zych
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of plasticity of moulding sands with binders obtained by measuring deflection angles in the single point bend test in dependence on their hardening degree are presented in the hereby paper. Shaped samples made of moulding sands obtained in the technology with urea-furfuryl resin Furanol FR75A and in the technology with water glass, were subjected to various tests. Shaped samples were made on the quartz matrix of a medium grains size ����=0,29 ����. Investigations were performed for the resin content being 1% and 2%, at a constant proportion of a hardener versus resin -- equal 60%. In the case of sands from the technology with water glass, investigations were performed for 3.5% of water glass versus sand matrix and 0.35% of Flodur. Plasticity tests were carried out with using the strength machine with a continuous recording of a sample deflection value. Measurements of deflection angles values in the bend test were performed on a series of simultaneously made samples at constant time intervals from the moment of their making. To determine the sand hardening degree the ultrasound technique was applied, according to the previously developed methodology [1]. Every time from the obtained results the characteristic of the growing stress as a function of deflection was prepared (��). In addition, for the tested group of moulding sands, empirical relationships between the maximum deflection angle (αmax) in the bend test and the hardening degree were determined (Sx): α = f(Sx).
Go to article

Bibliography

[1] Zych, J. (2002). New, nondestructive method of quality inspection of mould’s elements made of moulding sands with chemical binders. Archives of Foundry. 2(5), 132-139.
[2] Fredrickson, A.G. (1964). Principles and applications of rheology. New York: Prentice Hall, Englewood Cliffs.
[3] Reiner M. (1958). Theoretical rheology. Warszawa: PWN. (in Polish).
[4] Kembłowski, Z. (1973). Rheometry of non-Newtonian fluids. Warszawa: WNT. (in Polish).
[5] Malkin, A. JU. (1994). Rheology Fundamentals. ChemTec Publishing. Canada.
[6] Barnes, H.A. (1997). Thixotropy-a review. Journal of Non-Newtonian Fluid Mechanics. 70(1-2), 1-33.
[7] Gröning, P. (2014). Properties and use of the modern PUR cold-box system. 4th Conference: Molding and core materials - theory and practice. 28 -30 August. Iława – Poland: Hüttenes-Albertus Poland. (in Polish).
[8] Gröning, P., Schreckenberg, S. & Jenrich, K. (2015). Herstellung von hoch-komplexen Zylinderkurbel-gehäusen. Giesserei. 102(01), 42-47.
[9] Grabarczyk, A., Dobosz, M.St., Kusiński, J., & Major-Gabryś, K. (2018). The tendency of moulding sands to generate core cracs. Archives of Foundry Engineering. 18(1), 157-161.
[10] Dobosz, M.St., Grabarczyk, A. & Major-Gabryś, K. (2017). Elasticity of moulding sands – a method of reducing core cracking. Archives of Foundry Engineering. 17(1), 31-36.
[11] Grabarczyk, A. (2018). Analysis and evaluation of mechanical and thermal deformation of molding sands with selected binders. Unpublished doctoral dissertation, AGH University of Science and Technology, Kraków. (in Polish).
[12] Zych, J. (2007). Synthesis of ultrasonic technique applications in the analysis of the kinetics of selected processes in molding materials. Kraków: AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Seria: Rozprawy i Monografie nr 163. (in Polish).

Go to article

Authors and Affiliations

Natalia Matonis
ORCID: ORCID
J. Zych
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, ul. Reymonta 23, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Two standardised grades of spheroidal cast iron determined in standard EN PN 1563 – 1997 as: EN-GJS-350 – 22LT (T = –40°C) and EN GJS 400 – 18LT (T = –20°C) are intended for work at low temperatures: –20 and –40oC. The main mechanical property of these cast iron grades is a high impact strength at a work temperature down to: –40°C. A series of controlled melts was performed to optimise the production technology of spheroidal cast iron, which in as-cast state is characterised by ferritic matrix (the best without any pearlite), fine precipitates of nodular graphite and high purity (without non-metallic inclusions). Variable structures of metal charges and various spheroidisation techniques (the modification methods) (slender ladle with a tight cover – Tundish technology as well as the technology with cored wire) were applied in the research. In order to obtain refinement of graphite precipitates and to achieve the ferritic matrix multistage inoculations of technologies were applied. Cast iron was subjected to refining to limit non-metallic inclusions since they decrease the impact strength. The production process of cast iron was controlled by the thermal derivative analysis at the stage of initial cast iron and after its secondary metallurgy (modification and inoculation). It was pointed out, that the reproducible production of cast iron for work at low temperatures was only possible when all elements of the technological process were strictly adhered to. It was pointed out, in the hereby paper, that: it should be strived to maintain Si content not higher than 2.50÷2.60%, which at producing spheroidal cast iron is sometimes difficult and requires using a lot of pig iron in the metal charge. For a fast assessment of the cast iron quality, concerning its impact strength, the proposed – in the hereby paper – index quality (IQu) can be applied. It is determined on the bases of measuring the cast iron hardness and propagation velocity of ultrasound wave.
Go to article

Authors and Affiliations

J. Zych
1
ORCID: ORCID
T. Jurga
2
J. Mocek
1
M. Myszka
1
T. Snopkiewicz
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Odlewnia Żeliwa Drawski S.A, Drawski Młyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Fatigue investigations of two 4XXX0-series aluminum alloys (acc. PN-EN 1706) within a range of fewer than 104 cycles at a coefficient of cycle asymmetry of R = –1 were performed in the current paper. The so-called modified low-cycle test, which provided additional information concerning the fatigue life and strength of the tested alloys, was also performed. The obtained results were presented in the form of diagrams: stress amplitude σa – number of cycles before damage N. On the basis of the microscopic images of sample fractures, the influence of the observed casting defects on the decrease of cycle numbers at a given level of stress amplitude were analyzed. Based on the images and dimensions of the observed defects, stress intensity factor KI was analytically determined for each. Their numerical models were also made, and stress intensity factor KI was calculated by the finite element method (FEM).

Go to article

Authors and Affiliations

J. Zych
J. Piekło
M. Maj
A. Garbacz-Klempka
M. Piękoś
Download PDF Download RIS Download Bibtex

Abstract

Issues connected with high quality casting alloys are important for responsible construction elements working in hard conditions.

Traditionally, the quality of aluminium casting alloy refers to such microstructure properties as the presence of inclusions and intermetallic

phases or porosity. At present, in most cases, Quality index refers to the level of mechanical properties – especially strength parameters,

e.g.: UTS, YS, HB, E (Young’s Modulus), K1c (stress intensity factor). Quality indexes are often presented as a function of density.

However, generally it is known, that operating durability of construction elements depends both on the strength and plastic of the material.

Therefore, for several years now, in specialist literature, the concept of quality index (QI) was present, combines these two important

qualities of construction material. The work presents the results of QI research for casting hypoeutectic silumin type EN AC-42100

(EN AC-AlSi7Mg0.3), depending on different variants of heat treatment, including jet cooling during solution treatment.

Go to article

Authors and Affiliations

A. Garbacz-Klempka
Z. Kwak
E. Czekaj
J. Zych

This page uses 'cookies'. Learn more