Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 78
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The potato cyst nematode (PCN), Globodera pallida, originates from South America and is considered one of the most severe agricultural pests of potato crops and other Solanaceae plants globally. Based on their virulence and ability to reproduce on various potato cultivars, the populations of G. pallida are divided into three pathotypes, Pa1– Pa3. In this study, comparative sequence analyses of the fragment of mitochondrial cytochrome c oxidase subunit II ( mtCOII) gene for eight populations of G. pallida, representing three pathotypes, Pa1, Pa2 and Pa3, indicated genetic diversity between them. However, we did not identify significant mutations distinguishing Pa2 from Pa3. Interestingly, two single nucleotide substitutions, T441C and A468G, were characteristic only for populations assigned to Pa1. On this basis, we developed high resolution melting (HRM) PCR protocol. As a result, the melting curves obtained for samples of Pa1 populations varied from those obtained for populations designed as Pa2 and Pa3, allowing their differentiation. Thus, the HRM protocol developed here enables a rapid, very sensitive and low-cost screening assay for SNPs identification in mtCOII of G. pallida pathotypes. In effect, it might also be a helpful molecular tool in pathotype differentiation. However, further verification of the correlation of the occurrence of single nucleotide mutations in mtCOII in particular pathotypes should be carried out on a much larger number of samples of G. pallida, to determine if these mutations are characteristic only for this pathotype.
Go to article

Bibliography


Bakker J., Bouwman-Smits L., Gommers F.J. 1992. Genetic relationships betacceween Globodera pallida pathotypes in Europe assessed by using two dimensional gel electrophoresis of proteins. Fundamental and Applied Nematology 15: 481–490.
Bates J.A., Taylor E.J.A., Gans P.T., Thomas J.E. 2002. Determination of relative proportions of Globodera species in mixed populations of potato cyst nematodes using PCR product melting peak analysis. Molecular Plant Pathology 3 (3): 153–161. DOI: https://doi.org/10.1046/j.1364-3703.2002.00107.x
Bulman S.R., Marshall J.W. 1997. Differentiation of Australa- sian potato cyst nematode (PCN) populations using the polymerase chain reaction (PCR). New Zealand Journal of Crop and Horticultural Science 25 (2): 123–129.
Burrows P.R., Boffey S.A. 1986. A technique for the extraction and restriction endonuclease digestion of total DNA from Globodera rostochiensis and Globodera pallida second stage juveniles. Revue de Nematologie 9 (2): 199–200.
EPPO. 2017. 7/40 (4) Globodera rostochiensis and Globodera pallida. EPPO Bulletin 47: 174–197.
Folkertsma R.T., der Voort J., van Gent-Pelzer M.P.E., De Groot K.E., van Den Bos W.J., Schots A., Bakker J., Gommers F.J. 1994. Inter-and intraspecific variation between populations of Globodera rostochiensis and G. pallida revealed by random amplified polymorphic DNA. Phytopathology 84 (8): 807–811.
Fox P.C., Atkinson H.J. 1984. Isoelectric focusing of general protein and specific enzymes from pathotypes of Globodera rostochiensis and G. pallida. Parasitology 88 (1): 131–139. DOI: https://doi.org/10.1017/S0031182000054408
Hinch J.M., Alberdi F., Smith S.C., Woodward J.R., Evans K. et al. 1998. Discrimination of European and Australian Globodera rostochiensis and G. pallida pathotypes by high performance capillary electrophoresis. Fundamental and Applied Nematology 21 (2): 123–128.
Hoolahan A.H., Blok V.C., Gibson T., Dowton M. 2012. A comparison of three molecular markers for the identification of populations of Globodera pallida. Journal of Nematology 44 (1): 7.
Kort J., Ross H., Rumpenhorst H.J., Stone A.R. 1977. An international scheme for identifying and classifying pathotypes of potato cyst-nematodes Globodera rostochiensis and G. pallida. Nematologica 23 (3): 333–339.
Madani M., Subbotin S.A., Moens M. 2005. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using real-time PCR with SYBR green I dye. Molecular and Cellular Probes 19 (2): 81–86.
Nakhla M.K., Owens K.J., Li W., Wei G., Skantar A.M., Levy L. 2010. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes. Plant Disease 94 (8): 959–965.
Nowaczyk K., Dobosz R., Budziszewska M., Kamasa J., Obrępalska-Stęplowska A. 2011. Analysis of diversity of golden potato cyst nematode (Globodera rostochiensis) populations from Poland using molecular approaches. Journal of Phytopathology 159 (11–12): 759–766.
Nowaczyk K., Dobosz R., Kornobis S., Obrepalska-Steplowska A. 2008. TaqMan REAL-Time PCR-based approach for differentiation between Globodera rostochiensis (golden nematode) and Globodera artemisiae species. Parasitology Research 103 (3): 577–581.
Phillips M.S., Trudgill D.L. 1983. Variations in the ability of Globodera pallida to produce females on potato clones bred from Solanum vernei or S. tuberosum ssp. andigena CPC 2802. Nematologica 29 (2): 217–226.
Phillips M.S., Trudgill D.L. 1998. Variation of virulence, in terms of quantitative reproduction of Globodera pallida populations, from Europe and South America, in relation to resistance from Solanum vernei and S. tuberosum ssp. andigena CPC 2802. Nematologica 44 (4): 409–423.
Saenz M.C., De Scurrah M.M. 1977. Races of the potato cyst nematode in the Andean region and a new system of classification. Nematologica 23 (3): 340–349.
Schnick D., Rumpenhorst H.J., Burgermeister W. 1990. Differentiation of closely related Globodera pallida (Stone) populations by means of DNA restriction fragment length polymorphisms (RFLPs). Journal of Phytopathology 130 (2): 127–136.
Sedlak P., Melounova M., Skupinova S., Vejl P., Domkarova J. 2004. Study of European and Czech populations of potato cyst nematodes (Globodera rostochiensis and G. pallida) by RAPD method. Plant Soil and Environment 50 (2): 70–74.
Subbotin S.A., Franco J., Knoetze R., Roubtsova T.V., Bostock R.M., Del Prado Vera I.C. 2020. DNA barcoding, phylogeny and phylogeography of the cyst nematode species from the genus Globodera (Tylenchida: Heteroderidae). Nematology 22 (3): 269–297.
Thiery M., Fouville D., Mugniery D. 1997. Intra-and interspecific variability in Globodera, parasites of Solanaceous plants, revealed by Random Amplified Polymorphic DNA (RAPD) and correlation with biological features. Fundamental and Applied Nematology 20 (5): 495–504.
Vejl P., Skupinova S., Sedlak P., Domkarova J. 2002. Identification of PCN species (Globodera rostochiensis, G. pallida) by using of ITS-1 region’s polymorphism. Rostlinna Vyroba 48 (11): 486–489.
Zouhar M., Ryšanek P., Kočova M. 2000. Detection and differentiation of the potato cyst nematodes Globodera rostochiensis and Globodera pallida by PCR. Plant Protection Science 36 (3): 81–84.
Go to article

Authors and Affiliations

Marta Budziszewska
1
ORCID: ORCID

  1. Department of Molecular Biology and Biotechnology, Institute of Plant Protection – National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Meloidogyne arenaria belongs to root-knot nematodes (RKNs) which constitute a group of highly polyphagous nematodes causing serious damages to many crop varieties. Maize ( Zea mays) is one of its main hosts. During plant response to RKN infection, many mechanisms are involved. Pathogenesis-related proteins (PRs), which present many functions and enzymatic activities, such as ribonucleases (RNases), antioxidative enzymes, or proteases are involved in these processes. The aim of this study was to describe changes in peroxidase and RNase activities induced in Z. mays during its response to M. arenaria infection. Moreover, proteins potentially responsible for peroxidase activity were indicated. RNase and peroxidase activities were tested on proteins extracted from roots of healthy plants, M. arenaria infected plants, and healthy plants mixed with M. arenaria juveniles, in native polyacrylamide (PAA) gels. Samples were collected from two varieties of maize at four time points. A selected fraction showing peroxidase activity was excised from the gel and analyzed using mass spectrometry (MS) to determine protein factors responsible for enzymatic activity. As a result, the analyzed varieties showed slight differences in their RNase and peroxidase activities. Higher activity was observed in the Tasty Sweet variety than in the Waza variety. There were no significant differences between healthy and infected plants in RNase activities at all time points. This was in contrast to peroxidase activity, which was the highest in M. arenaria-infected plants 15 days after inoculation. On the basis of protein identification in excised gel fractions using MS it can be assumed that mainly peroxidase 12 is responsible for the observed peroxidase activity. Moreover, peroxidase activity may be presented by glutathione-S-transferase as well.
Go to article

Bibliography


Bajaj K., Singh P., Mahajan R. 1985. Changes induced by Meloidogyne incognita in superoxide dismutase, peroxidase and polyphenol oxidase activity in tomato roots. Biochemie und Physiologie der Pflanzen 180: 543−546. DOI: https://doi.org/10.1016/S0015-3796(85)80102-5
Bariola P.A., Green P.J. 1997. Plant ribonucleases. p. 163−190. In: "Ribonucleases: Structures and Functions” (G. D’Alessio, J.F. Riordan, eds). Academic Press, USA. DOI: https://doi. org/10.1016/B978-012588945-2/50006-6
Bartling D., Radzio R., Steiner U., Weiler E.W. 1993. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry 216: 579−586. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18177.x
Blank A., Sugiyama R., Dekker C.A. 1982. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Analytical Biochemistry 120: 267−275. DOI: https://doi.org/10.1016/0003-2697-(82)90347-5
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248−254. DOI: https://doi.org/10.1016/0003-2697-(76)90527-3
Christensen J.H., Bauw G., Welinder K.G., Van Montagu M., Boerjan W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology 118: 125−135. DOI: https://doi.org/10.1104/ pp.118.1.125
Edreva A. 2005. Pathogenesis-related proteins: research progress in the last 15 years. General and Applied Plant Physiology 31: 105−124.
Eisenback J.D., Triantaphyllou H.H. 1991. Root-knot nematodes: Meloidogyne species and races. p. 191−274. In: "Manual of Agricultural Nematology" (W.R. Nickle, ed.). CRC Press, USA. DOI: https://doi.org/10.1201/9781003066576
Elling A.A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103: 1092−1102. DOI: https://doi.org/10.1094/PHYTO-01-13-0019-RVW
Filipenko E., Kochetov A., Kanayama Y., Malinovsky V., Shumny V. 2013. PR-proteins with ribonuclease activity and plant resistance against pathogenic fungi. Russian Journal of Genetics: Applied Research 3: 474−480. DOI: https://doi.org/10.1134/S2079059713060026
Gheysen G., Fenoll C. 2002. Gene expression in nematode feeding sites. Annual Review of Phytopathology 40: 191−219. DOI: https://doi.org/10.1146/annurev.phyto.40.121201.093719
Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. 2001. A large family of class III plant peroxidases. Plant and Cell Physiology 42: 462−468. DOI: https://doi.org/10.1093/pcp/ pce061
Holbein J., Grundler F.M., Siddique S. 2016. Plant basal resistance to nematodes: an update. Journal of Experimental Botany 67: 2049−2061. DOI: https://doi.org/10.1093/jxb/ erw005
Hussey R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028.
Jain D., Khurana J.P. 2018. Role of pathogenesis-related (PR) proteins in plant defense mechanism. p. 265−281. In: "Molecular Aspects of Plant-Pathogen Interaction." (A. Singh, I.K. Singh, eds.). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7371-7
Kyndt T., Nahar K., Haegeman A., De Vleesschauwer D., Höfte M., Gheysen G. 2012. Comparing systemic defencerelated gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology 14: 73−82. DOI: https://doi.org/10.1111/j.1438-8677.2011.00524.x
Mahantheshwara B., Nayak D., Patra M.K. 2019. Protein estimation through biochemical analysis in resistant and susceptible cultivars of cowpea against infection by root-knot nematode, Meloidogyne incognita. Journal of Entomology and Zoology Studies 7 (4): 1191−1193.
MlÝčkovß K., Luhovß L., Lebeda A., Mieslerovß B., Peč P. 2004. Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiology and Biochemistry 42: 753−761. DOI: https://doi.org/10.1016/j.plaphy.2004.07.007
Mohanty K., Ganguly A., Dasgupta D. 1986. Development of peroxidase (EC 1.11. 1.7) activities in susceptible and resistant cultivars of cowpea inoculated with the root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology 16: 252−256.
Mohsenzadeh S., Esmaeili M., Moosavi F., Shahrtash M., Saffari B., Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. African Journal of Biotechnology 10: 8160−8165. DOI: https://doi.org/10.5897/AJB11.1024
Przybylska A., Kornobis F., Obrępalska-Stęplowska A. 2018. Analysis of defense gene expression changes in susceptible and tolerant cultivars of maize (Zea mays) upon Meloidogyne arenaria infection. Physiological and Molecular Plant Pathology 103: 78−83. DOI: https://doi.org/10.1016/j.pmpp.2018.05.005
Przybylska A., Obrępalska-Stęplowska A. 2020. Plant defense responses in monocotyledonous and dicotyledonous host plants during root-knot nematode infection. Plant and Soil 451: 239–260. DOI: https://doi.org/10.1007/s11104-020-04533-0
Siddiqui Z., Husain S. 1992. Response of twenty chickpea cultivars to Meloidogyne incognita race 3. Nematologia Mediterranea 20: 33−36.
Singh N.K., Paz E., Kutsher Y., Reuveni M., Lers A. 2020. Tomato T2 ribonuclease LE is involved in the response to pathogens. Molecular Plant Pathology 21: 895−906. DOI: https:// doi.org/10.1111/mpp.12928
Veronico P., Paciolla C., Pomar F., De Leonardis S., García- -Ulloa A., Melillo M.T. 2018. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. Journal of Plant Physiology 230: 40−50. DOI: https://doi.org/10.1016/j.jplph.2018.07.013
Go to article

Authors and Affiliations

Arnika Przybylska
1
ORCID: ORCID

  1. Department of Molecular Biology and Biotechnology, Institute of Plant Protection − National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Pepper yellow leaf curl Thailand virus (PepYLCTHV) causes leaf curl disease in chili production regions of the tropics and subtropics. Information on PepYLCTHV disease severity and resistance in chili pepper is still limited in Thailand. This study reports PepYLCTHV disease severity through graft inoculation and selection of single resistant plants for use in a chili breeding program. Twenty-one chili genotypes consisting of the local cultivar (5) collected from Thailand, breeding lines (9) developed at Khon Kaen University (KKU), Thailand and improved lines (7) obtained from the World Vegetable Center, Taiwan were used in this study. Forty-five-day-old seedlings of all the genotypes were graft inoculated with PepYLCTHV in a randomized complete block design (RCBD) with three replications and 10 plants per replication and kept in a plastic net house. Disease symptoms were scored at 20, 27, 34, 41 48, and 55 days after graft/inoculation (DAI). Disease severity was visually recorded using 0−5 scores. Results showed that the disease severity of 21 chili genotypes significantly differed at 48 days after grafting. High resistance and stability were shown by 9853-123 genotypes. Two genotypes, PSP11-7 and PSP11-10-1, showed resistant reaction with disease severity scores of 1.9 and 1.8, respectively. However, among 21 chili genotypes or 630 grafted plants, 302 plants were successfully grafted inoculated plants. Therefore, from the results of this work, highly resistant plants (69 single plants) can be selected, selfed and advanced for breeding.
Go to article

Bibliography


Anaya-López J.L., Torres-Pacheco I., González-Chavira M., Garzon-Tiznado J.A., Pons-Hernandez J.L. 2003. Resistance to geminivirus mixed infections in mexican wild peppers. Journal American Society Horticultural Science 38 (2): 251–255. DOI: https://doi.org/10.21273/HORTSCI.38.2.251
Barchenger D.W., Jeeatid N., Lin S.W., Wang Y.W., Lin T.H., Chan Y.L., Kenyon L. 2019. A novel source of resistance to Pepper yellow leaf curl Thailand virus (PepYLCThV) (Begomovirus) in chile pepper. Journal American Society Horticultural Science 54 (12): 2146−2149. DOI: https://doi.org/10.21273/HORTSCI14484-19
Chiemsombat P., Srikamphung B., Yule S., Srinivasan R. 2018. Begomoviruses associated to pepper yellow Leaf curl disease in Thialand. Journal of Agricultural Research 3 (7): 000183. Food and Agriculture Organization. 2017. Agricultural Production: Primary crops. Available on: http://apps.fao.org. [Accessed: 25 January 2020]
Kumar R., Rai N., Kakpale N. 1999. Field reaction of some chilli genotypes for leaf curl virus in Chhattisgarh region of India. The Orissa Journal of Horticulture 27: 100−102. DOI: https://doi.org/10.18782/2320-7051.5471
Kumar S., Kumar S., Singh M., Singh A.K., Rai M. 2006. Identification of host plant resistant to pepper leaf curl virus in chilli (Capsicum species). Scientia Horticulturae 110: 359−361. DOI: https://doi.org/10.1016/j.scienta.2006.07.030
Kumar S., Kumar R., Kumar S., Singh A.K., Singh M., Rai A.B., Rai A.B. 2011. Incidence of leaf curl disease on capsicum germplasm under field conditions. Indian Journal of Agricultural Sciences 81: 187−189.
Mishra M.D., Raychaudhuri S.P., Jha A. 1963. Virus causing leaf curl of chilli (Capsicum annuum L.). International Journal of Microbiology 3: 73–76.
Rai V.P.R., Kumar S., Singh P., Kumar S., Singh M., Rai M. 2014. Monogenic recessive resistant to pepper by leaf curl virus in an interspecific cross of Capsicum. Scientia Horticulturae 172: 34−38. DOI: https://doi.org/10.1016/j.scienta.2014.03.039
Sakata J.J., Shibuya Y., Sharma P., Ikegami M. 2008. Strains of a new bipartite begomovirus, Pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-veindiseased ageratum in Indonesia. Archives of Virology 153 (12): 2307−2313. DOI: https://doi.org/10.1007/s00705-008-0254-z
Sangsotkaew Y., Jeeartid N., Siri N., Thummabenjapone P., Chatchawankanphanich O., Phuangrat B., Techawongstien S. 2018. Phenotypic responses of putative resistance chili cultivars infected by PepLCV with viruliferous whitefly transmission. Acta Horticulturae 67. DOI: https://doi.org/10.18690/978-961-286-045-5.54.
Shih S.L., Tsai W. S., Lee L.M., Wang J.T., Green S.K., Kenyon L. 2010. First report of tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Disease 94 (5): 637. DOI: https://doi.org/10.1094/PDIS-94-5-0637B
Srivastava A., Mangal M., Saritha R.K., Kalia P. 2017. Screening of chilli pepper (Capsicum spp.) lines for resistance to the Begomovirus causing chili leaf curl disease in India. Journal of Crop Protection 100: 177–185. DOI: https://doi.org/10.1016/j.cropro.2017.06.015
Tsai W., Shih S., Green S., Rauf A., Hidayat S., Jan F.J. 2006. Molecular characterization of Pepper yellow leaf curl Indonesia virus in leaf curl and yellowing diseased tomato and pepper in Indonesia. Plant Disease 90 (2): 247−247. DOI: https://doi.org/10.1094/PD-90-0247B
Tsai W.S., Shih S.L., Kenyon L., Green S.K., Jan F.J. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathology 60: 787−799. DOI: https://doi.org/10.1111/j.1365-3059.2011.02424.x
Verlaan M.G., Hutton S.F., Ibrahem R.M., Kormelink R., Visser R.G.F., Scott J.W., Edwards J.D., Bai Y. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA–Dependent RNA polymerases. PLoS Genetics 9 (3): e1003399. DOI: https://doi.org/10.1371/journal.pgen.1003399
Zehra S.B., Ahmad A., Sharma A., Sofi S., Lateef A., Bashir Z., Husain M., Rathore J.P. 2017. Chilli leaf curl virus an emerging threat to chilli in India. Indian Journal of Pure and Applied Biosciences 5 (5): 404−414.
Go to article

Authors and Affiliations

Patcharaporn Suwor
1
ORCID: ORCID
Tawatchai Masirayanan
1
Hathairat Khingkumpungk
1
Wen Shi Tsai
2
Kanjana Saetiew
1
Suchila Techawongstien
3
Sanjeet Kumar
4
Somsak Kramchote
1

