Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the article the results of simulation and experimental studies of the movement of a four-wheeled mobile platform, taking into account wheel slip have been presented. The simulation results have been based on the dynamics of the four-wheel mobile platform. The dynamic model of the system motion takes into account the relationship between the active and passive forces accompanying the platform motion, especially during wheel slip. The formulated initial problem describing the motion of the system has been solved by the Runge-Kutta method of the fourth order. The proposed computational model including the platform dynamics model has been verified in experimental studies using the LEO Rover robot. The motion parameters obtained on the basis of the adopted computational model in the form of trajectories, velocities and accelerations have been compared with the results of experimental tests, and the results of this comparison have been included in the paper. The proposed computational model can be useful in various situations, e.g., real-time control, where models with a high degree of complexity are useless due to the computation time. The simulation results obtained on the basis of the proposed model are sufficiently compatible with the results of experimental tests of motion parameters obtained for the selected type of mobile robot.
Go to article

Bibliography

  1.  A. Jaskot, “Modelowanie i analiza ruchu platform mobilnych z uwzględnieniem poślizgu,” Ph.D. dissertation, Czestochowa University of Technology, 2021.
  2.  Z. Lozia, “Modele symulacyjne ruchu i dynamiki dwóch pojazdów uprzywilejowanych,” Czaspismo Techniczne Mechanika, vol. Z.8, pp. 19–34, 2012.
  3.  S. Aguilera-Marinovic, M. Torres-Torriti, and F. Auat-Cheein, “General dynamic model for skid-steer mobile manipulators with wheel – ground interactions,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 433–444, Feb. 2017, doi: 10.1109/tmech.2016.2601308.
  4.  A. Mandow et al., “Experimental kinematics for wheeled skid-steer mobile robots,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Oct. 2007, doi: 10.1109/iros.2007.4399139.
  5.  D. Pazderski, “Waypoint following for differentially driven wheeled robots with limited velocity perturbations,” Journal of Intelligent & Robotic Systems, vol. 85, no. 3‒4, pp. 553–575, Jun. 2016, doi: 10.1007/s10846-016-0391-7.
  6.  Y. Abdelgabar, J. Lee, and S. Okamoto, “Motion control of a three active wheeled mobile robot and collision-free human following nav- igation in outdoor environment,” Proc. Int. Multi- Conf. Eng. Comput. Sci., vol. 1, p. 4, 2016.
  7.  L. Xin, Q. Wang, J. She, and Y. Li, “Robust adaptive tracking control of wheeled mobile robot,” Rob. Auton. Syst., vol. 78, pp. 36–48, 2016, doi: 10.1016/j.robot.2016.01.002.
  8.  W. Kowalczyk and K. Kozłowski, “Trajectory tracking and collision avoidance for the formation of two-wheeled mobile robots,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 915–924, 2019, doi: 10.24425/bpas.2019.128652.
  9.  X. Feng and C.Wang, “Robust Adaptive Terminal Sliding Mode Control of an Omnidirectional Mobile Robot for Aircraft Skin Inspection,” Int. J. Control Autom. Syst., vol. 19, no. 2, pp. 1078–1088, 2021, doi: 10.1007/s12555-020-0026-4.
  10.  M. Nitulescu, “Solutions for Modeling and Control in Mobile Robotics,” J. Control Eng. Appl. Inf., vol. 9, no. 3;4, pp. 43–50, 2007.
  11.  D. Cekus, R. Gnatowska, and P. Kwiatoń, “Impact of Wind on the Movement of the Load Carried by Rotary Crane,” Appl. Sci., vol. 9, no. 19, p. 22, 2019, doi: 10.3390/app9183842.
  12.  A. Jaskot, B. Posiadała, and S. Śpiewak, “Dynamics Modelling of the Four-Wheeled Mobile Platform,” Mech. Res. Commun., vol.  83, pp. 58–64, 2017, doi: 10.1016/j.mechrescom. 2017.05.007.
  13.  A. Jaskot, B. Posiadała, and S. Śpiewak, “Dynamics Model of the Mobile Platform for its Various Configurations,” Procedia Eng., vol. 177, pp. 162–167, 2017, doi: 10.1016/j.proeng.2017.02.211.
  14.  A. Jaskot and B. Posiadała, “Dynamics of the mobile platform with four wheel drive,” MATEC Web of Conferences, vol. 254, p. 8, 2019, doi: 10.1051/matecconf/201925403006.
  15.  N. Sarkar, X. Yun, and V. Kumar, “Control of Mechanical Systems With Rolling Constraints: Application to Dynamic Control of Mobile Robots,” Int. J. Rob. Res., vol. 13, no. 1, pp. 55–69, 1994, doi: 10.1177/027836499401300104.
  16.  M. Eghtesad and D. Necsulescu, “Study of the internal dynamics of an autonomous mobile robot,” Rob. Auton. Syst., vol. 54, no. 4, pp. 342–349, 2006, doi: 10.1016/j.robot.2006.01.001.
  17.  “Technical specification.” [Online]. Available: http://pl.kwapil.com/downloads/maxon-ec-motor.pdf (Accessed 2017-07-24).
  18.  “Leo rover specification.” [Online]. Available: https://www.leorover.tech/the-rover (Accessed 2021-04-21).
Go to article