  1. Plant Production of Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
  2. Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi, Taiwan
  3. Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
  4. Pepper Breeding Section, Plant Geneticist and Breeder (Independent), India
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt is one of the most severe diseases of chickpea in the major growing areas of chickpea production in western Iran. To identify Fusarium spp. associated with chickpea plants showing symptoms of yellowing and wilting, 58 chickpea fields were sampled and 106 Fusarium spp. isolates were obtained from six different regions of Kermanshah Province in western Iran during 2018 and 2019 crop seasons. Thirty-six isolates obtained from stem or lower stem tissues were selected for pathogenicity, morphological and molecular identification using polymease chain reaction species-specific primers. Eleven isolates of Fusarium spp. were selected for sequence analyzing the translation elongation factor 1-α (EF-1α), and β-tubulin gene regions. Phylogenetic analysis of concatenated DNA sequences of both gene regions of these isolates plus other taxa revealed that 11 Fusarium spp. isolates were clustered into five distinct groups. Based on the results of morphological and molecular identification five Fusarium species were identified. Pathogenicity tests showed that F. oxysporum f. sp. ciceris and F. redolens isolates had the highest disease incidence on JG–62 and Bivenij cvs. and F. hostae, F. equiseti and F. acuminatum isolates had the lowest disease incidence. No sign of vascular discoloration was observed in longitudinal or transverse sections of chickpea plants affected by F. redolens isolates. Instead, brown to black necrosis was observed on the surface of tap-roots and crowns. No correlation was found between geographical distribution and pathogenicity of isolates. This is the first report of morphological, molecular and pathogenicity characteristics of F. redolens and F. hostae isolated from chickpea stems or lower stems in Iran.
Go to article

Bibliography

polymorphic DNA (RAPD). European Journal of Plant Pathology 107: 237–248. DOI: https://doi.org/10.1023/A:1011294204630
Jendoubi W., Bouhadida M., Boukteb A., Beji M., Kharrat M. 2017. Fusarium wilt affecting chickpea crop. Agriculture 7 (23): 1–16. DOI: https://doi.org/10.3390/agriculture7030023
Leslie J.F., Zeller K.A., Summerell B.A. 2001. Icebergs and species in populations of Fusarium. Physiological and Molecular Plant Pathology 59: 107–117. DOI: 10.1006/pmpp.2001.035
Leslie J.F., Summerell B.A. 2006. The Fusarium laboratory manual. Ames, Iowa: Blackwell Publishing, USA, 388 pp.
Manuchehri A., Mesri A. 1966. Fusarium wilt of chickpea. Iranian Journal of Plant Pathology 3 (3): 1–11.
Mishra P.K., Fox R.T.V., Culham A. 2003. Development of a PCR based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218 (2): 329–332. DOI: https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
Mohammadi H., Banihashemi Z. 2005. Distribution, pathogenicity and survival of Fusarium spp. the causal agents of chickpea wilt and root rot in the Fars province of Iran. Iranian Journal of Plant Pathology 41 (4): 687–708.
Navas-Cortes J.A., Alcala-Jimenez A.R., Hau B., Jimenez- -Diaz R.M. 2000. Influence of inoculum density of race 0 and 5 of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt in chickpea cultivars. European Journal of Plant Pathology 106: 135–146. DOI: https://doi.org/10.1023/A:1008727815927
Nene Y.L., Haware M.P. 1980. Screening chickpea for resistance to wilt. Plant Disease 64: 379–380.
Nelson P.E., Toussoun T.A., Marasas W.F.O. 1983. Fusarium Species: An Illustrated Manual for Identification. Pennyslvania State University Press, University Park, USA, 193 pp.
Nourollahi K.H., Aliaran A., Younesi H. 2017. Genetic diversity of Fusarium oxysporum f. sp. ciceris isolates causal agent of chickpea wilt in Kermanshah province using microsatellite markers. Novel Genetic 11 (4): 605–615.
O’Donnell K., Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic. Molecular Phylogenetics and Evolution 7 (1): 103–116. DOI: https://doi.org/10.1006/mpev.1996.0376
O’Donnell K., Cigelnik E., Nirenberg H.I. 1998. Molecular systematic and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90 (3): 465–493. DOI: https://doi.org/10.1080/00275514.1998.12026933
Saeedi Sh., Jamali S. 2021. Molecular characterization and distribution of Fusarium isolates from uncultivated soils and chickpea plants in Iran with special reference to Fusarium redolens. Journal of Plant Pathology 103 (4): 167–183. DOI: https://doi.org/10.1007/s42161-020-00698-w
Sharma K.D., Muehlbauer F.J. 2007. Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157 (1–2): 1–14. DOI: https://doi.org/10.1007/s10681-007-9401-y
Shokri J., Javan-Nikkhah M., Rezaei S., Zamanizadeh H.R., Nourollahi Kh. 2020. Molecular identification of the races of Fusarium oxysporum f. sp. ciceris, causal agent of chickpea wilt in western and north western provinces of Iran. Applied Entomology and Phytopathology 88 (1): 11–12. DOI: https://doi.org/10.22092/jaep.2020.126209.1281
Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., Fisher M.C. 2001. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31 (1): 21–32. DOI: https://doi.org/10.1006/fgbi.2000.1228
Trapero-Casas A., Jimenez-Diaz R.M. 1985. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75 (10): 1146–1151. DOI: https://doi.org/10.1094/ Phyto-75-1146
Wang J., Zheng C. 2012. Characterization of a newly discovered Beauveria bassiana isolate to Franklimiella occidentalis Perganda, a non-native invasive species in China. Microbiology Research 167 (2): 116–120. DOI: https://doi.org/10.1016/j.micres.2011.05.002
Younesi H. 2004. Identification of the physiologic races of Fusarium oxysporum f. sp. ciceris in some west provinces of Iran. In: Proceedings of the 16th Iranian Plant Protection Congress, Tabriz, Iran (in Persian with English summary)
Younesi H., Chehri Kh., Sheikholeslami M., Safaee D., Naseri B. 2019. Effects of sowing date and depth on Fusarium wilt development in chickpea cultivars. Journal of Plant Pathology 102 (2): 343–350. DOI: https//doi/10.1007/s42161-019-00423-2
Zokaee S., Falahati Rastegar M., Jafar Poor B., Bagheri A., Jahanbakhsh Mashhadi V. 2012. Genetic diversity determination of Fusarium oxysporum f. sp. ciceris the causal agent of wilting and chlorosis in chickpea by using RAPD and PCR- -RFLP techniques in Razavi and northern Khorasan provinces. Iranian Journal of Pulses Research 3 (2): 7–16. DOI: https://doi.org/10.22067/ijpr.v1391i2.24531
Go to article

Authors and Affiliations

Hassan Younesi
1
ORCID: ORCID
Mostafa Darvishnia
1
ORCID: ORCID
Eidi Bazgir
1
ORCID: ORCID
Khosrow Chehri
2
ORCID: ORCID

  1. Department of Plant Protection, College of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
  2. Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
Download PDF Download RIS Download Bibtex

Abstract

In Egypt, faba bean plants are severely damaged by charcoal rot, caused by Macrophomina phaseolina and root-knot, caused by Meloidogyne incognita. The current study was aimed to control these diseases using silver nanoparticles that were biologically synthesized from Moringa oleifera leaf extract. In this work, silver nanoparticles (AgNPs) were prepared with trisodium citrate as a reducing agent to produce chemo-AgNPs and, using an environmentally eco-friendly method, an aqueous extract of M. oleifera leaves under visible light radiation to produce bio-AgNPs. The obtained colloidal solutions of AgNPs were identified by UV-Visible (UV-Vis) spectral analysis and Transmission Electron Microscopy (TEM) analyses. The antifungal and anti-nematode activities of chemo- and bio-AgNPs as well as an aqueous extract of M. oleifera leaves were checked in vitro against M. phaseolina and M. incognita. The obtained results showed that bio-AgNPs were more effective than chemo-AgNPs. Under greenhouse conditions, bio-AgNPs showed a significant reduction in the incidence of damping-off and charcoal rot caused by M. phaseolina. This treatment also reduced the number of juveniles in the soil, the number of galls and the number of egg-masses of M. incognita in comparison to plants treated with nematodes. Moreover, the protein profile using SDS-PAGE was performed for determining the effect of the studied treatments on the expression of some genes compared with untreated plants the alteration in gene expression led to the formation of different proteins and the loss of others. The proteins which were formed or lost caused a significant variation in all growth and physiological parameters such as photosynthetic pigments, proline content and antioxidant enzymes of faba bean plants.
Go to article

Bibliography


Abd-Elgawad M.M.M., Askary T.H. 2018. Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian Journal of Biological Pest Control 28: 74. DOI: https://doi.org/10.1186/s41938-018-0080-x
Abdel-Monaim M.F. 2013. Improvement of biocontol of damping- off and root-rot/wilt of faba bean by salicylic acid and hydrogen peroxide. Mycobiology 41: 47−55. DOI: https://doi.org/10.5941/MYCO.2013.41.1.47
Abdelsalam A.Z.E., Hassan H.Z., El-Domyati M., Eweda M.A., Bahieldin A., Ibrahim S.A. 1993. Comparative mutagenic effects of some compounds using different eukaryotic systems. Egyptian Journal of Genetics and Cytology 22: 129−153.
Al-Huqail A.A., Hatata M.M., AL-Huqail A.A., Ibrahim M.M. 2018. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi Journal of Biological Sciences 25: 313−319. DOI: https://doi.org/10.1016/j.sjbs.2017.08.013
Baird R.E., Watson C.E., Scruggs M. 2003. Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Disease 87: 563−566. DOI: https://doi.org/10.1094/PDIS.2003.87.5.563
Barker T.R. 1985. Nematode extraction and bioassays. p. 19−35. In: “An Advanced Treatise on Meloidogyne”. Vol. II. (T.R. Barker, C.C. Carter, J.N. Sasser, eds.). North Carolina University, Graphics, Raleigh, N.C.
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205−207. DOI: https://doi.org/10.1007/BF00018060
Cayrol J.C., Djian C., Pijarowski L. 1989. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev Nematol 12: 331–336.
Dietz K.J., Herth S. 2012. Plant nanotoxicology. Trends in Plant Science 16: 582−589. DOI: https://doi.org/10.1016/j.tplants.2011.08.003
El-Nagdi W.M.A., Youssef M.M.A. 2004. Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. Journal of Pest Science 77: 75−78. DOI: https://doi.org/10.1007/s10340-003-0029-y
El-Refai A.A., Ghoniem G.A., El-Khateeb A.Y., Hassaan M.M. 2018. Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry 8: 71−81. DOI: https://doi.org/10.1007/s40097-018-0255-8
Elshahawy I., Abouelnasr H.M., Lashin S.M., Darwesh O.M. 2018. First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. Journal of Plant Protection Research 58: 137−151. DOI: https://doi.org/10.24425/122929
Fouad M., Mohammed N., Aladdin H., Ahmed A., Xuxiao Z., Shiying B., Tao Y. 2013. Faba bean. p. 113−136. In: “Genetic and Genomic Resources of Grain Legume Improvement” (M. Singh, H.D. Upadhyaya, I.S. Bisht, eds.). Elsevier. DOI: https://doi.org/10.1016/C2012-0-00217-7
Foyer C.H., Noctor G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment 28: 1056−1071. DOI: https://doi.org/10.1111/j.1365-3040.2005.01327.x
Feizi H., Amirmoradi S., Abdollahi F., Pour S.J. 2013. Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Research & Review in Biology 3: 814−824.
Giraldo J.P., Landry M.P., Faltermeier S.M., McNicholas T.P., Iverson N.M., Boghossian A.A., Reuel N.F., Hilmer A.J., Sen F., Brew J.A., Strano M.S. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials 13 (4): 400−408. DOI: https://doi.org/10.1038/nmat3890
Hamed S.M., Hagag E.S., Abd El-Raouf N. 2019. Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef University Journal of Basic and Applied Sciences 8: 9. DOI: https://doi.org/10.1186/s43088-019-0010-3
Hassan H.Z., Haliem A.S., Abd El-Hady E.A. 2002. Effect of pre and post treatments with ferty green foliar fertilizer on mutagenic potentiality of gokilaht insecicide. Egyptian Journal of Biotechnology 11: 282−304.
Hatami M., Ghorbanpour M. 2013. Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. Journal of Horticultural Research 21: 15−20. DOI: https://doi.org/10.2478/johr-2013-0003
Hegaba A.S.A., Fayed M.T.B., Hamada M.M.A., Abdrabbo M.A.A. 2014. Productivity and irrigation requirements of faba-bean in North Delta of Egypt in relation to planting dates. Annals of Agricultural Sciences 59: 185−193. DOI: https://doi.org/10.1016/j.aoas.2014.11.004
Hussey R.S., Barker K.R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028. DOI: https://eurekamag.com/research/000/002/000002412.php
Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. 2012. Antibacterial properties of nanoparticles. Trends in Biotechnology 30: 499−511. DOI: https://doi.org/10.1016/j.tibtech.2012.06.004
Hayat Sh., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. 2012. Role of proline under changing environments. Plant Signaling & Behavior 7: 1456−1466. DOI: https://doi.org/10.4161/psb.21949
Iqbal M., Raja N.I., Mashwani Z.U.R., Hussain M., Ejaz M., Yasmeen F. 2019. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science 43: 387−395. DOI: https://doi.org/10.1007/s40995-017-0417-4.
Javed R., Zia M., Naz S., Aisid S.O., ul Ain N., Ao Q. 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology 18: 172. DOI: https://doi.org/10.1186/s12951-020-00704-4
Jasim B., Roshmi T., Jyothis M., Radhakrishnan E.K. 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal 25 (3): 443−447. DOI: https://doi.org/10.1016/j.jsps.2016.09.012
Jeschke P. 2016. Progress of modern agricultural chemistry and future prospects. Pest Management Science 72: 433−455. DOI: https://doi.org/10.1002/ps.4190
Jurkow R., Pokluda R., Sękara A., Kalisz A. 2020. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biology 20: 290. DOI: https://doi.org/10.1186/s12870-020-02490-5
Karthick S., Chitrakala K. 2011. Ecotoxicological effect of Lecani cilium Lecanii (Ascomycota: Hypocereales) based silver nanoparticles on growth parameters of economically important plants. Journal of Biopesticides 4: 97−101.
Khiew P., Chiu W., Tan T., Radiman S., Abd-Shukor R., Chia C.H. 2011. Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material. p. 189−219. In: “Palm Oil Nutr Uses Impacts”. Nova Science.
Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., Cho M.H. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 3: 95−101. DOI: https://doi.org/10.1016/j. nano.2006.12.001
Kumari M., Pandey S., Bhattacharya A., Mishra A., Nautiyal C.S. 2017. Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiology and Biochemistry 121: 216−225. DOI: https://doi.org/10.1016/j.plaphy.2017.11.004
Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680−685. DOI: https://doi.org/10.1038/227680a0
Marklund S., Marklund G. 1974. Involvement of thesuperoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469−474. DOI: http://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Mehta P.C.M., Srivastava R., Arora S., Sharma A.K. 2016. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6: 254. DOI: https://doi.org/10.1007/s13205-016-0567-7
Min J.S., Kim K.S., Kim S.W., Jung J.H., Lamsal K., Kim S.B., Jung M., Lee Y.S. 2009. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal 25: 376−380. DOI: https://doi.org/10.5423/PPJ.2009.25.4.376
Mohamed A.S.H., Qayyum M.F., Abdel-Hadi A.M., Rehman R.A., Ali S., Rizwan M. 2017. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science 63: 1476−3567. DOI: https://doi.org/10.1080/0 3650340.2017.1300256
Monreal J.A., Jimenez E.T., Remesal E., Morillo-Velarde R., Garcia- Maurino S., Echevarria C. 2007. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany 60: 257−267. DOI: https://doi.org/10.1016/j.envexpbot.2006.11.002
Mukherjee S.P., Choudhuri M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiology 58: 166−170. DOI: https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
Muller H.P., Gottschelk W. 1973. Quantitative and qualitative situation of Pisum sativum. p. 235−253. In: “Nuclear Techniques for Seed Protein Improvement”. International Atomic Energy Agency, Vienna, 430 pp.
Musante C., White J.C. 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology 27 (9): 510−517. DOI: http://doi.org/10.1002/tox.20667
Narayanan K.B., Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science 156: 1−13. DOI: https://doi.org/10.1016/j.cis.2010.02.001
Nazir K., Mukhtar T., Javed H. 2019. In vitro effectiveness of silver nanoparticles against root-knot nematode (Meloidogyne incognita). Pakistan Journal of Zoology 51: 2077−2083. DOI: http://dx.doi.org/10.17582/journal.pjz/2019.51.6.2077.2083
Osman S.A., Salama D.M., Abd El-Aziz M.E., Shaaban E.A., Abd Elwahed M.S. 2020. The influence of MoO3-NPs on agro-morphological criteria, genomic stability of DNA, biochemical assay, and production of common dry bean (Phaseolus vulgaris L.). Plant Physiology and Biochemistry 151: 77−87. DOI: https://doi.org/10.1016/j.plaphy.2020.03.009.
Pirtarighat S., Ghannadnia M., Baghshahi S. 2019. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry 9: 1−9. DOI: https://doi.org/10.1007/s40097-018-0291-4
Prasad T., Elumalai E. 2011. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine 1: 439−442. DOI: https://doi.org/10.1016/S2221-1691(11)60096-8
Salama H.M.H. 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology 3: 190−197. DOI: http://www.interesjournals.org/IRJOB
Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology 167: 2225−2233. DOI: https://doi.org/10.1007/s12010-012-9759-8
Sharon M., Choudhary A.K., Kumar R. 2010. Nanotechnology in agricultural diseases and food safety. The Journal of Phytology 2: 83−92.
Singleton L.L., Mihail J.D., Rush C.M. 1993. Methods for research on soilborne phytopathogenic fungi 85 (1): 140–141. DOI: http://doi.org/10.2307/3760494
Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8: e6875. DOI: https://doi.org/10.1371/journal.pone.0068752
Wrather J.A., Anderson T.R., Arsyad D.M., Tan Y., Ploper L.D., Puglia A.P. 2011. Soyabean disease loss estimates for the top 10 soybean producing countries. Canadian Journal of Plant Pathology 23: 115−121. DOI: https://doi.org/10.1094/PDIS.1997.81.1.107
Go to article

Authors and Affiliations

Yasser Mahmoud A. Mohamed
1
ORCID: ORCID
Samira A. Osman
2
Ibrahim E. Elshahawy
3
Gazeia M. Soliman
4
Aisha M.A. Ahmed
5

  1. Photochemistry Department, National Research Center, Dokki, Giza, Egypt
  2. Genetics and Cytology Department, National Research Center, Dokki, Giza, Egypt
  3. Plant Pathology Department, National Research Center, Dokki, Giza, Egypt
  4. Plant Pathology Department, Nematology Unit, National Research Center, Dokki, Giza, Egypt
  5. Botany Department, National Research Center, Dokki, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Sugar beet is a major sugar yielding crop in the states of Minnesota (MN) and North Dakota (USA). Sugar beet root samples collected from Moorhead, MN in September 2020 had typical rot symptoms along with whitish mycelia growth and blackish sclerotia on the external surface of the root. Pure, sterile cultures were obtained from infected roots. Sclerotinia sclerotiorum was identified based on morphological features and further confirmed molecularly by sequencing of the Internal Transcribed Spacers (ITS) region and matching homology with reported ITS of the fungus. Pathogenicity of S. sclerotiorum was confirmed through mycelial inoculation of seeds and roots under laboratory and greenhouse conditions. Inoculated seeds showed a range of symptoms that included pre- and post-emergence damping off, wilting, black discoloration of roots, constricted collar regions and stunted seedling growth. Under laboratory conditions, roots were artificially wounded using a cork borer and inoculated by mycelial plug. This resulted in noticeable root decay and growth of whitish, cottony mycelia and sclerotia externally. Transverse sections of the diseased root showed brown to black discoloration and rotting of internal tissue. Root inoculation of 4-week old sugar beet plants was achieved by depositing pathogen colonized barley grains near roots in the greenhouse, resulting in brown to black lesions and necrosis of root tissue when evaluated at 28 days post inoculation. The S. sclerotiorum was re-isolated from inoculated roots showing infection and identical pure isolates of the pathogen were recovered from field samples. These findings could be useful for sugar beet growers in Minnesota, allowing better management of this pathogen under field and storage conditions before its widespread future occurrence.
Go to article

Bibliography


Alexopoulos C.J., Mims C.W., Blackwell M. 1996. Introductory Mycology. 4th ed. John Wiley, New York, 880 pp. Abawi G.S., Grogan R.G. 1979. Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69: 899–904. DOI: http://dx.doi.org/10.1094/Phyto-69-899
Adams P.B., Ayers W.A. 1979. Ecology of Sclerotinia species. Phytopathology 69: 896–898. DOI: https://doi.org/10.1094/ Phyto-69-896
Bell A.A., Wheeler M.H. 1986. Biosynthesis and functions of fungal melanins. Annual Review of Phytopathology 24: 411–451. DOI: https://doi.org/10.1146/annurev.py.24.090186.002211
Berkeley G.H. 1994. Root-rots of certain non-cereal crops. Botanical Review 10 (2): 67−123. DOI: https://doi.org/10.1007/ BF02861087
Boland G.J., Hall R. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 16: 93−108. DOI: https://doi.org/10.1080/07060669409500766
Bolton M.V., Thomma B.P.H.J., Nelson B.D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7: 1−16. DOI: https://doi.org/10.1111/j.1364-3703.2005.00316.x.
Bradley C.A., Henson R.A., Porter P.M., LeGare D.G., del Rio L.E., Khot S.D. 2006. Response of canola cultivar to Sclerotinia sclerotiorum in controlled and field environments. Plant Disease 90: 215−219. DOI: https://doi.org/10.1094/PD-90-0215
Bradley C.A., Lamey H.A. 2005. Canola disease situation in North Dakota, U.S.A. p. 1993−2004. In: Proceedings of the 14th Australian Research Assembly on Brassicas, Port Lincoln, Australia, 3−7 October 2005.
Brown J.G., Butler K.D. 1936. Sclerotiniose of lettuce in Arizona. p. 475−506. Agriculture Experiment Station Bulletin 63, 506 pp. Available on: https://repository.arizona.edu/ handle/10150/199475 [Accessed: 8 December 2021]
Buttner G., Pfahler B., Marlander B. 2004. Greenhouse and field techniques for testing sugarbeet for resistance to Rhizoctonia root and crown rot. Plant Breeding 123: 158−166. DOI: https://doi.org/10.1046/j.1439-0523.2003.00967.x
Cook G.E., Steadman J.R., Boosalis M.G. 1975. Survival of Whetzelinia sclerotiorum and initial August 31, 1976 infection of dry edible beans. Phytopathology 65: 250−255. DOI: h ttps://doi.org/10.1094/Phyto-65-250
del Rio L.E., Martinson C.A., Yang X.B. 2002. Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Disease 86: 999−1004. DOI: https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS.2002.86.9.999
del Rio L.E., Venette J.R., Lamey H.A. 2004. Impact of white mold incidence on dry bean yield under nonirrigated conditions. Plant Disease 88: 1352−1356. DOI: https://apsjournals. apsnet.org/doi/pdf/10.1094/PDIS.2004.88.12.1352
del Rio L.E., Bradley C.A., Henson R.A., Endres G.J., Hanson B.K., McKay K., Halvorson M., Porter P.M., Le Gare D.G., Lamey H.A. 2007. Impact of Sclerotinia stem rot on yield of canola. Plant Disease 91: 191−194. DOI: https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-91-2-0191
Fernando W.G.D., Nakkeeran S., Zhang, Y., Savchuk, S. 2007. Biological control of Sclerotinia scleotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection 26: 100−107. DOI: https://doi.org/10.1016/j.cropro.2006.04.007
Huang H.C., Hoes J.A. 1980. Importance of plant spacing and sclerotial position to development of Sclerotinia wilt of sunflower. Plant Disease 64: 81−84. DOI: https://doi.org/10.1094/PD-64-81
Inglis G.D., Boland G.J. 1990. The microflora of bean and rapeseed petals and the influence of the microflora of bean petals on white mold. Canadian Journal of Plant Pathology 12: 129–134. DOI: https://doi.org/10.1080/07060669009501015
Jacobson B.J. 2006. Root rot diseases of sugar beet. International symposium on sugar beet protection. Proceedings for Natural Sciences 110: 9–19.
Khan M.F.R. 2017. Managing common root diseases of sugar beet. NDSU Sugar beet extension. Available on: https://www.ag.ndsu.edu/publications/crops/management-ofrhizoctonia- root-and-crown-rot-of-sugar-beets [Accessed: 10 December 2021]
Khan M.F.R., Bhuiyan M.Z.R., Chittem K., Shahoveisi F., Haque M.E., Liu Y., Hakk P., Solanki S., del Rio L.E., La- Plante G. 2020. First report of Sclerotinia sclerotiorum causing leaf blight in sugar beet (Beta vulgaris) in North Dakota, U.S.A. Plant Disease 104 (4): 1258−1258. DOI: https://doi.org/10.1094/PDIS-11-19-2304-PDN
Khan M.F.R. 2021. 2021 Sugar beet production guide. North Dakota State University Extension. Available on: https://www.ag.ndsu.edu/publications/crops/sugarbeet-production-guide [Accessed: 10 December 2021]
Kohn L.M. 1979. A monographic revision of the genus Sclerotinia. Mycotaxon 9 (2): 365–444.
Noor A., Khan M.F.R. 2014. Efficacy and safety of mixing azoxystrobin and starter fertilizers for controlling Rhizoctonia solani in sugar beet. Phytoparasitica 43: 51−55. DOI: https://doi.org/10.1007/s12600-014-0416-3
Peltier A.J., Bradley C.A., Chilvers M.I., Malvick D.K., Mueller D.S., Wise K.A., Esker P.D. 2012. Biology, yield loss and control of Sclerotinia stem rot of soybean. Journal of Integrated Pest Management 3 (2): 1–7. DOI: https://doi.org/10.1603/IPM11033
Purdy L.H. 1979. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69: 875−880. DOI: https://doi.org/10.1094/Phyto-69-875
Qin L., Fu Y., Xie J., Cheng J., Jiang D., Li G., Huang J. 2011. A nested-PCR method for rapid detection of Sclerotinia sclerotiorum on petals of oilseed rape (Brassica napus). Plant Pathology 60: 271−277. DOI: https://doi.org/10.1111/j.1365-3059.2010.02372.x
Sambrook J., Russell D. 2012. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000 pp.
Steadman J.R., Maier C.R., Schwartz H.F., Kerr E.D. 1975. Pollution of surface irrigation waters by plant pathogenic organisms. Water Resource Bulletin 11: 796−804. DOI: https://doi.org/10.1111/j.1752-1688.1975.tb00731.x.
Turkington T.K., Morrall R.A.A., Gugel R.K. 1993. Use of petal infestation to forecast Sclerotinia stem rot of canola: The influence of inoculums variation over the flowering period and canopy density. Phytopathology 83: 682−689. DOI: https://doi.org/10.1094/Phyto-83-682.
Underwood W., Misar C.G., Block C.C., Gulya T.J., Talukder Z.I., Hulke B.S., et al. 2020. A greenhouse method to evaluate sunflower quantitative resistance to basal stalk rot caused by Sclerotinia sclerotiorum. Plant Disease 105 (2). DOI: https://doi.org/10.1094/PDIS-08-19-1790-RE USDA. 2016. National Sclerotinia Research Initiative Strategic Plan for 2017 to 2021. 12 pp. Available on: https://www.ars.usda.gov/ARSUserFiles/30000000/WhiteMoldResearch/SIStrategic- PLan_%202017-2021_v1_0_Jan16.pdf [Accessed: 18 November 2021]
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315−322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, New York. DOI: http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Willetts H.J., Wong J.A. 1980. The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. The Botanical Review 46: 101–165. DOI: https://doi.org/10.1007/BF02860868.
Workneh, F., Yang X.B. 2000. Prevalence of Sclerotinia stem rot of soybeans in the north-central United States in relation to tillage, climate, and latitudinal positions. Phytopathology 90: 1375–1382. DOI: https://doi.org/10.1094/ PHYTO.2000.90.12.1375
Wu B.M., Subbarao KV. 2008. Effects of soil temperature, moisture and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Phytopathology 98: 1144–1152. DOI: https://doi.org/10.1094/PHYTO-98-10-1144
Go to article

Authors and Affiliations

Md. Ziaur Rahman Bhuiyan
1
ORCID: ORCID
Dilip K. Lakshman
2
ORCID: ORCID
Luis E. Del Rio Mendoza
1
ORCID: ORCID
Presley Mosher
3
ORCID: ORCID
Mohamed F.R. Khan
1 4
ORCID: ORCID

  1. Plant Pathology, North Dakota State University, Fargo, USA
  2. Sustainable Agricultural Systems Laboratory, USDA/ARS, Beltsville, MD, USA
  3. Plant Diagnostic Lab, North Dakota State University, Fargo, USA
  4. Plant Pathology, University of Minnesota, Fargo, USA
Download PDF Download RIS Download Bibtex

Abstract

Banana is the major fruit crop produced in Ethiopia. Since Cucumber mosaic virus (CMV) is one of the most devastating plant viruses infecting banana, the present study was undertaken to survey and identify CMV strains infecting banana plants in Ethiopia. Dot immune-binding assay (DIBA) and reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of CMV in all of the symptomatic samples tested. The results of sequence and phylogenetic analysis revealed that the isolate under study was a CMV isolate from the IB subgroup. Multiple sequence alignment revealed a three nucleotide sequence variation that could be used to distinguish CMV subgroups. Selection pressure analysis showed the CMV-RNA1 region undergoing positive selection pressure. Tajima`s test of neutrality revealed a positive value of 0.86468 indicating CMV population contraction. To the best of our knowledge, this is the first report and molecular characterization of CMV IB subgroup isolate infecting banana plants in Ethiopia.
Go to article

Bibliography


Basavaraj S., Rangaswamy K.T., Bhagyashree M. 2017. Molecular characterization of CMV infecting banana from Karnataka based on complete coat protein gene sequence. International Journal of Current Microbiology and Applied Sciences 6 (11): 3758–3763. DOI: https://doi.org/10.20546/ ijcmas.2017.611.440
Bujarski J.J. 2021. Bromoviruses (Bromoviridae). p. 260–267. “Encyclopedia of Virology” 4th ed. (D.H. Bamford, M. Zuckerman, eds.). Academic Press, Oxford. DOI: https://doi.org/10.1016/B978-0-12-809633-8.21563-X
Canto T., Palukaitis P. 2001. A Cucumber mosaic virus (CMV) RNA 1 transgene mediates suppression of the homologous viral RNA 1 constitutively and prevents CMV entry into the phloem. Journal of Virology 75 (19): 9114–9120. DOI: https://doi.org/10.1128/JVI.75.19.9114-9120.2001
Chou C.N., Chen C.E., Wu M.L., Su H.J., Yeh H.H. 2009. Biological and molecular characterization of Taiwanese isolates of Cucumber mosaic virus associated with banana mosaic disease. Journal of Phytopathology 157 (2): 85–93. DOI: https://doi.org/10.1111/j.1439-0434.2008.01455.x
Domingo E., Holland J.J. 1994. Mutation rates and rapid evolution of RNA viruses. p. 161–184. In: “The Evolutionary Biology of Viruses” (S.S. Morse, ed.). Raven Press, New York.
Doolittle S.P. 1916. A new infectious mosaic disease of cucumber. Phytopathology 6: 145–147.
Garcia-Arenal F., Palukaitis P. 2008. Cucumber mosaic virus. Desk encyclopedia of plant and fungal virology. p. 171–176. In: “Desk Encyclopedia of Plant and Fungal Virology” (B.W.J. Mahy, M.H.V. Van Regenmortel, eds.). Academic Press-Elsevier, Oxford, United Kingdom.
Garcia-Arenal F., Fraile A. 2011. Population dynamics and genetics of plant infection by viruses. p. 263–281. In: ”Recent Advances in Plant Virology” (C. Caranta, M.A. Aranda, M. Tepfer, J.J. Lopez-Moye, eds.). Caister Academic Press, Norfolk, United Kingdom.
Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17 (12): 4713–4730. DOI: https://doi.org/10.1093/nar/17.12.4713
Hampton R.O., Francki R.I.B. 1992. RNA-1 dependent seed transmissibility of cucumber mosaic virus in Phaseolus vulgaris. Phytopathology 82 (2): 127–130.
Kang W.H., Seo J.K., Chung B.N., Kim K.H., Kang B.C. 2012. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 7 (8): e43136. DOI: https://doi.org/10.1371/journal.pone.0043136
Kebede Y., Majumder S. 2020. Molecular detection and first report of Cucumber mosaic virus infecting ‘Cavendish’ banana plants in Ethiopia. Journal of Plant Disease and Protection 127: 417–420. DOI: https://doi.org/10.1007/s41348-020-00315-z
Khan S., Jan A.T., Aquil B., Mohd Q., Haq R. 2011. Coat protein gene based on characterization of cucumber mosaic virus isolates infecting banana in India. Journal of Phytology 3: 94–101.
Kim M.K., Seo J.K., Kwak H.R., Kim J.S., Kim K.H., Cha B.J., Choi H.S. 2014. Molecular genetic analysis of Cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea. Phytopathology 104 (9): 993–1000. DOI: https://doi.org/10.1094/PHYTO-10-13-0275-R
Kumar A., Hanson J., Jones C.S., Assefa Y., Mulatu F. 2020. Screening and characterization of virus causing yellow leaf disease of Tephrosia in Ethiopia. Australasian Plant Pathology 49: 447–450. DOI: https://doi.org/10.1007/s13313-020-00717-5
Kumari R., Bhardwaj P., Singh L., Zaidi A.A., Hallan V. 2013. Biological and molecular characterization of Cucumber mosaic virus subgroup II isolate causing severe mosaic in cucumber. Indian Journal of Virology 24 (1): 27–34. DOI: 10.1007/s13337-012-0125-9
Lakshman D.K., Gonsalves D. 1985. Genetic analyses of two large-lesion isolates of Cucumber mosaic virus. Phytopathology 75 (7): 758–762.
Leach J.E., Vera Cruz C.M., Bai J., Leung H. 2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology 39 (1): 187–224. DOI: https://doi.org/10.1146/annurev.phyto.39.1.187
Liu Y.Y., Yu S.L., Lan Y.F., Zhang C.L., Hou S.S., Li X.D., Zhu X.P. 2009. Molecular variability of five Cucumber mosaic virus isolates from China. Acta Virologica 53 (2): 89–97. DOI: 10.4149/av_2009_02_89
Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evollution 1 (1). Available on: https:// doi.org/10.1093/ve/vev003 [Accessed: 10 June 2020]
Nouri S., Arevalo R., Falk B.W., Groves R.L. 2014. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One 9 (5): e96582. DOI: https://doi.org/10.1371/journal.pone.0096582
Palukaitis P., Garcia-Arenal F. 2003. Cucumoviruses. Advances in Virus Research 62: 241–323. DOI: 10.1016/s0065-3527-(03)62005-1
Palukaitis P., Roossinck M.J., Dietzgen R.G., Francki R.I.B. 1992. Cucumber mosaic virus. Advances in Virus Research 41: 281–348. DOI: http://dx.doi.org/10.1016/s0065-3527-(08)60039-1
Prince W.C. 1934. Isolation and study of some yellow strains of Cucumber mosaic virus. Phytopathology 24: 743–761.
Roossinck M.J., Zhang L., Hellwald K.H. 1999. Rearrangements in the 5’ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. Journal of Virology 73 (8): 6752–6758. DOI: https://doi.org/10.1128/jvi.73.8.6752-6758.1999
Roossinck M.J. 1997. Mechanisms of plant virus evolution. Annual Review of Phytopathology 35 (1): 191–209. DOI: https://doi.org/10.1146/annurev.phyto.35.1.191
Roossinck M.J. 2001. Cucumber mosaic virus, a model for RNA virus evolution. Molecular Plant Pathology 2 (2): 59–63. DOI: https://doi.org/10.1046/j.1364-3703.2001.00058.x
Roossinck M.J., Palukaitis P. 1990. Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA 1 of Cucumber mosaic virus. Molecular Plant-Microbe Interactions 3 (1): 188–192. DOI: 10.1094/MPMI-3-188
Rozanov M.N., Koonin E.V., Gorbalenya A.E. 1992. Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’supergroup of positive-strand RNA viruses. Journal of General Virology 73 (8): 2129–2134. DOI: https://doi.org/10.1099/0022-1317-73-8-2129
Rozas J., Ferrer-Mata A., Sanchez-DelBarrio J.C., Guirao- -Rico S., Librado P., Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34 (12): 3299–3302. DOI: https://doi.org/10.1093/molbev/msx248
Rybicki E.P. 2015. A top ten list for economically important plant viruses. Archives of Virology 160 (1): 17–20. DOI: 10.1007/s00705-014-2295-9
Seo J.K., Kwon S.J., Choi H.S., Kim K.H. 2009. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive-and negative-strand RNA synthesis. Virology 383 (2): 248–260. DOI: https://doi.org/10.1016/j.virol.2008.10.033
Simon A.E., Bujarski J.J. 1994. RNA-RNA recombination and evolution in virus-infected plants. Annual Review of Phytopathology 32 (1): 337–362.
Zitter T.A., Murphy J.F. 2009. The plant health instructor: Cucumber mosaic virus. American Phytopathological Society. DOI: 10.1094/PHI-I-2009-0518-01 [Accessed: 25 July 2020]
Go to article

Authors and Affiliations

Yohanis Kebede
1
Shahana Majumder
2
ORCID: ORCID

  1. Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
  2. Department of Botany, Mahatma Gandhi Central University, Bihar, India
Download PDF Download RIS Download Bibtex