Authors and Affiliations

Anna Jaskot
1
ORCID: ORCID
Bogdan Posiadała
2

  1. Czestochowa University of Technology, Faculty of Civil Engineering, ul. Akademicka 3, 42-201 Częstochowa, Poland
  2. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, ul. Dąbrowskiego 73, 42-201 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Squeeze film dampers (SFDs) are commonly used in turbomachinery in order to introduce external damping, thereby reducing rotor vibrations and acoustic emissions. Since SFDs are of similar geometry as hydrodynamic bearings, the REYNOLDS equation of lubrication can be utilised to predict their dynamic behaviour. However, under certain operating conditions, SFDs can experience significant fluid inertia effects, which are neglected in the usual REYNOLDS analysis. An algorithm for the prediction of these effects on the pressure build up inside a finite-length SFD is therefore presented. For this purpose, the REYNOLDS equation is extended with a first-order perturbation in the fluid velocities to account for the local and convective inertia terms of the NAVIER-STOKES equations. Cavitation is taken into account by means of a mass conserving two-phase model. The resulting equation is then discretized using the finite volume method and solved with an LU factorization. The developed algorithm is capable of calculating the pressure field, and thereby the damping force, inside an SFD for arbitrary operating points in a time-efficient manner. It is therefore suited for integration into transient simulations of turbo machinery without the need for bearing force coefficient maps, which are usually restricted to circular centralized orbits. The capabilities of the method are demonstrated on a transient run-up simulation of a turbocharger rotor with two semi-floating bearings. It can be shown that the consideration of fluid inertia effects introduces a significant shift of the pressure field inside the SFDs, and therefore the resulting damper force vector, at high oil temperatures and high rotational speeds. The effect of fluid inertia on the kinematic behaviour of the whole system on the other hand is rather limited for the examined rotor.
Go to article