Bibliography


Abdollahi A., Hassani A., Ghosta Y., Meshkatalsadat M.H., Shabani R. 2011. Screening of antifungal properties of essential oils extracted from sweet basil, fennel, summer savory and thyme against post-harvest phytopathogenic fungi. Journal of Food Safety 31: 350−356. DOI: https://doi.org/10.1111/ j.1745-4565.2011.00306.x
Abu-Darwish M.S., Efferth T. 2018. Medicinal plants from near east for cancer therapy. Frontiers in Pharmacology 9: 56. DOI: https://doi.org/10.3389/fphar.2018.00056
Abu-Lafi S., Odeh I., Dewik H., Qabajah M., Hanuš L.O., Dembitsky V.M. 2008. Thymol and carvacrol production from leaves of wild Palestinian Majorana syriaca. Bioresource Technology 99: 3914−3918. DOI: https://doi.org/10.1016/j. biortech.2007.07.042
Alagawany M., El-Hack M.A., Farag M.R., Tiwari R., Dhama K. 2015. Biological effects and modes of action of carvacrol in animal and poultry production and health-a review. Advances in Animal and Veterinary Sciences 3: 73−84. DOI: https://doi.org/10.14737/journal.aavs/2015/3.2s.73.84
Al-Reza S.M., Yoon J.I., Kim H.J., Kim J.S., Kang S.C. 2010. Anti-inflammatory activity of seed essential oil from Zizyphus jujuba. Food Chemistry Toxicology 48: 639−643. DOI: https://doi.org/10.1016/j.fct.2009.11.045
Al-Zubairi A., Al-Mamary M., Al-Ghasani E. 2017. The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants. Global Advanced Research Journal of Medicine and Medical Sciences 6: 224−233.
Asghari Marjanlo A., Mostofi Y., Shoeibi S., Fattahi M. 2009. Effect of cumin essential oil on post-harvest decay and some quality factors of strawberry. Journal of Medicinal Plants 3: 25−43.
Baratta M.T., Dorman H.D., Deans S.G., Biondi D.M., Ruberto G. 1998. Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano and coriander essential oils. Journal of Essential Oil Research 10: 618−627. DOI: https://doi.org/10.1080/10412905.1998. 9700989
Bhalodia N.R., Shukla V.J. 2011. Antibacterial and antifungal activities from leaf extracts of Cassia fistula L., an ethnomedicinal plant. Journal of Advanced Pharmaceutical Technology & Research 2: 104. DOI: https://doi.org/10.4103/2231- 4040.82956
Boubaker H., Karim H., El Hamdaoui A., Msanda F., Leach D., Bombarda I., Vanloot P., Abbad A., Boudyach E.H., Ait Ben Aoumar A. 2016. Chemical characterization and antifungal activities of four Thymus species essential oils against post-harvest fungal pathogens of citrus. Industrial Crops and Products 86: 95−101. DOI: https://doi.org/10.1016/j. indcrop.2016.03.036
Bora K.S., Sharma A. 2011. The genus Artemisia: a comprehensive review. Pharmaceutical Biology 49: 101−109. DOI: https://doi.org/10.3109/13880209.2010.497815
Camele I., Altieri L., De Martino L., De Feo V., Mancini E., Rana G.L. 2012. In vitro control of post-harvest fruit rot fungi by some plant essential oil components. International Journal of Molecular Sciences 13: 2290–2300. DOI: https:// doi.org/10.3390/ijms13022290
Chaieb K., Hajlaoui H., Zmantar T., Kahla Nakbi A.B., Rouabhia M., Mahdouani K., Bakhrouf A. 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research 21: 501−506. DOI: https://doi.org/10.1002/ptr.2124
Crisosto C.H., Smilanick J.L., Dokoozlian N.K., Luvisi D.A. 1994. Maintaining table grape post-harvest quality for long distant markets. p. 195−199. In: Proceedings of the International Symposium on Table Grape Production. American Society for Enology and Viticulture, ASEV, June 28–29. Anaheim, CA, USA.
Fraternale D., Giamperi L., Bucchini A., Ricci D., Epifano F., Genovese S., Curini M. 2005. Composition and antifungal activity of essential oil of Salvia sclarea from Italy. Chemistry of Natural Compounds 41: 604−606. DOI: https://doi. org/10.1007/s10600-005-0221-9
Gilchrist-Saavedra L. 1997. Practical guide to the identification of selected diseases of wheat and barley. CIMMYT.
Grzegorczyk-Karolak I., Kuźma Ł., Lisiecki P., Kiss A. 2019. Accumulation of phenolic compounds in different in vitro cultures of Salvia viridis L. and their antioxidant and anpotential. Phytochemistry Letters 30: 324−332. DOI: https://doi.org/10.1016/j.phytol.2019.02.016
Hamini-Kadar N., Hamdane F., Boutoutaou R., Kihal M.,Henni J.E. 2014. Antifungal activity of clove (Syzygium aromaticum L.) essential oil against phytopathogenic fungi of tomato (Solanum lycopersicum L.) in Algeria. Journal of Experimental Biology and Agricultural Sciences 2: 447−454.
Hosseini M.H., Razavi S.H., Mousavi S.M.A., Yasaghi S.A.S., Hasansaraei A.G. 2008. Improving antibacterial activity of edible films based on chitosan by incorporating thyme and clove essential oils and EDTA. Journal of Applied Sciences 8: DOI: https://doi.org/2895−2900.10.3923/jas. 2008.2895.2900
Javed H., Erum S., Tabassum S., Ameen F. 2013. An overview on medicinal importance of Thymus vulgaris. Journal of Asian Scientific Research 3: 974.
Jaradat N.A., Zaid A.N., Al-Ramahi R., Alqub M.A., Hussein F., Hamdan Z., Mustafa M., Qneibi M., Ali I. 2017. Ethnopharmacological survey of medicinal plants practiced by traditional healers and herbalists for treatment of some urological diseases in the West Bank/Palestine. BMC Complementary Medicine and Therapies 17: 255. DOI: https:// doi.org/10.1186/s12906-017-1758-4
Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology 99: 8788−8795. DOI: https://doi. org/10.1016/j.biortech.2008.04.048
Lazar-Baker E., Hetherington S., Ku V., Newman S. 2011. Evaluation of commercial essential oil samples on the growth of post-harvest pathogen Monilinia fructicola (G. Winter) Honey. Letters in Applied Microbiology 52: 227−232. DOI: https://doi.org/10.1111/j.1472-765X.2010.02996.x
Martinez K., Ortiz M., Albis A., Gilma Gutierrez Castaneda C., Valencia M.E., Grande Tovar C.D. 2018. The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria × ananassa) during cold storage. Biomolecules 8: 155. DOI: https:// doi.org/10.3390/biom8040155
Matusinsky P., Zouhar M., Pavela R., Novy P. 2015. Antifungal effect of five essential oils against important pathogenic fungi of cereals. Industrial Crops and Products 67: 208−215. DOI: https://doi.org/10.1016/j.indcrop.2015.01.022
Militello M., Settanni L., Aleo A., Mammina C., Moschetti G., Giammanco G.M., Blazquez M.A., Carrubba A. 2011. Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Current Microbiology 62: 1274−1281. DOI: https://doi.org/10.1007/s00284-010- 9855-3
Momen F.M., Amer S.A.A., Refaat A.M. 2001. Repellent and oviposition-deterring activity of rosemary and sweet marjoram on the spider mites Tetranychus urticae and Eutetranychus orientalis (Acari: Tetranychidae). Acta Phytopathologica et Entomologica Hungarica 36: 155−164. DOI: https:// doi.org/10.1556/aphyt.36.2001.1-2.18
Mossa A.T.H. 2016. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology 9: 354. DOI: https://doi:10.3923/ jest.2016.354.378
Mothana R.A., Al-Said M.S., Al-Yahya M.A., Al-Rehaily A.J., Khaled J.M. 2013. GC and GC/MS analysis of essential oil composition of the endemic soqotraen Leucas virgata Balf.f. and its antimicrobial and antioxidant activities. International Journal of Molecular Sciences 14: 23129−23139. DOI: https://doi.org/10.3390/ijms141123129
Moura Martins C., de Morais S.A., Martins M.M., Cunha L.C., da Silva C.V., Teixeira T.L., Santiago M.B., de Aquino F.J., Nascimento E.A., Chang R., Martins C.H. 2020. Antifungal and cytotoxicity activities and new proanthocyanidins isolated from the barks of Inga laurina (Sw.) Willd. Phytochemistry Letters 40: 109−120. DOI: https://doi.org/10.1016/j. phytol.2020.10.001
Nejad S.M., Ozgunes H., Basaran N. 2017. Pharmacological and toxicological properties of eugenol. Turkish Journal of Pharmaceutical Sciences 14: 201−206. DOI: https://doi.org/10.4274/tjps.62207
Obeng-Ofori D., Reichmuth C.H. 1997. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. International Journal of Pest Management 43: 89−94. DOI: https:// doi.org/10.1080/096708797229040
Olsen R.W. 2000. Absinthe and gamma-aminobutyric acid receptors. p. 4417−4418. In: Proceedings of the National Academy of Sciences of the United States of America, 97. DOI: https://doi.org/10.1073/pnas.97.9.4417
Park J.B. 2011. Identification and quantification of a major antioxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. International Journal of Food Sciences and Nutrition 62: 577−584. DOI: https://doi.org/10.3109/09637486.2 011.562882
Phillips C.A., Laird K., Allen S.C. 2012. The use of Citri-V™® An antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Research International 47: 310−314. DOI: https://doi.org/10.1016/j. foodres.2011.07.035
Pinto E., Vale-Silva L., Cavaleiro C., Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology 58: 1454–1462. DOI: https://doi.org/10.1099/jmm.0.010538-0
Politeo O., Carev I., Burčul F., Jukić M., Ajduković P., Tadijana V., Miloš M. 2010. Screening of anti-acetylcholineesterase and antioxidant activity of extracts from selected Croatian plants. In: Proceedings of the 10th Congress of the Croatian Society of Biochemistry and Molecular Biology, 15−18 September 2010, Opatija, Hrvatska, Croatia. Porte A., Godoy R.L.O., Maia-Porte L.H. 2013. Chemical composition of sage (Salvia officinalis L.) essential oil from the Rio de Janeiro State (Brazil). Revista Brasileira de Plantas Medicinais 15: 438−441. DOI: https://doi.org/10.1590/ S1516-05722013000300018
Rajkowska K., Nowak A., Kunicka-Styczyńska A., Siadura A. 2016. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Advances 6: 97199−97207. DOI: https://doi.org/10.1039/C6RA21108A
Rozman V., Kalinović I., Liška A. 2006. Bioactivity of 1,8-cineole, camphor and carvacrol against rusty grain beetle (Chryptolestes ferrugineus Steph.) on stored wheat. In: Proceeding of the 9th International Working Conference on Stored Product Protection, 15−18 October 2006, Abrapos, Passo Fundo, Brazil.
Sabbo Behr., Hejaz H., Jahajha A., Al-Akhras S., Al-Jaas H., Abu-Lafi S. 2016. Antioxidant an antimicrobial activities of the leaf extract of Salvia palaestina. Journal of Applied Pharmaceutical Science 6: 76. DOI: https://doi: 10.7324/ JAPS.2016.600113
Samara R., Hunter D.M., Stobbs L.W., Greig N., Lowery D.T., Delury N.C. 2017. Impact of Plum Pox Virus (PPV-D) infection on peach tree growth, productivity and bud cold hardiness. Canadian Journal of Plant Pathology 39: 218−228. DOI: https://doi.org/10.1080/07060661.2017.1336489
SAS Institute, 1998. SAS Users Guide, Statistics. Version 2. SAS Institute, Cary, NC. Shah A., Jani M., Shah H., Chaudhary N., Shah A. 2014. Antimicrobial effect of Clove oil (Laung) extract on Enterococcus faecalis. Journal of Advanced Oral Research 5: 36−38. DOI: https://doi.org/10.1177/2229411220140307
Shirzad H., Hassani A., Ghosta Y., Abdollahi A., Finidokht R., Meshkatalsadat M. 2011. Assessment of the antifungal activtimicrobiality of natural compounds to reduce postharvest gray mould (Botrytis cinerea Pers.: Fr.) of kiwifruits (Actinidia deliciosa) during storage. Journal of Plant Protection Research 51 (1): 1−6. DOI: https://doi.org/10.2478/v10045-011-0001-4
Shoaib A., Saeed G., Ahmad S. 2014. Antimicrobial activity and chemical analysis of some edible oils (Clove, Kalonji and Taramira). African Journal of Biotechnology 13: 4347−4354. DOI: https://doi.org/10.5897/AJB2014.13683
Sighamony S., Anees I., Chandrakala T.S., Osmani Z. 1986. Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Journal of Stored Products Research 22: 21−23. DOI: https://doi.org/10.1016/0022-474X(86)90042-1
Snowdon A.L. 1990. Color atlas of post-harvest diseases and disorders of fruits and vegetables. Vol. 1. In: "General Introduction and Fruits". CRC Press, Boca Raton FL.
Taylor S. 1993. Why sulfite alternatives? Food Technology 47: 14. Thosar N., Basak S., Bahadure R.N., Rajurkar M. 2013. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. European Journal of Dentistry 7: 71−77. DOI: https://doi/org/10.4103/1305-7456.119078
Vitoratos A., Bilalis D., Karkanis A., Efthimiadou A. 2013. Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici 41: 86−92. DOI: https://doi. org/10.15835/nbha4118931
Zabka M., Pavela R. 2013. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere 93: 1051−1056. DOI: https://doi.org/10.1016/j.chemosphere.2013.05.076
Go to article

Authors and Affiliations

Rana Samara
1
ORCID: ORCID
Tawfiq Qubbaj
2
ORCID: ORCID
Ian Scott
3
ORCID: ORCID
Tim Mcdowell
3

  1. Horticulture and Agricultural Extension, Palestine Technical University-Kadoorie, Tulkarm, Palestine
  2. Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine
  3. London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
Download PDF Download RIS Download Bibtex

Abstract

Excessive use of chemical fertilizers, in agriculture, has negative impacts on water, soil and affects the environment and health. In recent decades, researchers have been interested in the natural benefits of natural microorganisms and how they could be a good alternative to the use of chemical fertilizers. The aim of this study was to investigate the effect of soil inoculation with strains of mycorrhizae and beneficial bacteria on soil properties and productivity of table grapes. Field trials were conducted on a commercial table grape production farm ( Vitis vinifiera cv. Mousca), located in northeastern Morocco. Twelve-yearold plants were used. Control plants were not inoculated (T1). The prototype plants were inoculated with 1.2 × 104 of Glomus iranicum var. tenuihypharum/100 g (T2), a mixture of 1/2 concentration of Glomus iranicum var. tenuihypharum and 1/2 concentration of Pseudomonas putida (T3) and 1 × 108 CFU ∙ g–1 of Pseudomonas putida (T4). The inoculations were realized twice; the first inoculation was completed on July 19, 2019 while the second inoculation on February 21, 2020. Soil analyses were carried out, both physicochemical (pH, electrical conductivity (EC), salinity, % of dry matter) and microbiological properties (total flora, fungi and actinobacteria). Plant growth (length of the plant, number and diameter of sticks, number of clusters per tree, number of nodes per stick, distance between nodes and bud burst), yield and fruit quality (number of berries per cluster, cluster weight, cluster length and width, pH, Brix degrees, acidity, EC and % dry matter) were measured. Results showed slight trends regarding the effects of treatments on the physicochemical and microbiological properties of the soil, plant growth and fruit quality. The number of clusters was significantly higher in Glomus (T2) Pseudomonas (T4) and Glomus than in control treatments.
Go to article

Bibliography


Aguín O., Mansilla J.P., Vilariño A., Sainz M.J. 2004. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Ecology and Viticulture 55 (1): 108−111. Available on: https://www.ajevonline.org/content/55/1/108.articleinfo [Accessed: 15 May 2021]
Aktar W., Sengupta D., Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology 2: 1−12. DOI: https://doi.org/10.2478/ v10102-009-0001-7
Atafa Z., Mesdaghinia A., Nouri J., Homaee M., Yunesian M., Ahmadimoghaddam M., Mahvi A.H. 2010. Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment 160 (1−4): 83. DOI : https://doi.org/10.1007/s10661-008-0659-x
Augé R.M. 2004. Mycorhizes à arbuscules et relations eau/sol/ plante. Canadian Journal of Soil Science 84: 373−381. DOI: https://doi.org/10.1139/b04-020
Baslam M., Esteban R., García-Plazaola J.I., Goicoechea N. 2013. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology 97: 3119−3128. DOI: https://doi.org/10.1007/s00253-012-4526-x
Birhane E., Sterck F.J., Fetene M., Bongers F., Kuyper T.W. 2012. Les champignons mycorhiziens arbusculaires améliorent la photosynthèse, l’efficacité d’utilisation de l’eau et la croissance des semis d’encens dans des conditions de disponibilité en eau pulsée. Oecologia 169: 895−904.
Bona E., Cantamessa S., Massa N., Manassero P., Marsano F., Copetta A., Lingua G., D'Agostino G., Gamalero E., Berta G. 2017. Arbuscular mycorrhizal fungi and plant growth- -promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27: 1−11. DOI: https://doi.org/10.1007/s00572-016-0727-y
Bona E., Todeschini V., Cantamessa S., Cesaro P., Copetta A., Lingua G., Gamalero E., Berta G., Massa N. 2018. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae 234: 160−165. DOI: https://doi.org/10.1016/j.scienta.2018.02.026
Boutas Knit A., Baslam M., Ait-El-Mokhtar M., Anli M., Ben- -Laouane R., Douira A., El Modafar C., Mitsui T., Wahbi S., Meddich A. 2020. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants 9 (1): 80. DOI: https://doi.org/10.3390/plants9010080
Brundrett M.C., Abbott L.K. 2002. Arbuscula mycorrhiza in plant Communities. p. 151−193. In: “Plant Conservation and Biodiversity” (K. Sivasithamparam, K.W. Dixon, R.L. Barrett eds.). Kluwer Academic-Publishers: Dordrecht, Netherlands, 391 pp.
Chen W., Meng P., Feng H., Wang C. 2020. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A. Mey. under drought stress. Forests 11 (10): 1117. DOI: https://doi.org/10.3390/ f11101117
Childers D.L., Corman J., Edwards M., Elser J.J. 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61 (2): 117−124. DOI: https://doi.org/10.1525/bio.2011.61.2.6
Criss R., Davisson M. 2004. Fertilizers, water quality and human health. Environnemental Heath Perspectives 112 (10): A536. DOI : https://doi.org/10.1289/ehp.112-a536
Farhadinejad T., Khakzad A., Jafari M. 2014. The study of environmental effects of chemical fertilizers and domestic sewage on water quality of Taft region, Arabian Journal of Geoscience 7: 221−229. DOI: https://doi.org/10.1007/s12517-012-0717-0
Garcia K., Zimmermann S.D. 2014. Le rôle des associations mycorhiziennes dans la nutrition potassique des plantes. Plant Science 5: 337. DOI: https://doi.org/10.3389/fpls.2014.00337
Geng Y., Cao G., Wang L., Wang S. 2019. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 14 (7): e0219512. DOI : https://doi.org/10.1371/journal.pone.0219512
Gianinazzi S., Gollotte A., Binet M.N., van Tuinen D., Redecker D., Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20: 519−530. DOI: https://doi.org/10.1007/s00572-010-0333-3
Halpern M., Bar-Tal A., Ofek M., Minz D. 2015. The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130: 141−174. DOI: https://doi.org/10.1016/ bs.agron.2014.10.001
Hmelak Gorenjak A. 2013. Nitrate in vegetables and their impact on human health. Acta Alimentaria 42 (2): 158−172. DOI: https://doi.org/10.1556/AAlim.42.2013.2.4
Javanmardi J., Zarei M., Saei M. 2001. Influence of arbuscular mycorrhizal fungi on physiology and fruit quality of pepino (Solanum muricatum Ait.) in vermicompost amended medium. Advances in Horticultural Science 28 (1): 35−42. Available on: https://core.ac.uk/download/pdf/228571948.pdf. [Accessed: 15 May 2021]
Jiang Y., Wang W., Xie Q. Liu N., Liu L., Wang D., Zhang X., Yang C., Chen X., Tang D., Wang E. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 16: 356 (6343): 1172−1175. DOI: https://doi.org/10.1126/science.aam9970
Johansson J.F., Paul L.R.R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48 (1): 1−13. DOI: https://doi.org/10.1016/j.femsec.2003.11.012
Kamayestani A., Rezaei M., Sarkhosh A., Asghari H. 2019. Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth enhancement and nutrient (NPK) uptake of three grape (Vitis vinifera L.) cultivars under three different water deficit levels. Australian Journal of Crop Science: 1401−1408. DOI: https://doi.org/10.21475/ajcs.19.13.09.p1174
Koide R.T., Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14 (3): 145−163. DOI: https://doi. org/10.1007/s00572-004-0307-4
Li Y., Chen Y.L., Lin X.J., Liu R.J. 2012. Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere 22 (1): 79−87. DOI: https://doi.org/10.1016/S1002-0160(11)60193-8
Liu G., Bollier D., Gübeli C., Peter N., Arnold P., Egli M., Borghi L. 2018. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. NPJ Microgravity 4 (1): 1−10. DOI: https:// doi.org/10.1038/s41526-018-0054-z
Luciani E., Frioni T., Tombesi S., Farinelli D., Gardi T., Ricci A., Sabbatini P., Palliotti A. 2019. Effects of a new arbuscular mycorrhizal fungus (Glomus iranicum) on grapevine development. BIO Web Conference 13, Vineyard Management and Adaptation to Climate Change Section: 04018 (5 p.). DOI: https://doi.org/10.1051/bioconf/20191304018
Meddich A., Jaiti F., Bourzik W., El Asli A., Hafidi M. 2015. Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae 192: 468−474. DOI: https://doi.org/10.1016/j.scienta.2015.06.024
Neuenkamp L., Moora M., Öpik M., Davison J., Gerz M., Männistö M., Jairus T., Vasar M., Zobel M. 2018. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. Hempel 220: 952−953. DOI: https://doi.org/10.1111/nph.14995
Ozdemir G., Akpinar C., Sabir A., Bilir H., Tangolar S., Ortas I. 2010. Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). European Journal of Horticultural Science 75 (3): 103−110. JSTOR: https://www.jstor.org/stable/24126418
Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K., Górecki H. 2018. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23 (2): 470. DOI: https://doi.org/10.3390/molecules23020470
Reuter D.J. 2008. Soil analysis. An interpretation manual. CSIRO Publishing. Collingwood, Victoria, Australia, 387 pp. Rodriguez-Echeverria S., Costa S.R., Freitas H. 2007. Biodiversité et interactions dans la rhizosphère. p. 581−600. In: “Functional Plant Ecology”, 2nd ed. (F.I. Pugnaire, F. Valladares, eds.). CRC Press, New York, USA, 724 pp.
Ronga D., Caradonia F., Francia E., Morcia C., Rizza F., Badeck F.W., Ghizzoni R., Terzi V. 2019. Interaction of tomato genotypes and arbuscular mycorrhizal fungi under reduced irrigation. Horticulturae 5 (4): 79. DOI: https://doi.org/10.3390/horticulturae5040079
Riah W., Laval K., Laroche-Ajzenberg E., Mougin C., Latour X., Trinsoutrot-Gattin I. 2014. Effets des pesticides sur les enzymes du sol. Environmental Chemistry Letters 12: 257−273. DOI: https://doi.org/10.1007/s10311-014-0458-2
Schubert R., Werner S., Cirka H., Rödel P., Moya Y.T., Mock H.P., Hutter I., Kunze G. Hause B. 2020. Effects of arbuscular mycorrhization on fruit quality in industrialized tomato production. International Journal of Molecular Sciences 21: 7029. DOI: https://doi.org/10.3390/ijms21197029
Shaver G.R., Chapin F.S. 1986. Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arctic and Alpine Research 18 (3): 261−268. DOI: https://doi.org/10.2307/1550883
Singh R., Soni S.K., Kalra A. 2013. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23 (1): 35−44. DOI: https://doi.org/10.1007/s00572-012-0447-x
Soares C., Siqueira J. 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biology and Fertility of Soils 44: 833−841. DOI: https://doi.org/10.1007/s00374-007-0265-z
Trouvelot S., Bonneau L., Redecker D., Van Tuinen D., Adrian M. Wipf D. 2015. Arbuscular mycorrhiza symbiosis in viticulture: A Review. Agronomy for Sustainable Development 35 (4): 1449−1467. DOI: https://doi.org/10.1007/s00374-007-0265-z
Ye L., Zhao X., Bao E., Li J., Zou Z., Cao K. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports 10 (1): 1−11. DOI: https://doi.org/10.1038/s41598-019-56954-2
Yousaf M., Li J., Lu J. 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Report 7: 1270−1279. DOI: https://doi.org/10.1038/s41598-017-01412-0
Go to article

Authors and Affiliations

Salah Ed-dine Samri
1
ORCID: ORCID
Kamal Aberkani
1
ORCID: ORCID
Mourad Said
1
Khadija Haboubi
2
ORCID: ORCID
Hassan Ghazal
3
ORCID: ORCID

  1. Biology and Geology, Plolydisciplinary Faculty of Nador, University Mohammed Fisrt, Selonane, Morocco
  2. Environment, National School of Applied Sciences, University Abdelmalek Essaadi, Al Hoceima, Morocco
  3. Bioinformatics, National Center for Scientific and Technical Research, Rabat, Morocco
Download PDF Download RIS Download Bibtex

Abstract

There is an ongoing search for technologies that guarantee soybean productivity. Among them, the application of phytosanitary products stands out, since the sprayer is the most required implement during the agricultural production cycle and each error, in practice, represents a loss in the production process. With this in mind, the objective of this work was to evaluate the volume captured and the characteristics of the application in the different thirds of soybean plants with variations in hydraulic nozzles and spray volumes, as well as the use of electrification of the drops. To this end, a field experiment was conducted during the 2018/2019 summer harvest in an experimental area at the University of Rio Verde. The experimental design used was randomized blocks in a factorial scheme (3 × 4), with four repetitions, in which the first factor consisted of three variations of spray nozzles (simple fan, hollow cone and hollow cone with electrification of the drops). The second factor involved four application rates (50, 100, 150 and 200 l · ha–1). The variables evaluated were the number of drops per cm–2, percentage of coverage, volume median diameter (VMD) and the captured volume (μl · cm–2). According to the results, for the upper thirds, an increase in the application rate increased the volume of captured syrup. However, for the lower third, the factors evaluated did not interfere in this characteristic. The hydraulic tips influenced the density of droplets in the three thirds and the coverage only in the lower one. The increasing rates of application, increases the density of drops and percentage of coverage in the different thirds of the plants. The evaluated factors had no effect on the syrup distribution on the median abaxial surface of the leaves.
Go to article

Bibliography


Baldin E.L.L., Cruz P.L., Morando R., Silva I.F., Bentivenha J.P.F., Tozin L.R.S., Rodrigues T.M. 2017. Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology 110 (4): 1869–1876. DOI: 10.1093/ jee/tox143
Bayer T., Costa I.F.D., Lenz G., Zemolin C., Marques L.N., Stefanelo M.S. 2011. Equipamento de pulverização aérea e taxas de aplicação de fungicida na cultura do arroz irrigado. [Spraying equipment and rates of fungicide application in irrigated rice]. Revista Brasileira de Engenharia Agrícola e Ambiental 15 (2): 192–198. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Belo M.S.S.P., Pignati W., Dores E.F.G.C., Moreira J.C.M., Peres F. 2012. Uso de agrotóxicos na produção de soja do Estado do Mato Grosso: um estudo preliminar de riscos ocupacionais e ambientais. [Pesticide use in soybean pro-duction in Mato Grosso state, Brazil: A preliminary occupational and environmental risk characterization]. Revista Brasileira Saude Ocupacional 37 (125): 78–88. DOI: https://doi.org/10.1590/S0303-76572012000100011
Boschini L., Robinson L.C., Macedo Junior E.K., Guimaraes V.F.G. 2008. Avaliacao da deposicao da calda de pulverizacao em funcao da vazao e do tipo de bico hidraulico na cultura da soja. [Evaluation the spraying syrup deposition in function of the beak type and the flow, in soybean]. Acta Scientiarum. Agronomy 30 (2): 171–175. DOI: https://doi.org/10.4025/actasciagron.v30i2.1789
Chaim A., Camargo Neto J., Pessoa M.C.P.Y. 2006. Uso do programa computacional Gotas para avaliacao da deposicao de pulverizacao aerea sob diferentes condicoes climaticas. [Use of the gotas software for evaluation of the deposition of aerial spraying under different climatic conditions]. Research and Development Bulletin 39: 18. Climate data. 2020. Climate Rio Verde. Available on: https://pt.climate-data.org/america-do-sul/brasil/goias/rio-verde- 4473/. [Accessed: 13 July 2020]
Cunha J.P.A.R., Marques R.S., Alves G.S. 2016. Deposicao da calda na cultura da soja em funcao de diferentes pressoes de trabalho e pontas de pulverizacao. [Spray deposition on soybean crop as a function of different service pressures and spray nozzles]. Revista Ceres 63 (6): 761–768. DOI: https://doi.org/10.1590/0034-737x201663060003
Cunha J.P.A.R., Reis E.F., Santos R.O. 2006. Controle quimico de ferrugem asiatica da soja em funcao de ponta de pulverizacao e de volume de calda. [Chemical control of Asian soybean rust due to spray tip and spray volume]. Ciencia Rural 36 (5): 1360–1366. DOI: https://doi.org/10.1590/ S0103-84782006000500003
Czaczyk Z., Kruger G., Hewitt A. 2012. Droplet size classification of air induction flat fan nozzles. Journal of Plant Protection Research 52 (4): 415–420. DOI: https://doi.org/10.2478/10045-012-0068-6
Durao C.F., Boller W. 2017. Spray nozzles performance in fungicides applications for Asian soybean rust control. Engenharia Agricola 37 (4): 709–716. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n4p709-716/2017
Farinha J.V., Martins D., Costa N.V., Domingos V.D. 2009. Deposicao da calda de aplicacao em cultivares de soja no estadio R1. Ciencia Rural 39 (6): 1738–1744. DOI: https://doi.org/10.1590/S0103-84782009000600016
Fehr W.R., Caviness C.E. 1997. Stages of Soybean Development. Ames: Iowa State University, USA, 12 pp. (Special Report, 80).
Fritz B.K., Hoffman W.C., Czaczyk Z., Bagley W., Kruger G., Henry R. 2012. Measurement and classification methods using the ASAE S572.1 reference nozzles. Journal of Plant Protection Research 52 (4): 447–457. DOI: https://doi.org/10.2478/v10045-012-0072x
Furlan S.H., Carvalho F.K., Antuniassi U.R. 2018. Strategies for the control of Asian soybean rust (Phakopsora pachyrhizi) in Brazil: fungicide resistance and application efficacy. Outlooks on Pest Management 29 (3): 120–123. DOI: https://doi.org/10.1564/v29_jun_05
Law S.E. 2014. Electrostatically charged sprays. In: “Pesticide Application Methods” (G.A. Matthews, ed.). 4th ed. Chichester: John Wiley & Sons, USA, 545 pp. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Negrisoli M.M., Raetano C.G., Souza D.M., Souza F.M.S., Bernardes L.M., Bem Junior L., Rodrigues D.M., Sartori M.M.P. 2019. Performance of new flat fan nozzle design in spray deposition, penetration and control of soybean rust. European Journal of Plant Pathology 155 (7): 1–13. DOI: http://doi.org/10.1007/s10658-019-01803-1
Nidera. 2020. NS 7709 IPRO. Available on: http://www.niderasementes. com.br/produto/ns-7709-ipro.aspx. [Accessed: 13 July 2020]
Omoto P.H., Tomaz R.S., Prado E.P. 2017. Quantificacao dos depositos da pulverizacao em funcao da tecnica de aplicacao na cultura da soja. [Quantification of spray deposits as a function of soybean application technique]. Forum Ambiental da Alta Paulista 13 (7): 120–134. DOI: http://dx.doi.org/10.17271/1980082713720171732
Patel M.K., Praveen B., Sahoo H.K., Patel B., Kumar A., Singh M., Nayak M.K., Rajan P. 2017. An advance air-induced air-assisted electrostatic nozzle with enhanced performance. Computers and Electronics in Agriculture 135 (4): 280–288. DOI: https://doi.org/10.1016/j.compag.2017.02.010
Sasaki R.S., Teixeira M.M., Fernandes H.C., Monteiro P.M.B., Rodrigues D.E. 2013. Deposicao e uniformidade de distribuicao de calda de aplicacao em plantas de cafe utilizando a pulverizacao eletrostatica. [Deposition and uniformity of spray syrup distribution in coffee plants using electrostatic spraying]. Ciencia Rural 43 (9): 1605–1609. DOI: https://doi.org/10.1590/S0103-84782013000900011
Scudeler F., Raetano C.G. 2006. Spray deposition and losses in potato as a function of air-assistance and sprayer boom angle. Scientia Agricola 63 (6): 515–521. DOI: https://doi.org/10.1590/S0103-90162006000600001
Silva J.E.R., Cunha J.P.A.R., Nomelini Q.S.S. 2014a. Deposicao de calda em folhas de cafeeiro e perdas para o solo com diferentes taxas de aplicacao e pontas de pulverizacao. [Deposition of spray applied in coffee leaves with different rates and spray nozzles]. Revista Brasileira de Engenharia Agricola e Ambiental 18 (12): 1302–1306. DOI: https://doi. org/10.1590/1807-1929/agriambi.v18n12p1302-1306
Silva B.M.B., Ruas R.D.A., Sichocki D., Dezordi L.R., Caixeta L.F. 2014b. Deposicao da calda de pulverizacao aplicada com pontas de jato plano em diferentes partes da planta de soja (Glycine max) e milho (Zea mays). [Spray spray deposition applied with flat spray tips to different parts of the soybean plant (Glycine max) and corn (Zea mays)]. Engenharia na Agricultura 22 (1): 17–27. DOI: https://doi.org/10.13083/reveng.v22i1.406
Souza D.M., Raetano C.G., Moreira C.A.F., Burno R.C.O.F., Carvalho M.M. 2019. Effects of news sowing arrangements and air assistance on fungicide spray distribution on soybean crop. Acta Scientiarum. Agronomy 41 (1): e42700. DOI: https://doi.org/10.4025/actasciagron.v41i1.42700
Tavares R.M., Silva J.E.R., Alves G.S., Alves T.C., Silva S.M.,
Cunha J.P.A.R. 2017. Tecnologia de aplicacao de inseticidas no controle da lagarta-do-cartucho na cultura do milho. [Insecticide application technology on fall armyworm control in corn]. Revista Brasileira de Milho e Sorgo 16 (1): 30–42. DOI: https://doi.org/10.18512/1980-6477/rbms.v16n1p30-42%20
Van Zyl J.G., Fourie P.H., Schutte G.C. 2013. Spray deposition assessment and benchmarks for control of Alternaria brown spot on mandarin leaves with copper oxychloride. Crop Protection 46 (4): 80–87. DOI: https://doi.org/10.1016/j. cropro.2012.12.005
Viana R.G., Ferreira L.R., Ferreira M.C., Teixeira M.M., Rosell J.R., Tuffi-Santos L.D., Machado A.F.L. 2010. Distribuicao volumetrica e espectro de gotas de pontas de pulverizacao de baixa deriva. [Volumetric distribution and droplet spectrum by low drift spray nozzles]. Planta Daninha 28 (2): 439–446. DOI: https://doi.org/10.1590/S0100-83582010000200024
Zhou Y., Qi L., Jia S., Zheng X., Meng X., Tang Z., Shen C. 2012. Development and application prospects of pneumatic electrostatic sprayer in orchard. Asian Agricultural Research 4 (1): 78–80. DOI: 10.22004/ag.econ.133110
Go to article

Authors and Affiliations

Carlos Eduardo Leite Mello
1
ORCID: ORCID
Eduardo Lima do Carmo
1
ORCID: ORCID
Guilherme Braga Pereira Braz
1
ORCID: ORCID
Gustavo André Simon
1
ORCID: ORCID
João Vitor Alves de Sousa
1
Ana Carolina Pereira dos Reis
1
Marco Túlio Moura Leite
1
Gabriel Elias Soares de Araújo
1

  1. Agronomia, Universidade de Rio Verde, Rio Verde, Brazil
Download PDF Download RIS Download Bibtex

Abstract

False jagged-chickweed ( Lepyrodiclis holosteoides (C.A. Mey.) Fenzl ex Fisch. & C.A. Mey.) is an invasive weed species distributed in many regions of Iran. Scientific knowledge about the biology and ecology of false jagged-chickweed is rare. In a series of laboratory experiments, the effect of chilling treatments, potassium nitrate (KNO3), gibberellic acid (GA3), concentrations, temperature regimes, and sowing depths on seed germination and breaking seed dormancy of false jagged-chickweed was studied. In two field experiments the phenology of false jagged-chickweed and winter wheat ( Triticum aestivum) was also compared. Chilling treatment for 15 days, a KNO3 concentration of 30 μmolar and a GA3 concentration of 144 μmolar increased germination percentage and germination rate. However, chilling treatment for 15 days did not increase germination rate as well as the KNO3 and GA3 treatments. A quadratic polynomial model predicted that the optimum temperature giving the maximum germination percentage was 22°C. Seedlings emerged in a range of sowing depths from 0 to 8 cm, while no seedling emergence occurred at sowing depths greater than 10 cm. Based on a Gaussian model, the optimum sowing depth was predicted to be 3.9 cm. False jagged-chickweed required higher growing degree days (GDD) for seedling emergence than winter wheat, while the flowering stage of false jagged-chickweed occurred earlier than winter wheat. Results achieved in the present study are of interest not only for studying other life cycle aspects of this species but also as basic information for developing management strategies.
Go to article

Bibliography


Andersson L., Milberg P. 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8: 29–38. DOI: https://doi.org/10.1017/S0960258500003883
Anonymous G.P. 2020. Global Plants. Available on: https://plants.jstor.org/compilation/Lepyrodiclis.holosteoides
Anonymous USDA. 2020. Natural Resources Conservation Service. Available on: https://plants.usda.gov/home/plant Profile?symbol=LEHO7 [Accessed: 20 February 2021]
Bakar B.H., Nabi L.N.A. 2003. Seed germination, seedling establishment and growth patterns of wrinklegrass (Ischaemum rugosum Salisb.). Weed Biology and Management 3: 8−14. DOI: https://doi.org/10.1046/j.1445-6664.2003.00075.x
Begum M., Juraimi A.S., Amartalingam R., Bin Man A., Bin Syed Rastans S.O. 2006. The effects of sowing depth and flooding on the emergence, survival, and growth of Fimbristylis miliacea (L.) Vahl. Weed Biology and Management 6: 157−164. DOI: https://doi.org/10.1111/j.1445-6664.2006.00209.x
Benvenuti S., MacChia M., Miele S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science 49: 528−535. DOI: https://doi.org/10.2307/4046486
Deinhard R., Nazari S., Qorani Y. 2018. Estimation of cardinal temperatures of Lepyrodiclis holosteoides using regression models. Iranian Journal of Seed Science and Technology 7: 107−117. DOI: https://doi.org/10.22034/ijsst.2018.116531
Dorado J., Fernández-Quintanilla C., Grundy A.C. 2009. Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science 57: 155−162. DOI: https://doi.org/10.1614/WS-08-122.1
Elahifard E., Derakhshan A. 2018. Asian spiderflower (Cleome viscosa) germination ecology in southern Iran. Weed Biology and Management 18: 110−117. DOI: https://doi.org/10.1111/wbm.12154
Foley M.E. 2004. Leafy spurge (Euphorbia esula) seed dormancy. Weed Science 52: 74−77. DOI: https://doi.org/10.1614/ P2002-146
Forte C.T., Nunes U.R., Filho A.C., Galon L., Chechi L., Roso R., Menegat A.D., Rossetto E.D.O., Franceschetti M.B. 2019. Chemical and environmental factors driving germination of Solanum americanum seeds. Weed Biology and Management 19: 113−120. DOI: https://doi.org/10.1111/wbm.12187
Golmohammadzadeh S., Zaefarian F., Rezvani M. 2015. Effects of some chemical factors, prechilling treatments and interactions on the seed dormancy-breaking of two Papaver species. Weed Biology and Management 15: 11−19. DOI: https://doi.org/10.1111/wbm.12056
Guillemin J.-P., Chauvel B. 2011. Effects of the seed weight and burial depth on the seed behavior of common ragweed (Ambrosia artemisiifolia). Weed Biology and Management 11: 217−223. DOI: https://doi.org/10.1111/j.1445-6664.2011.00423.x
Honarmand S.J., Nosratti I., Nazari K., Heidari H. 2016. Factors affecting the seed germination and seedling emergence of muskweed (Myagrum perfoliatum). Weed Biology and Management 16: 186−193. DOI: https://doi.org/10.1111/wbm.12110
Malik M.S., Norsworthy J.K., Riley M.B., Bridges W. 2010. Temperature and light requirements for wild radish (Raphanus raphanistrum) germination over a 12-month period following maturation. Weed Science 58: 136−140. DOI: https://doi.org/10.1614/WS-09-109.1
Marshall E.J.P. 2019. Reflections on 14 years as Editor-in-Chief. Weed Research 59: 1−4. DOI: https://doi.org/10.1111/wre.12350
McMaster G.S., Wilhelm W.W. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87: 291−300. DOI: http://dx.doi.org/10.1016/S0168-1923(97)00027-0
Mighani F., Khordostan Z. 2019. Study of some environmental factors on seed germination of Lepyrodiclis holosteoides. Applied Biology 31: 127−138. DOI: https://doi.org/10.22051/ jab.2019.4239
Minbashi Moeini M. 2011. Preparation of weed species distribution of Iran wheat fields with GIS. Iranian Research Institute Plant Protection (IRIPP), 300 pp. (in Persian)
Mirtaheri S.M., Vazan S., Baghestani M.A., Paknejad F., Tohidloo G. 2015. Investigation effect of flooding and burial depth on germination and percentage of Lepyrodiclis holosteoides Fenzl. Biological Forum 7: 1840−1844.
Puttha R., Goggi A.S., Gleason M.L., Jogloy S., Kesmala T., Vorasoot N., Banterng P., Patanothai A. 2014. Pre-chill with gibberellic acid overcomes seed dormancy of Jerusalem artichoke. Agronomy for Sustainable Development 34: 869−878. DOI: https://doi.org/10.1007/s13593-014-0213-x
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available on: http://www.R-project.org/
Rabeler R.K. 1992. Lepyrodiclis holosteoides (Caryophyllaceae), “New” to North America. Madroño 39: 240−242.
Ranal M.A., Santana D.Gd. 2006. How and why to measure the germination process? Brazilian Journal of Botany 29: 1−11.
Ranal M.A., Santana D.Gd., Ferreira W.R., Mendes-Rodrigues C. 2009. Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany 32: 849−855.
Rezvani M., Zaefarian F. 2016. Hoary cress (Cardaria draba (L.) Desv.) seed germination ecology, longevity and seedling emergence. Plant Species Biology 31: 280−287. DOI: https://doi.org/10.1111/1442-1984.12113
Rossini Oliva S., Leidi E.O., Valdés B. 2009. Germination responses of Erica andevalensis to different chemical and physical treatments. Ecological Research 24: 655. DOI: https://doi.org/10.1007/s11284-008-0536-7
Salazar-Gutierrez M., Johnson J., Chaves-Cordoba B., Hoogenboom G. 2013. Relationship of base temperature to development of winter wheat. International Journal of Plant Protection 7: 741−762.
Sarhaddi M., Rastgoo M., Ezadi Darbandi E., Ghanbari A., Baghestani M. 2019. The study of dormancy, germination and emergence biological aspects of jagged-chickweed (Lepyrodiclis holosteoides) seeds. Iranian Journal of Weed Science 15: 77−95. DOI: https://doi.org/10.22092/ijws.2019.1501.06
Tester M., Morris C. 2006. The penetration of light into soil. Plant, Cell & Environment 10: 281−286. DOI: https://doi.org/10.1111/j.1365-3040.1987.tb01607.x
Wei S., Zhang C., Chen X., Li X., Sui B., Huang H., Cui H., Liu Y., Zhang M., Guo F. 2010. Rapid and effective methods for breaking seed dormancy in buffalobur (Solanum rostratum). Weed Science 58: 141−146. DOI: https://doi.org/10.1614/WS-D-09-00005.1
Yaghoubi S., Aghaalikhani M., Ghelavand M., Zand E. 2011. Evaluation of important growth parameters of Lepyrodiclis (Lepyrodiclis holosteoides Fenzl.) under different light densities and nitrogen rates. Iranian Journal of Weed Science 7: 31−45.
Zand E., Nezamabadi N., Baghestani M.A., Shimi P., Mousavi S.K. 2017. A Guide to Chemical Control of Win Iran. JDM Press, Mashhad, Iran, 216 pp.
Go to article