Bibliography

  1.  M.B. Banerjee, R. Shandil, S. Katyal, G. Dube, T. Pal, and K. Banerjee, “A nonlinear theory of hydrodynamic lubrication,” J. Math. Anal. Appl., vol. 117, no. 1, pp. 48–56, 1986.
  2.  S. Hamzehlouia and K. Behdinan, “Squeeze film dampers supporting high-speed rotors: Fluid inertia effects,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., vol. 234, no. 1, pp. 18–32, 2020.
  3.  M. Ramli, J. Ellis, and J. Roberts, “On the computation of inertial coefficients in squeeze-film bearings,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 201, no. 2, pp. 125–131, 1987, doi: 10.1243/PIME_PROC_1987_201_095_02.
  4.  E. Reinhardt and J. Lund, “Influence of fluid inertia on the dynamic properties of journal bearings.” J. Lubr. Technol., vol. 97 Ser F, no. 2, pp. 159–167, 1975.
  5.  A.Z. Szeri, A.A. Raimondi, and A. Giron-Duarte, “Linear Force Coefficients for Squeeze-Film Dampers,” J. Lubr. Technol., vol. 105, no. 3, pp. 326–334, 07 1983.
  6.  A.Z. Szeri, Fluid Film Lubrication: Theory and Design. Cambridge University Press, 1998.
  7.  Z. Guo, T. Hirano, and R.G. Kirk, “Application of CFD analysis for rotating machinery: Part 1 — hydrodynamic, hydrostatic bearings and squeeze film damper,” in Volume 4: Turbo Expo 2003. ASME, 2003, doi: 10.1115/gt2003-38931.
  8.  C. Xing, M.J. Braun, and H. Li, “A three-dimensional navierstokes- based numerical model for squeeze film dampers. part 2—ef- fects of gaseous cavitation on the behavior of the squeeze film damper,” Tribol. Trans., vol. 52, no. 5, pp. 695–705, Sep 2009, doi: 10.1080/10402000902913311.
  9.  V. Constantinescu, Laminar Viscous Flow. Berlin Heidelberg: Springer Science & Business Media, 2012.
  10.  J. Gehannin, M. Arghir, and O. Bonneau, “Complete squeezefilm damper analysis based on the “bulk flow” equations,” Tribol. Trans., vol. 53, no. 1, pp. 84–96, 2009, doi: 10.1080/10402000903226382.
  11.  S. Lang and S. Verlag, Effiziente Berechnung von Gleitlagern und Dichtspalten in Turbomaschinen, ser. Forschungsberichte zur Fluidsys- temtechnik. Shaker Verlag, 2018.
  12.  H. Peeken and J. Benner, “Beeinträchtigung des Druckaufbaus in Gleitlagern durch Schmierstoffverschäumung,” in Gleit- und Wäl- zlagerungen: Gestaltung, Berechnung, Einsatz; Tagung Neu-Ulm, 14. und 15. März 1985 / VDI-Ges. Entwicklung, Konstruktion, Vertrieb. – (VDI-Berichte; 549), 2013, pp. 373–397.
  13.  Ü. Mermertas, “Nichtlinearer Einfluss von Radialgleitlagern auf die Dynamik schnelllaufender Rotoren, Dissertation,” Düren, Aachen, 2003.
  14.  E. Woschke, C. Daniel, and S. Nitzschke, “Excitation mechanisms of non-linear rotor systems with floating ring bearings – simulation and validation,” Int. J. Mech. Sci., vol. 134, pp. 15‒27, 2017, doi: 10.1016/j.ijmecsci.2017.09.038.
  15.  R. Eymard, G. Thierry, and R. Herbin, “Handbook of numerical analysis,” vol. 7, pp. 731–1018, 01 2000.
  16.  V.V. Moca, A. Nagy-Dăbâcan, H. Bârzan, and R. C. Mure¸san, “Superlets: time-frequency super-resolution using wavelet sets,” bioRxiv, 2019.
  17.  S. Hamzehlouia and K. Behdinan, “A study of lubricant inertia effects for squeeze film dampers incorporated into highspeed turboma- chinery,” Lubricants, vol. 5, p. 43, 10 2017, doi: 10.3390/lubricants5040043.
  18.  L. San Andrés and J. Vance, “Effects of fluid inertia and turbulence on the force coefficients for squeeze film dampers,” J. Eng. Gas Turbines Power, vol. 108, 04 1986, doi: 10.1115/1.3239908.
Go to article

Authors and Affiliations

Thomas Drapatow
1
Oliver Alber
2
Elmar Woschke
1
ORCID: ORCID

  1. Institute of Mechanics, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
  2. MAN Energy Solutions SE, 86153 Augsburg, Germany

This page uses 'cookies'. Learn more