Authors and Affiliations

Mehdi Minbashi Moeini
1
Eshagh Keshtkar
2
Hamidreza Sasanfar
1
Mohammad Ali Baghestani
1

  1. Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
  2. Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

The entomopathogenic fungi (EPF) are characterized as fungi with various functions and numerous mechanisms of action. The ability to establish themselves as beneficial endophytes provides a sound ground for their exploitation in crop production and protection. The purpose of this study was to evaluate the entomopathogenic strains of Beauveria bassiana and Mertarhizium anisopliae for their potential to colonize cucumber plants under natural environmental conditions in non-sterile substrate. Seed submersion in conidial suspension resulted in systemic colonization of cucumber plants 28 days post-inoculation. Scanning electron microscope micrographs demonstrated that conidia of both fungal genera have adhered, germinated and directly penetrated seed epidermal cells 24 hr post-submersion. Treated with EPF cucumber seeds resulted seedlings tissues of which contained a significantly higher amount of total phenolic compounds and unchanged amounts of chlorophylls. There was a significant negative effect of endophytic colonization on the Aphis gossypii population size after 5 days of exposure as well as a positive effect on cucumber growth and development 7 weeks post-inoculation. We suggest that reduction of A. gossypii population on mature Cucumis sativus plants is caused via an endophyte-triggered improvement of plant’s physiological parameters such as enhanced plant growth with subsequent increase in plant resistance through augmented production of phenolic compounds.
Go to article

Bibliography


Ainsworth E.A., Gillespie K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875−877. DOI: 10.1038/nprot.2007.102
Akello J., Sikora R. 2012. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control 61: 215−221. DOI: 10.1016/J.BIOCONTROL.2012.02.007
Akutse K., Maniania N., Fiaboe K., Van Den Berg J., Ekesi S. 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology 6: 293−301. DOI: https://doi.org/10.1016/j.funeco.2013.01.003
Bajan C., Tyrawska D., Popowska-Nowak E., Bienkowski P. 1998. Biological response of Beauveria bassiana strains to heavy metal pollution and their accumulative ability. Ecological Chemistry and Engineering 5 (8−9): 676−685.
Bamisile B.S., Dash C.K., Akutse K.S., Keppanan R., Afolabi O.G., Hussain M., Qasim M., Wang L. 2018. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiological Research 217: 34–50. DOI: https://doi.org/10.1016/j.micres.2018.08.016
Barelli L., Moreira C.C., Bidochka M.J. 2018. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164: 1531–1540. DOI: 10.1099/mic.0.000729.
Barnes J.D., Balaguer L., Manrique E., Elvira S., Davison A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environment 32: 83–100. DOI: http://dx.doi.org/10.1016/0098-8472(92)90034-Y
Behie S.W., Jones S.J., Bidochka M.J. 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology 13: 112–119. DOI: 10.1016/J.FUNECO.2014.08.001
Blackman R.L. 2010. Aphids − Aphidinae (Macrosiphini). Handbook for the Identification of British Insects 2 (7): 1−413.
Blackman R.L., Eastop V.F. 2000. Aphids on the world’s crops: An identification and information guide. John Wiley and Sons, Chichester, UK. XF2006251066.
Braniša J., Jenisova Z., Porubska M., Jomova K., Valko M. 2014. Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. Journal of Microbiology, Biotechnology and Food Sciences 3 (2): 61−64.
Carriere Y., Bouchard A., Bourassa S., Brodeur J. 1998. Effect of endophyte incidence in perennial ryegrass on distribution, host choice, and performance of the hairy chinch bug (Hemiptera: Lygaeidae). Economic Entomology 91: 324–328. DOI: https://doi.org/10.1093/jee/91.1.324
Castillo-Lopez D., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9 (8): e103891. DOI: 10.1371/journal.pone.0103891
Chung I.M., Park Chun J.C., Yun S.J. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science 164: 103–109. DOI: 10.1016/S0168-9452(02)00341-2
Clay K. 1996. Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology 38 (2): 191–201. DOI: https://doi.org/10.1007/BF02515727
Clay K., Marks S., Cheplick G.P. 1993. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74 (6): 1767–1777. DOI: https://doi.org/10.2307/1939935
Clifton E.H., Jaronski S.T., Coates B.S., Hodgson E.W., Gassmann A.J. 2018. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 13 (3): e0194815. DOI: https://doi.org/10.1371/journal.pone.0194815
Daayf F., Ongena M., Boulanger R., El Hadrami I., Belanger R.R. 2000. Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew infected plants with extracts of Reynoutria sachalinensis. Journal of Chemical Ecology 26 (7): 1579−1593. DOI: https://doi.org/10.1023/A:1005578510954
Diaz Napal G.N., Defago M., Valladares G., Palacios S. 2010. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. Journal of Chemical Ecology 36 (8): 898–904. DOI: 10.1007/s10886-010-9823-1
Dugassa-Gobena D., Raps A., Vidal S. 1996. Einfluß von Acremonium strictum auf den Sterolhaushalt von Pflanzen: Ein möglicher Faktor zum veränderten Verhalten von Herbivoren. Mitteilungen aus der Biologischen Bundesanstalt fur Land- und Forstwirtschaft 321: 299.
Furstenberg-Hagg J., Zagrobelny M., Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences 14 (5): 10242–10297. DOI: 10.3390/ijms140510242
Gange A.C., Koricheva J., Currie A.F., Jaber L.R., Vidal S. 2019. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Pathologist 223 (4): 2002–2010. DOI: https://doi.org/10.1111/nph.15859
Gawel N.J., Jarret R.L. 1991. A modified CTAB DNA extraction procedure for musa and ipomoea. Plant Molecular Biology Reporter 9 (3): 262−266. DOI: 10.1007/BF02672076
Gissella M.V., David B.O., James R.B. 2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. Economic Entomology 99 (4): 1104–1111. DOI: 10.1603/0022-0493-99.4.1104
Godfrey L.D., Rosenheim J.A., Goodell P.B. 2000. Cotton aphid emerges as major pest in SVJ cotton. California Agriculture 54 (6): 32–34. DOI: 10.3733/ca.v054n06p26
Gonzalez-Mas N., Sanchez-Ortiz A., Valverde-Garcia P., Quesada- Moraga E. 2019. Effects of endophytic entomopathogenic ascomycetes on the life-history traits of Aphis gossypii Glover and its interactions with melon plants. Insects 10 (6): 165. DOI: 10.3390/insects10060165
Grace S.C., Logan B.A. 2000. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions: Biological Sciences 355 (1402): 1499−1510. DOI: 10.1098/rstb.2000.0710
Gurulingappa P., McGee P.A., Sword G. 2011. Endophytic Lecanicillium lecnii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection 30 (3): 349−353. DOI: 10.1016/J.CROPRO.2010.11.017
Gurulingappa P., Sword G.A., Murdoch G., McGee P.A. 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Bio- Control 55 (1): 34–41. DOI: https://doi.org/10.1016/j.biocontrol.2010.06.011
Hermoso de Mendoza A., Belliure B., Carbonell E.A., Real V. 2001. Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on Citrus clementina. Journal of Economic Entomology 94 (2): 439–444. DOI: https://doi.org/10.1603/0022-0493-94.2.439
Humber R.A. 1997. Fungi: identification. p. 153–185. In: “Manual of Techniques in Insect Pathology” (L.A. Lacey, ed.). Academic Press, London. DOI: https://doi.org/10.1016/B978-012432555-5/50011-7
Ibrahim L., Hamieh A., Ghanem H., Ibrahim S. 2011. Pathogenicity of entomopathogenic fungi from Lebanese soils against aphids, whitefly and non-target beneficial insects. International Journal of Agriculture Sciences 3 (3): 156−164. DOI: 10.9735/0975-3710.3.3.156-164
Ibrahim L., Laham L., Tomma A., Ibrahim S. 2015. Mass production, yield, quality, formulation and efficacy of entomopathogenic Metarhizium anisopliae conidia. British Journal of Applied Sciences and Technology 9 (5): 427−440. DOI: 10.9734/bjast/2015/17882
Ibrahim L., Spackman V.M.T., Cobb A.H. 2001. An investigation of wound healing in sugar beet roots using light and fluorescence microscopy. Annals of Botany 88 (2): 313−320. DOI: https://doi.org/10.1006/anbo.2001.1461
Jaber L.R., Enkerli J. 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control 103: 187–195. DOI: https://doi.org/10.1016/j.biocontrol.2016.09.008
Jaber L.R., Enkerli J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology 27 (1): 28–41. DOI: https://doi.org/10.1080/09583157.2016.1243227
Jaber L.R., Vidal S. 2010. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecological Entomology 35 (1): 25–36. DOI: https://doi.org/10.1111/j.1365-2311.2009.01152.x
Jensen R.E., Enkegaard A., Steenberg T. 2019. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14 (10): 1−13, e0223616. DOI: https://doi.org/10.1371/journal.pone.0223616
Kabaluk J.T., Ericsson J.D. 2007. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal 99 (5): 1377−1381. DOI: 10.2134/agronj2007.0017N
Kumar P.K.R., Hemanth G., Niharika P.S., Kolli S.K. 2015. Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam District. International Journal of Advances in Pharmacy, Biology and Chemistry 4 (2): 484−490.
Lacey L.A. 2016. Entomopathogens used as microbial control agents. p. 3−12. In: “Microbial Control of Insect and Mite Pests” (L.A. Lacey, ed.). Amsterdam: Elsevier/Academic Press. DOI: https://doi.org/10.1016/B978-0-12-803527- 6.00001-9
Lee S.B., Milgroom M.G., Taylor J.W. 1988. A rapid, high yield mini-prep method for isolation of total genomic DNA from fungi. Fungal Genetics Newsletter 35: 23–24. DOI: https://doi.org/10.4148/1941-4765.1531
Liao J., Li X., Wong T.Y., Wang J.J., Khor C.C., Tai ES., Aung T., Teo Y.Y., Cheng C.Y. 2014. Impact of measurement error on testing genetic association with quantitative traits. PloS ONE 9 (1): e87044. DOI: https://doi.org/10.1371/journal.pone.0087044
Liao X., Lovett B., Fang W., St. Leger R.J. 2017. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology 163 (7): 980–991. DOI: 10.1099/mic.0.000494
Lingg A.J., Donaldson M.D. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology 38 (2): 191−200. DOI: https://doi.org/10.1016/0022-2011(81)90122-1
Lopez D.C., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9: e103891. DOI: 10.1371/journal.pone.0104342
Maniania N.K., Sithanantham S., Ekesi S., Ampong-Nyarko K., Baumgärtner J., Löhr B., Matoka C.M. 2003. A field trial of the entomogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci. Crop Protection 22 (3): 553–559. DOI: https://doi.org/10.1016/S0261-2194(02)00221-1
Matallanas B., Lantero E., M’Saad M., Callejas C., Ochando M.D. 2013. Genetic polymorphism at the cytochrome oxidase I gene in mediterranean populations of Batrocera oleae (Diptera: Tephritidae). Applied Entomology 137 (8): 624–630. DOI: https://doi.org/10.1111/jen.12037
McKinnon A.C., Saari S., Moran-Diez M.E., Meyling N.V., Raad M., Glare T.R. 2017. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl 62: 1–17. DOI: 10.1007/s10526-016-9769-5.
Omkar P.A. 2004. Predaceous coccinellids in India: predatorprey catalogue. Oriental Insects 38 (1): 27–61. DOI: 10.1080/00305316.2004.10417373
Ownley B.H., Dee M.M., Gwinn K. 2008. Effect of conidial seed treatment rate of entomopathogenic Beauveria bassiana 11-98 on endophytic colonization of tomato seedlings and control of Rhizoctonia disease. Phytopathology 98 (6): S118−S118.
Pańka D., Piesik D., Jeske M., Musiał N., Koczwara K. 2013. Production of phenolic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a defense reaction towards infection by Fusarium poae and Rhizoctonia solani. p. 124−125. In: “Endophytes for Plant Protection: the State of the Art” (C. Schneider, C. Leifert, F. Feldmann, eds.). Deutsche Phytomedizinische Gesellschaft, Braunschweig.
Pathan A.K., Bond J., Gaskin R.E. 2010. Sample preparation for SEM of plant surfaces. Materials Today 12 (1): 32−43. DOI: 10.1016/S1369-7021(10)70143-7
Perea-Domínguez X.P., Hernández-Gastelum L.Z., Olivas- -Olguin H.R., Espinosa-Alonso L.G., Valdez-Morale M., Medina-Godoy S. 2018. Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. Journal of Food Science and Technology 55 (9): 3453–3461. DOI: https://doi.org/10.1007/s13197-018-3269-9
Pereira R.M., Stimac J.L., Alves S.B. 1993. Soil antagonism affecting the dose − response of workers of the red imported fire ant, Solenopsis invicta, to Beauveria bassiana conidia. Journal of Invertebrate Pathology 61 (2): 156−161. DOI: https://doi.org/10.1006/jipa.1993.1028
Petrini O., Fisher P.J. 1987. Fungal endophytes in Salicornia perennis. Transactions of the British Mycological Society 87 (4): 647−651. DOI: https://doi.org/10.1016/S0007-1536-(86)80109-7
Pineda A., Zheng S.-J., van Loon J.J.A., Pieterse C.M.J., Dicke M. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science 15 (9): 507–514. DOI: https://doi.org/10.1016/j.tplants.2010.05.007
Powell W.A., Klingeman W.E., Ownley B.H., Gwinn K.D. 2009. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science 44 (4): 391−396. DOI: https://doi.org/10.18474/0749-8004-44.4.391
Rajab L., Ahmad M., Gazal I. 2020. Endophytic establishment of the fungal entomopathogen, Beauveria bassiana (Bals.) Vuil., in cucumber plants. Egyptian Journal of Biological Pest Control 30: 143. DOI: https://doi.org/10.1186/s41938-020-00344-8
Raps A., Vidal S. 1998. Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interactions. Oecologia 114 (4): 541–547. DOI: 10.1007/s004420050478
Rebijith K.B., Asoka R., Krishna V., Krishna Kumar N.K., Ramamurth V.V. 2012. Development of species-specific markers and molecular differences in mitochondrial and nuclear DNA sequences of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae). Florida Entomologist 95 (3): 674−682. DOI: 10.1653/024.095.0318
Rodriguez R.J., White Jr. J.F., Arnold A.E., Redman R.S. 2009. Fungal endophytes: Diversity and functional roles. New Phytologist 182 (2): 314–330. DOI: http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
Russo M.L., Pelizza S.A., Cabello M.N., Stenglein S.A., Scorsetti A.C. 2015. Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Science and Technology 25 (4): 475−480. DOI: 10.1080/09583157.2014.982511
Saari S., Helander M., Faeth S.H. 2010. The effects of endophytes on seed production and seed predation of tall fescue and meadow fescue. Microbial Ecology 60: 928–934. DOI: https://doi.org/10.1007/s00248-010-9749-8
Saikkonen K., Lehtonen P., Helander M., Koricgeva J., Faeth S.H. 2006. Model systems in ecology: dissecting the endophyte grass literature. Trends in Plant Science 11 (9): 428−433. DOI: 10.1016/j.tplants.2006.07.001
Sánchez-Rodríguez A.R., Del Campillo M.C., Quesada-Moraga E. 2015. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae 197: 193–202. DOI: https://doi.org/10.1016/j.scienta.2015.09.029
Sasan R.K., Bidochka M.J. 2012. The insect-pathogenic fungus Metarhezium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany 99 (1): 101−107. DOI: 10.3732/ajb.1100136
Schulz B., Boyle C. 2005. Fungal endophyte continuum. Mycological Research 109 (6): 661–686. DOI: https://doi.org/10.1017/S095375620500273X
Shaalan R., Ibrahim L. 2019. Entomopathogenic fungal endophytes: can they colonize cucumber plants? p. 853−860. In: “Book of Proceedings of the IX International Scientific Agriculture Symposium AGROSYM 2018”. 04−07 October 2018, Bosnia and Herzegovina.
Shi X.G., Zhu Y.K., Xia X.M., Qiao K., Wang HY., Wang KY. 2012. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover). Journal of Food, Agriculture and Environment 10 (2): 1227−1230.
Skinner M., Parker B.L., Kim J.S. 2014. Role of entomopathogenic fungi in integrated pest management. p. 169–191. In: “Integrated Pest Management: Current Concepts and Ecological Perspectives” (D.P. Abrol, ed.). Academic Press, San Diego. DOI: https://doi.org/10.1016/B978-0-12-398529-3.00011-7
Song H., Chen J., Staub J., Simon P. 2010. QTL analyses of orange color and carotenoid content and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.). Acta Horticulturae 871: 607−614. DOI: 10.17660/ACTAHORTIC.2010.871.83
Stoetzel M.B., Miller G.L., O’Brien P.J., Graves J.B. 1996. Aphids (Homoptera: Aphididae) colonizing cotton in the United States. Florida Entomologist 79 (2): 193−205. DOI: 10.2307/3495817
Tefera T., Vidal S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54: 663−669. DOI: 10.1007/s10526-009-9216-y
Tucker S.L., Talbot N.J. 2001. Surface attachment and pre- -penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology 39: 385–417. DOI: 10.1146/annurev.phyto.39.1.385
Ullrich C.I., Koch E., Matecki C., Schäfer J., Burkl T., Rabenstein F., Kleespies R.G. 2017. Detection and growth of endophytic entomopathogenic fungi in dicot crop plants. Journal für Kulturpflanzen 69 (9): 291–302. DOI: 10.1399/JfK.2017.09.02
Umboh S.D., Salaki C.L., Tulung M., Mandey L.C., Maramis R.T.D. 2016. The isolation and identification of fungi from the soil in gardens of cabbage were contaminated with pesticide residues in subdistrict Modoinding. International Journal of Research in Engineering and Science 4 (7): 25−32.
Vandre W. 2013. Cucumber production in greenhouses. University of Alaska Fairbanks Cooperative Extension Service. Available on: www.uaf.edu/ces
Vega F.E. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110 (1): 4–30. DOI: https://doi.org/10.1080/00275514.2017.1418578
Vega F.E., Goettel M.S., Blackwell M., Chandler D., Jackson M.A., Keller S., Koike M., Maniania N.K., Monzón A., Ownley B.H. et al. 2009. Fungal entomopathogens: New insights on their ecology. Fungal Ecology 2 (4): 149–159. DOI: https://doi.org/10.1016/j.funeco.2009.05.001
Vega F.E., Meyling N.V., Luangsa-Ard J.J., Blackwell M. 2012. Fungal entomopathogens. p. 171–220. In: “Insect Pathology” 2nd ed. (F.E. Vega, H.K. Kaya, eds.). Academic Press, San Diego. DOI: 10.1016/B978-0-12-384984-7.00006-3
Vega F.E., Posada F., Aime M.C., Pava-Ripolli M., Infante F., Rehner S.A. 2008. Entomopathogenic fungal endophytes. Biological Control 46 (1): 72–82. DOI: https://doi.org/10.1016/j.biocontrol.2008.01.008
Vidal S., Jaber L. 2015. Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science 109 (1): 46−54. Vincent C., Goettel M.S., Lazarovits G. (eds.) 2007. Biological Control: A Global Perspective. CAB International/ AAFC, Wallingford, United Kingdom. DOI: 10.1079/9781845932657.0000
Wagner B.L., Lewis L.C. 2000. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 66 (8): 3468−3473. DOI: 10.1128/aem.66.8.3468-3473.2000
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, San Diego. DOI: http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Wilson D. 1995. Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73: 274−276. DOI: https://doi.org/10.2307/3545919
Wraight S.P., Inglis G.D., Goettel M.S. 2007. Fungi. p. 223−248. In: “Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pest”. 2nd ed. (L.A. Lacey, H.K. Kaya, eds.). Springer, Dordrecht, the Netherlands.
Wu Z.H., Wang T.H., Huang W., Qu Y.B. 2001. A simplified method for chromosome DNA preparation from filamentous fungi. Mycosystema 20 (4): 575–577.
Go to article

Authors and Affiliations

Roshan S. Shaalan
1 2
ORCID: ORCID
Elvis Gerges
3
Wassim Habib
3
Ludmilla Ibrahim
2

  1. Department of Plant Protection, University of Forestry, Sofia, Bulgaria
  2. Department of Plant Protection, Lebanese University, Beirut, Lebanon
  3. Department of Plant Protection, Lebanese Agricultural Research Institute, Lebanon
Download PDF Download RIS Download Bibtex

Abstract

The effect of Ageratina adenophora on pathological characteristics of the liver and lungs as well as serum biochemical parameters in horses were investigated. Ten horses without ingestion history of Ageratina adenophora were classified into the control group, and 10 poisoned but survived horses with 3 months ingestion history were set as the case group. Results showed that serum AST, ALT, ALP, magnesium and phosphorus were elevated significantly, while creatinine was decreased remarkably. Hematoxylin and eosin staining of liver tissues showed diffuse swelling or destruction of hepatocytes, narrowing or atrophy of the hepatic sinusoids, and little lymphocytic infiltration; lung tissues presented destroyed alveoli and inflammatory cell infiltration.
Go to article

Bibliography


Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180: 31-43.

Jie F, Hu YC, Chen WH, Weng JH, Hu LW, Zhen S, He YJ, Quan M, Wang Y, Ren ZH (2018) Dosage-dependent effects of Eupatorium adenophorum on Saanen goat blood levels and the histopathology of several organs. Pratacul Sci 2: 11.

O’Sullivan BM (1979) Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 55: 19-21.

O’Sullivan BM (1985) Investigations into Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 62: 30-32.

Pessoa CR, Pessoa AF, Maia LA, Medeiros RM, Colegate SM, Barros SS, Soares MP, Borges AS, Riet-Correa F (2013) Pulmonary and hepatic lesions caused by the dehydropyrrolizidine alkaloid-producing plants Crotalaria juncea and Crotalaria retusa in donkeys. Toxicon 71: 113-120.

Rhiouani H, El-Hilaly J, Israili ZH, Lyoussi B (2008) Acute and sub-chronic toxicity of an aqueous extract of the leaves of Herniaria glabra in rodents. J Ethnopharmacol 118: 378-386.

Sun W, Zeng C, Yue D, Liu S, Ren Z, Zuo Z, Deng J, Peng G, Hu Y (2019) Ageratina adenophora causes spleen toxicity by inducing oxida-tive stress and pyroptosis in mice. R Soc Open Sci 6: 190127.
Go to article

Authors and Affiliations

X.L. Gu
1
F.Y. Dai
1
X. Xiao
1
G.Z. Li
2
L.M. Zhang
1
W.J. Qu
1

  1. College of Veterinary Medicine, Yunnan Agricultural University, Jin Hei Road No.65, Panlong District, 650051, Kunming, P.R. China
  2. College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

In recent years there have been a growing number of reports on applying viruses in oncological treatment. In the present study, we demonstrated for the first time that animal virus EHV-1 productively replicates in the human adenocarcinoma cell line (A549) without the need for adaptation. Real-time PCR analysis and immunofluorescence assay showed that EHV-1 could infect and causes lysis of human lung cancer cells. According to our results, we can assume that EHV-1 has oncolytic potential.
Go to article

Bibliography


Chodkowski M, Cymerys J, Słońska A, Bańbura M (2017) Oncolytic animal viruses and their applications in anti-cancer therapies. Med Weter 73: 4-9.

Courchesne MJ, White MC, Stanfield BA, Frampton AR (2012) Equine herpesvirus type 1-mediated oncolysis of human glioblastoma multi-forme cells. J Virol 86: 2882-2886.

Cymerys J, Dzieciątkowski T, Słońska A, Bierla J, Tucholska A, Chmielewska A, Golke A, Bańbura MW (2010) Equine herpesvirus type 1 (EHV-1) replication in primary murine neurons culture. Pol J Vet Sci 13: 701-708.

Cymerys J, Słońska A, Brzezicka J, Tucholska A, Chmielewska A, Rola J, Bańbura MW (2016) Replication kinetics of neuropathogenic and non-neuropathogenic equine herpesvirus type 1 (EHV-1) strains in primary murine neurons and ED cell line. Pol J Vet Sci 19: 777-784.

Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Nat Acad Sci 99: 9864-9869.

Liu BL, Robinson M, Han ZQ (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10: 292-303.

Słońska A, Cymerys J, Godlewski MM, Bańbura MW (2016) Application of scanning cytometry and confocal-microscopy-based image analysis for investigation the role of cytoskeletal elements during equine herpesvirus type 1 (EHV-1) infection of primary murine neurons. J Virol Met 237:1-9.

White MC, Frampton AR Jr (2013) The histone deacetylase inhibitor valproic acid enhances equine herpesvirus type 1 (EHV-1)-mediated oncolysis of human glioma cells. Cancer Gene Ther 20: 88-93.
Go to article

Authors and Affiliations

M. Chodkowski
1 2
A. Słońska
1
M. Bartak
1
M.W. Bańbura
1
J. Cymerys
1

  1. Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  2. Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present study aimed to investigate the impact of age, season and ejaculation on ram testicular blood flow and echotexture. The survey was conducted biweekly on 7 Chios rams for one year, including breeding and non-breeding periods. The rams were divided into 2 age groups: 3 rams 2-6 years old (mature) and 4 rams 9-13 years old (old). Hemodynamic indices [Pulsatility index (PI), Resistive index (RI), End-diastolic velocity (EDV), testicular artery Diameter (D), Time-averaged maximum velocity (TAVM), Blood flow volume (BFV)] and echotexture parameters [Mean value (MV), Contrast (Con), Gray value distribution (GVD), Run length distribution (RunLD), Long run emphasis (LRunEm), Entropy (Ent), Correlation (Cor), Standard deviation (StD), Gray variance (GV) and Gradient mean value (GMV)] were evaluated in each testis before and after ejaculation. Ejaculation did not affect testes blood flow or echotexture (p>0.05). PI and RI were higher in the breeding period compared to the non-breeding period, for both testes (p<0.001). Left testis GV and Cor before ejaculation were lower (p=0.01) and higher (p=0.03), respectively, in the breeding compared to the non-breeding period. Left testis D (p=0.005) and BFV (p<0.001) were higher in old compared to mature rams after ejaculation. Right testis Con (p=0.03) and Cor (p=0.05) before ejaculation were higher in old rams, whereas right testis Ent after ejaculation was higher in mature rams (p=0.05). In conclusion, testicular blood flow and echotexture are affected by season and ram age, but not by ejaculation.
Go to article

Bibliography


Ahmadi B, Lau CP, Giffin J, Santos N, Hahnel A, Raeside J, Christie H, Bartlewski P (2012) Suitability of epididymal and testicular ultraso-nography and computerized image analysis for assessment of current and future semen quality in the ram. Exp Biol Med 237: 186-193.

Allison WJ, Barr LL, Massot JR, Berg PG, Krasner BH, Garra BS (1994) Understanding the process of quantitative ultrasonic tissue charac-terization. Radiographics 14: 1099-1108.

Andrade AK, Soares AT, Freitas FF, Silva SV, Pena-Alfaro CE, Batista AM, Guerra MM (2014) Testicular and epididymal ultrasonography in Santa Inês lambs raised in Brazil. Anim Reprod 11: 110-118.

Aschkenasy SV, Muntwyler J, van Der Loo B, Oechslin E, Jenni R (2005) Texture analysis in digitally acquired echocardiographic images: The effect of JPEG compression and video storage. Ultrasound Med Biol 31: 361-366.

Batissaco L, Celeghini EC, Pinaffi FL, de Oliveira BM, de Andrade AF, Recalde EC, Fernandes CB (2013) Correlations between testicular hemodynamic and sperm characteristics in rams. Braz J Vet Res Anim Sci 50: 384-395.

Boyd A, Pozor MA, Bailey CS, Verstegen J (2006) Effect of seasonality on testicular blood flow in mature stallions. Anim Reprod Sci 94: 144-145.

Camela ES, Nociti RP, Santos VJ, Macente BI, Murawski M, Vicente WR, Bartlewski PM, Oliveira ME (2019) Changes in testicular size, echotexture and arterial blood flow associated with the attainment of puberty in Dorper rams raised in a subtropical climate. Reprod Dom Anim 54: 131-137.

Chandolia RK, Bartlewski PM, Omeke BC, Beard AP, Rawlings NC, Pierson RA (1997) Ultrasonography of the developing reproductive tract in ram lambs: effects of a GnRH agonist. Theriogenology 48: 99-117.

Cook JL, Dewbury K (2000) The changes seen on high-resolution ultrasound in orchitis. Clin Radiol 55: 13-18.

Davies Morel MC (2008) Equine reproductive physiology, breeding and stud management. 3rd ed., Wallingford, UK: CAB International.

DesCôteaux L (2010) Practical atlas of ruminant and camelid reproductive ultrasonography. 1st ed., Willey-Blackwell, USA.

Galloway MM (1975) Texture analysis using gray level run lengths. Comp Graph Im Proc 4: 172-179.

Giffin JL, Bartlewski PM, Hahnel AC (2014) Correlations among ultrasonographic and microscopic characteristics of prepubescent ram lamb testes. Exp Biol Med 239: 1606-1618.

Gouletsou PG (2017) Ultrasonographic examination of the scrotal contents in rams. Small Rumin Res152: 100-106.

Gouletsou PG, Amiridis GS, Cripps PJ, Lainas T, Deligiannis K, Saratsis P, Fthenakis GC (2003) Ultrasonographic appearance of clinically healthy testicles and epididymides of rams. Theriogenology 59: 1959-1972.

Hedia MG, El-Belely MS, Ismail ST, El-Maaty AM (2019) Monthly changes in testicular blood flow dynamics and their association with testicular volume, plasma steroid hormones profile and semen characteristics in rams. Theriogenology 123: 68-73.

Marai IF, El-Darawany AA, Fadiel A, Abdel-Hafez MA (2007) Physiological traits as affected by heat stress in sheep-A review. Small Ru-min Res 71: 1-12.

Mittwoch U (1988) Ethnic differences in testicle size: A possible link with the cytogenetics of true hermaphroditism. Hum Reprod 3: 445-449.

Nailon HW (2010) Texture analysis methods of medical image characterization. Biomedical Imaging. ISBN: 978-953-307-071-1, InTech.

Ntemka A, Kiossis E, Boscos C, Theodoridis A, Kourousekos G, Tsakmakidis I (2018) Effects of testicular hemodynamic and echogenicity changes on ram semen characteristics. Reprod Dom Anim 53: 50-55.

Ntemka A, Kiossis E, Boscos C, Theodoridis A, Kourousekos G, Tsakmakidis I (2019) Impact of old age and season on Chios ram semen quality. Small Rumin Res 178: 15-17.

Nutrient Requirements of Sheep (1985) 6th ed., National Academy Press.

Pitas Ι (2010) Digital image processing. 2nd ed., Private edition.

Pozor MA (2007) Evaluation of testicular vasculature in stallions. Clin Tech Equine Pract 6: 271-277.

Pratt WK (1978) Digital image processing. New York, NY, Willey.

Samir H, Nyametease P, Nagaoka K, Watanabe G (2018) Effect of seasonality on testicular blood flow as determined by color Doppler ultra-sonography and hormonal profiles in Shiba goats. Anim Reprod Sci 197: 185-192.

Sarlós P, Egerszegi I, Balogh O, Molnár A, Cseh S, Rátky J (2013) Seasonal changes of scrotal circumference, blood plasma testosterone concentration and semen characteristics in Racka rams. Small Rumin Res 111: 90-95.

Tapping CR, Cast JE (2008) Scrotal ultrasound: a pictorial review. Ultrasound 16: 226-233.

Turner OR (2007) Pathogenesis, Diagnosis, and Management of Testicular Degeneration in Stallions. Clin Tech Equine Pract 4: 278-284.

Valckx FM, Thijssen JM (1997) Characterization of echographic image texture by co-occurrence matrix parameters. Ultrasound Med Biol 23: 559-571.

Vosniakou AG, Doney M, Tsakalof P (1989) A note on the seasonal oestrous period in three breeds of Greek dairy sheep. Anim Sci 49: 147-150.

Go to article

Authors and Affiliations

A. Ntemka
1
E. Kiossis
1
C. Boscos
1
A. Theodoridis
2
M. Patsikas
3
I. Tsakmakidis
1

  1. Clinic of Farm Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Voutyra 11, 54627, Thessaloniki, Greece
  2. Laboratory of Animal Production Economics, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, P.O. Box 410, 54124 Thessaloniki, Greece
  3. Laboratory of Diagnostic Imaging, Clinic of Companion Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Voutyra 11, 54627, Thessaloniki, Greece
Download PDF Download RIS Download Bibtex

Abstract

This study aims to determine the potential of Kebar grass extract in reducing the impact of liver damage in mice offspring ( Mus musculus) from parent exposed to carbofuran during lactation period. 42 lactation mice ( Mus musculus) used in the study were divided into seven groups, each group consisting of six mice. Carbofuran, Kebar grass extract, and vitamin C are administered orally on days 1 to 14 after birth. This group consisted of K (aquadest), P1 (carbofuran 1/4 LD50 0.0125 mg/day), P2 (carbofuran 1/8 LD50 0.00625 mg/day), P3 (Kebar grass extract 3.375 mg (0.2 ml) + carbofuran 1/4 LD50), P4 (Kebar grass extract 3.375 mg (0.2 ml) + carbofuran 1/8 LD50), P5 (vitamin C 5 mg (0.2 ml) + carbofuran 1/4 LD50), and P6 (vitamin C 5 mg (0.2 ml) + carbofuran 1/8 LD50). On the 15th day after birth, mice were sacrified and their liver taken for microscopic examination with hematoxilin and eosin staining. The scoring data were analyzed using Kruskal-Wallis and Mann-Whitney test. The result showed significant different (p<0.05) among the treatment groups. Mean of P4 in degeration is (1.13), necrosis (1.13) and inflamation (0.73), while the mean of P6 in degeneration is (2.20), necrosis (2.73) and inflamation (1.93). The conclusion of this research is giving Kebar grass extract is more effective in reducing degeneration, necrosis and inflammatory cell’s infiltration than vitamin C in in mice offspring ( Mus musculus) from parent exposed to carbofuran during lactation period.
Go to article

Bibliography


Addor FA (2017) Antioxidants in dermatology. An Bras Dermatol 92: 356-362.

Arimbi A, Azmijah, Darsono R, Plumerriastuti H, Widiyatno TV, Legowo D (2015) Veterinary general pathology textbook. 2nd ed., Airlang-ga University Press, Surabaya.

Chandra D, Tripathi UN, Srivastava S, Amit Swaroop A (2011) Carbofuran induced biochemical toxicity in mice; Protective role of Momor-dica charantia. Eur J Exp Biol 1: 106-112.

Chin AM, Hill DR, Aurora M, Spence JR (2017) Morphogenenis and maturation of embryonic and postnatal intestine. Semin Cell Dev Biol 66: 81-93.

Gbadegesin MA, Owumi SE, Akinseye V, Odunola OA (2013) Evaluation of hepatotoxicity and clastogenicity of carbofuran in male Wistar rats. Food Chem Toxicol 5: 115-119.

Gibson J (2003) Modern physiology and anatomy for nurses. 2nd ed., Jakarta, EGC Press.

Gupta RC (1994) Carbofuran Toxicity. J Toxicol Environ Health 43: 383-418.

Jaiswal SK, Siddiqi NJ, Sharma B (2013) Carbofuran induced oxidative stress in rat heart: Ameliorative effect of vitamin C. ISRN Oxid Med: 11: 1-10.

Kaur M, Sandhir R (2006) Comparative effects of acute and chronic carbofuran exposure on oxidative stress and drug-metabolizing enzymes in liver. Drug Chem Toxicol 29: 415-421.

Keegan J, Whelan M, Danaher M, Crooks S, Sayers R, Anastasio A, Elliott C, Brandon D, Furey A, O’Kennedy R (2009) Bensimidazole carbamate residues in milk: Detection by Surface Plasmon Resonance-biosensor, using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for extraction. Anal Chim Acta 654: 111-119.

Luqman EM, Sudiana, IK, Darmanto W, Achmad AB, Widjiati (2019) Mouse (Mus musculus) embryonic cerebral cortex cell death caused by carbofuran insecticide exposure. J Vet Res 63: 413-421.

Maslachah L, Sugihartuti R, Kurniasanti R (2008) The inhibition of vitamin E (α- tocopherol) antioxidant to superoxide radical reactive oxygen species (O2-) production on the white rat (Rattus norvegicus) stressed by an electric shock. Vet J 24: 22- 26.

Otieno PO, Lalah JO, Virani M, Jondiko IO, Schram KW (2010) Carbofuran and its toxic metabolites provide forensic evidence for furadan exposure in vultures (Gyps africanus) In Kenya. Bull Environ Contam Toxicol 84: 536-544.

Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5: 1-15.

Prior RL, Cao G (2000) Antioxidant phytochemicals in fruits and vegetables; diet and health implications. Hortic Sci 35: 588-592.

Rai DK, Rai PK, Rizvi SI, Watal G, Sharma B (2009) Carbofuran-induced toxicity in rats: protective role of vitamin C. Exp Toxicol Pathol 61: 531-535.

Sayuti K, Rina Y (2015) Natural and synthetic antioxidants. 1st ed., Andalas University Press, Padang.

Trisetiyono Y, Pramono N, Hidayat ST, Widjiati (2019) The differences of malondialdehyde serum level, expression of tumor necrosis factor alpha and vascular endothelial growth factor, and the area of endometriotic implants in administration of Kebar grass extract (Biophytum peter-sianum) and green tea extract (Camelia sinensis) to mice. Trad Med J 24: 169-177.

Unitly AJA, Inara C (2011) Potential of kebar grass (Biophytum Petersianum Klotzsch) in improving reproductive performance. Proceedings of the National Seminar Universitas Patimura, Ambon, Indonesia, pp 329-333.
Go to article

Authors and Affiliations

N.A. Yulitasari
1
S. Hidanah
1
Widjiati
1
V.F. Hendrawan
2
E.M. Luqman
1

  1. Department of Veterinary Science Faculty of Veterinary Medicine Universitas Airlangga Kampus C Unair, Jalan Mulyorejo Surabaya 60115 Indonesia
  2. Department of Animal Reproduction Faculty of Veterinary Medicine, Universitas Brawijaya, Jl. MT. Haryono No.169, Ketawanggede, Lowokwaru, Kota Malang, 65144 Indonesia
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to assess the clinical efficacy of pentoxifylline (PTX) and L-glutamine (L-Gln) treatment on ischemia and reperfusion (I/R) injury in the abomasal tissue, acute phase response (APR), oxidative stress (OS), cytokine response, hemostatic, and coagulation disorders in the 96-h period before and after surgery in displaced abomasum (DA) cases. The study sample consisted of 48 dairy cows with DA that were categorized into four groups as group S (Sham group) (9 Left displaced abomasum (LDA)+3 Right displaced abomasum (RDA), group P (PTX) (10 LDA+2 RDA), group G (L-Gln) (10 LDA+2 RDA), and group P+G (PTX+L-Gln) (10 LDA+2 RDA). Acute-phase protein (Haptoglobin), oxidative stress indicators (malondialdehyde, nitric oxide, and glutathione), cytokines (tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β), coagulation factors (D-Dimer, Antithrombin (ATIII), Thrombin-antithrombin complex, Plasminogen activator inhibitor-1), and enzyme activities (lactate dehydrogenase, gamma- -glutamyl transferase, sorbitol dehydrogenase, glutamate dehydrogenase, adenosine deaminase, myeloperoxidase, and creatine phosphokinase) in blood serum samples and coagulometric analyses of blood plasma were performed in samples taken before the operation and at 30 and 60 min and 2, 5, 10, 24, 48, 72, and 96 h after the operation. In DA cases, while post-operative treatment procedures with PTX and L-Gln were effective in decreasing APR and OS, these were ineffective in prohibiting the inflammatory response coordinated by cytokines. For the treatment and prevention of I/R injury in the DA cases, PTX and L-Gln procedures hold promise with their effects on APR, OS, and hemostatic dysfunction. Additional treatment procedures are required for the suppression of inflammatory response, and the effectiveness of preconditioning treatment may be evaluated.
Go to article

Bibliography


Abilés J, Moreno-Torres R, Moratalla G, Castaño J, Pérez Abúd R, Mudarra A, Machado Ma J, Planells E, Pérez de la Cruz A (2008) Effects of supply with glutamine on antioxidant system and lipid peroxidation in patients with parenteral nutrition. Nutr Hosp 23: 332-339.

Acosta S, Bjorck M (2003) Acute thrombo-embolic occlusion of the superior mesenteric artery: a prospective study in a well-defined population. Eur J Vasc Endovasc 26: 179-183.

Altinyollar H, Boyabatli M, Berberoglu U (2006) D-dimer as a marker for early diagnosis of acute mesenteric ischemia. Thromb Res 117: 463-467.

An ZM, Dong XG, Guo Y, Zhou JL, Qin T (2015) Effects and clinical significance of pentoxifylline on the oxidative stress of rats with dia-betic nephropathy. Huazhong Univ Sci Technolog Med Sci 35: 356-361.

Bian GX, Li GG, Yang Y, Liu RT, Ren JP, Wen LQ, Guo SM, QJ Lu (2008) Madecassoside reduces ischemia-reperfusion injury on regional ischemia induced heart infarction in rat. Biol Pharm Bull 31: 458-463.

Bick RL (1994) Disseminated intravascular coagulation: objective criteria for diagnosis and management. Med Clin N Am 78: 511-543.

Cano CP, Bermudez VP, Atencio HE, Medina MT, Anilsa A, Souki A, Molina OM, Restrepo H, Vargas ME, Núñez M, Ambard M, Toledo A, Contreras F, Velasco M (2003) Increased serum malondialdehyde and decreased nitric oxide within 24 hours of thrombotic stroke onset. Am J Ther 10: 473-476.

Cevrioglu AS, Yilmaz S, Koken T, Tokyol C, Yilmazer M, Fenkci IV (2004) Comparison of the effects of low intra-abdominal pressure and ischaemic preconditioning on the generation of oxidative stress markers and inflammatory cytokines during laparoscopy in rats. Hum Reprod 19: 2144-2151.

Cöl R, Durgun Z (2011) Effect of recombinant interleukin-10 on some haematological and biochemical parameters in a rat endotoxaemic mod-el. Acta Vet Hung 59: 237-245.

Collatos C, Barton MH, Schleef R, Prasse KW, Moore JN (1994) Regulation of equine fibrinolysis in blood and peritoneal fluid based on a study of colic cases and induced endotoxaemia. Equine Vet J 26: 474-481.

Constable PD, Miller GY, Hoffsis GF, Hull BL, Rings DM (1992a) Risk factors for abomasal volvulus and left abomasal displacement in cattle. Am J Vet Res 53: 1184-1192.

Constable PD, St-Jean G, Koenig GR, Hull BL, Rings DM (1992b) Abomasal luminal pressure in cattle with abomasal volvulus or left dis-placed abomasum. J Am Vet Med Assoc 201: 1564-1568.

Corum O, Corum DD, Atik O, Er A, Uney K (2019) Pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite after intravenous administration of increasing doses to sheep. Am J Vet Res 80: 702-708.

Coster J, McCauley R, Hall J (2004) Glutamine: metabolism and application in nutrition support. Asia Pacific J Clin Nutr 13: 25-31.

Delgado MA, Monreal L, Armengou L, Ríos J, Segura D (2009) Peritoneal D-dimer concentration for assessing peritoneal fibrinolytic activity in horses with colic. J Vet Intern Med 23: 882-889.

Di Loria A, Piantedosi D, Cortese L, Roperto S, Urraro C, Paciello O. Guccione J, Britti D, Ciaramella P (2012) Clotting profile in cattle showing chronic enzootic haematuria (CEH) and bladder neoplasms. Res Vet Sci 93: 331-335.

Doll K (2015) Abomasal displacement in dairy cattle: a hereditary disease?. Vet J 205: 329-330.

Doll K, Sickinger M, Seeger T (2009) New aspects in the pathogenesis of abomasal displacement. Vet J 181: 90-96.

El-Ghoneimi A, Cursio R, Schmid-Alliana A, Tovey M, Lasfar A, Michiels JF, Rossi B, Gugenheim J (2007) Inhibition of tumor necrosis factor alpha gene transcription by pentoxifylline reduces normothermic liver ischemia-reperfusion injury in rats. Transplant Proc 39: 1761-1764.

Estrin MA, Wehausen CE, Jessen CR, Lee JA (2006) Disseminated intravascular coagulation in cats. J Vet Intern Med 20: 1289-1290.

Fürll M, Dabbagh MN, Fürll B, Sattler T (2004) The behaviour of superoxide dismutase (SOD) in serum of cows with abomasal displace-ment (DA). Dtsch Tierarztl Wochenschr 111: 7-13.

Gando S, Hayakawa M (2016) Pathophysiology of trauma-induced coagulopathy and management of critical bleeding requiring massive transfusion. Semin Thromb Hemost 42: 155-165.

Geishauser T (1995) Abomasal displacement in the bovine a review on character, occurrence, aetiology and pathogenesis. Zentralbl Veteri-naermed A 42: 229-251.

Grosche A, Fürll M, Wittek T (2012) Peritoneal fluid analysis in dairy cows with left displaced abomasum and abomasal volvulus. Vet Rec 170: 413.

Guiqi G (2011) Pre-treatment with glutamine attenuates lung injury in rats subjected to intestinal ischaemia-reperfusion. Injury 42: 72-77.

Hammerman C, Goldschmidt D, Caplan MS, Kaplan M, Schimmel MS, Eidelman AI, Branski D, Hochman A (1999) Amelioration of ischemia-reperfusion injury in rat intestine by pentoxifylline-mediated inhibition of xanthine oxidase. J Pediatr Gastr Nutr 29: 69-74.

Hirvonen J, Pyörala S. (1998) Acute-phase response in dairy cows with surgically-treated abdominal disorders. Vet J 155: 53-61.

Ikeda S, Zarzaur BL, Johnson CD, Fukatsu K, Kudsk KA (2002) Total parenteral nutrition supplementation with glutamine improves survival after gut ischemia/reperfusion. Jpen-Parenter Enter 26: 169-173.

Irmak K, Turgut K (2005) Disseminated intravascular coagulation in cattle with abomasal displacement. Vet Res Commun 29: 61-68.

Jaillardon L, Barthélemy A, Goy-Thollot I, Pouzot-Nevoret C, Fournel-Fleury C (2012) Mammary gland carcinoma in a dog with peripheral blood and bone marrow involvement associated with disseminated intravascular coagulation. Vet Clin Pathol 41: 261-265.

Jurczuk M, Brzoska MM, Moniuszko-Jakoniuk J (2007) Hepatic and renal concentrations of vitamins E and C in lead and ethanol-exposed rats. an assessment of their involvement in the mechanisms of peroxidative damage. Food Chem Toxicol 45: 1478-1486.

Karakurum MÇ, Albay MK, Şahinduran Ş, Sezer K (2009) Coagulation parameters in cattle with left displacement of abomasum. Kafkas Univ Vet Fak Derg 15: 293-296.

Karatepe O, Gulcicek OB, Ugurlucan M, Adas G, Battal M, Kemik A, Kamali G, Altug T, Karahan S (2009) Curcumin nutrition for the prevention of mesenteric ischemia-reperfusion injury: an experimental rodent model. Transplant Proc 41: 3611-3616.

Kayano M, Kida K (2015) Identifying alterations in metabolic profiles of dairy cows over the past two decades in Japan using principal component analysis. J Dairy Sci 98: 8764-8774.

Kloek J, Levi M, Heger M (2010) Cholestasis enhances liver ischemia/reperfusion-induced coagulation activation in rats. Hepatol Res 40: 204-215.

Levi M, van der Poll T (2010) Inflammation and coagulation. Crit Care Med 38: 26-34.

Maden M, Ozturk AS, Bulbul A, Avci GE, Yazar E (2012) Acute-phase proteins, oxidative stress, and enzyme activities of blood serum and peritoneal fluid in cattle with abomasal displacement. J Vet Intern Med 26: 1470-1475.

Maden M, Yildiz R, Çöl R, Arican M, Ider M, Garip M, Tras B (2018) The evaluation of hemostatic dysfunctionand disseminated intravas-cular coagulationin dairy cows with abomasal displacement. Pol J Vet Sci 21: 769-778.

Mallick IH, Yang W, Winslet MC, Seifalian AM (2004) Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 49: 1359-1377.

Moreira CN, Souza SN, Barini AC, Araújo EG, Fioravanti MCS (2012) Serum γ-glutamyltransferase activity as an indicator of chronic liver injury in cattle with no clinical signs. Arq Bras Med Vet Zootec 64: 1403-1410.

Ogurtan Z, Izci C, Ceylan C, Ok M (2003) Activated partial thromboplastin time and prothrombin time in cows with left displacent of aboma-sum. Indian Vet J 80: 429-431.

Ok M, Şen İ, Güzelbekteş H, Boydak M, Er C, Aydogdu U, Yildiz R (2013) The importance of concentrations of sorbitol dehydrogenase and glutamate dehydrogenase and B-Mode ultrasonographic examination in the diagnosis of hepatic lipidosis in dairy cows. Kafkas Univ Vet Fak Derg 19: 117-123.

Pyörala S, Kokkonen T, Pyörala E (1993) Bovine intestinal surgery in field conditions. Part III. Patients submitted to the Ambulatory Clinic of the College of Veterinary Medicine (1981-1992) a retrospective study. Finnish Veterinary Journal 99: 374-380.

Radwińska J (2010) Effect of the BVD-MD virus on coagulation and fibrinolytic systems in dairy cows. Bull Vet Isnt Pulawy 54: 293-298.

Reeves MJ, Vansteenhouse J, Stashak TS, Yovich JV, Cockerell G (1990) Failure to demonstrate reperfusion injury following ischaemia of the equine large colon using dimethyl sulphoxide. Equine Vet J 22: 126-132.

Roland L, Drillich M, Iwersen M (2014) Hematology as a diagnostic tool in bovine medicine. J Vet Diagn Invest 26: 592-598.

Sener G, Akgun U, Satıroğlu H, Topaloğlu U, Keyer-Uysal M (2001) The effect of pentoxifylline on intestinal ischemia/reperfusion injury. Fund Clin Pharmacol 15: 19-22.

Sexton MF, Buckley W, Ryan E (2007) A study of 54 cases of left displacement of the abomasum. Ir Vet J 60: 605-609.

Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82: 291-295.

Sobiech P, Radwińska J, Krystkiewicz W, Snarska A, Stopyra A (2008) Changes in the coagulation profile of cattle with left abomasal displacement. Pol J Vet Sci 11: 301-306.

Sobiech P, Rekawek W, Ali M, Targoński R, Zarczyńska K, Snarska A, Stopyra A (2013) Changes in blood acid-base balance parameters and coagulation profile during diarrhea in calves. Pol J Vet Sci 16: 543-549.

Sørensen JV (1996) Haemostatic activation after surgery and trauma, relationship to clinicopathological findings. Thesis, 1996. Aarhus Uni-versitet, Denmark.

Souza DG, Ferreira FL, Fagundes CT, Amaral FA, Vieira AT, Lisboa RA, Andrade MVM, Trifilieff A, Teixeira MM (2007) Effects of PKF242-484 and PKF241-466, novel dual inhibitors of TNF-alpha converting enzyme and matrix metalloproteinases, in a model of intestinal reperfusion injury in mice. Eur J Pharmacol 571: 72-80.

Stojević Z, Piršljin J, Milinković-Tur S, Zdelar-Tuk M, Beer Ljubić B (2005) Activities of AST, ALT and GGT in clinically healthy dairy cows during lactation and in the dry period. Veterinarski Arhiv 75: 67-73.

Stokol T (2012) Laboratory diagnosis of disseminated intravascular coagulation in dogs and cats: the past, the present, and the future. Vet Clin North Am Small Anim Pract 42: 189-202.

Tazuke Y, Wasa M, Shimizu Y, Wang HS, Okada A (2003) Alanyl-glutamine-supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats. Jpen J Parenter Enteral Nutr 27: 110-115.

Uney K, Tras B, Corum O, Yildiz R, Maden M (2019) Pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite following intra-venous administration in cattle. Trop Anim Health Prod 51: 435-441.

Van Winden SC, Kuiper R (2003) Left displacement of the abomasum in dairy cattle: recent developments in epidemiological and etiological aspects. Vet Res 34: 47-56.

Wasa M, Soh H, Shimizu Y, Fukuzawa M (2005) Glutamine stimulates amino acid transport during ischemia- reperfusion in human intestinal epithelial cells. J Surg Res 23: 75-81.

Wittek T, Grosche A, Locher LF, Fürll M (2010) Diagnostic accuracy of D-dimer and other peritoneal fluid analysis measurements in dairy cows with peritonitis. J Vet Intern Med 24: 1211-1217.

Zadnik TA (2003) Comparative study of the hemato-biochemical parameters between clinically healthy cows and cows with displacement of the abomasum. Acta Vet Beograd 53: 297-309.

Zhang F, Tong L, Qiao H, Dong X, Qiao G, Jiang H, Sun X (2008) Taurine attenuates multiple organ injury induced by intestinal ischemia reperfusion in rats. J Surg Res 149: 101-109.
Go to article

Authors and Affiliations

M. Maden
1
R. Yildiz
2
R. Çöl
3
M. Arican
4
M. Ider
1
K. Parlak
4
B. Tras
5

  1. Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
  2. Department of Internal Medicine, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey
  3. Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
  4. Department of Surgery, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
  5. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, 42003, Konya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The shock is a general, non-specific pathological process, caused by the sudden action of very brutal pathogens, a situation for which the body has no reserves for qualitative and quantitative compensation-adaptation. The objective of our experiment was to make an evaluation of the changes in some hematological and biochemical parameters of the blood, during some hypovolemic evolutions, in the rabbits. Twenty New Zealand White rabbits we used. An IDEXX ProCyte Dx Hematology Analyzer was applied to perform hematological determinations. An IDEXX VetTest Chemistry Analyzer was used to perform blood biochemistry determinations. The data obtained were statistically analyzed, calculating the Media and Standard Deviation (SD), using the Microsoft Excel application. At the same time, the statistical significance of the differences between the batches was calculated based on the t test (Student) using the Microsoft Excel application. The study revealed a decrease in the number of red blood cells and leukocytes per unit volume of blood (p<0.05) in the case of group 2 and an increase in glucose, triglycerides (p<0.05).
Experimental hypovolemia induced in the conditions of our experiment determined: an obvious posthemorrhagic anemia, a significant leukopenia mainly 6 hours after the production of hypovolemic shock and a significant hyperglycemia, manifested mainly 12 hours after the induction of hypovolemia.
Go to article

Bibliography


Bailey JM (1985) Prostaglandins, leukotrienes, and lipoxins: biochemistry, mechanism of action, and clinical applications. Bailey JM (ed) Plenum Press, New York and London, pp 705.

Capone A, Safar P, Stezoski SW, Peitzman A, Tisherman S (1995) Uncontrolled hemorrhagic shock outcome model in rats. Resuscitation 29: 143-152.

Cho SD, Holcomb JB, Tieu BH, Englehart MS, Morris MS, Karahan ZA, Underwood SA, Muller PJ, Prince MD, Medina L, Sondeen J, Shults C, Duggan M, Tabbara M, Alam HB & Schreiber MA (2009) Reproducibility of an animal model simulating complex combat-related injury in a multiple-institution format. Shock 31: 87-96.

Ghiţă M, Cotor G, Viţălaru AB, Brăslaşu D (2015) Comparative study on the effect of prednisone and dexamethasone on leukocytes in rabbit. J Biotechnology 208: 92.

Gutierrez G, Reines HD, Wulf-Gutierrez ME (2004) Clinical review: hemorrhagic shock. Crit Care 8: 373-381.

Hamar J, Kovach AG, Reivich M, Nyary I, Durity F (1979) Effect of phenoxybenzamine on cerebral blood flow and metabolism in the ba-boon during hemorrhagic shock. Stroke 10: 401-407.

Holzrichter D, Burk A, Korn U, Burk R (1983) The rise of blood sugar as parameter for the degree of severity of hemorrhagic shock in the rabbit. Arch Orthop Trauma Surg 102: 73-77.

Holzrichter D, Meiss L, Behrens S, Mickley V (1987) The rise of blood sugar as an additional parameter in traumatic shock. Arch Orthop Trauma Surg 106: 319-322.

Humphreys PW, Joels N (1985) Arterial pressure maintenance after haemorrhage in the pregnant rabbit. J Physiol 366: 17-25.

Kovách AG, Mitsányi A, Monos E, Nyáry I, Sulyok A (1972) Control of organ blood flow following hemorrhage. Adv Exp Med Biol 33: 1-17.

Majde JA (2003) Animal models for hemorrhage and resuscitation research. J Trauma 54: 100-105.

Nunez TC, Cotton BA (2009) Transfusion therapy in hemorrhagic shock. Curr Opin Crit Care 15: 536-541.

Porter AE, Rozanski EA, Sharp CR, Dixon KL, Price LL, Shaw SP (2013) Evaluation of the shock index in dogs presenting as emergencies. J Vet Emerg Crit Care (San Antonio) 23: 538-544.

Porth CM (2005) Pathophysiology: Concepts of Altered Health States. 7th ed., Philadelphia: Lippincott, Williams & Wilkins.

Rao KV. (1999) Multiple comparison test procedures. In: Balakrishnan N (ed.). Biostatistics, 1st ed., New Delhi, India, Jaypee Brothers Medical Publishers, p 273-284.

Slauson OS, Cooper BJ. (2002) Mechanisms of diseases. 3rd ed., Mosby (Elsevier), Philadelphia.

Sondeen JL, Dubick MA, Holcomb JB, Wade CE (2007) Uncontrolled hemorrhage differs from volume- or pressure-matched controlled hemorrhage in swine. Shock 28: 426-433.

Tabsh K, Rudelstorfer R, Nuwayhid B, Assali NS (1986) Circulatory responses to hypovolemia in the pregnant and nonpregnant sheep after pharmacologic sympathectomy, Am J Obstet Gynecol 154(2): 411-419.

Tsukamoto T, Pape HC (2009) Animal models for trauma research: what are the options? Shock 31: 3-10.

Yu YH, Zhao KS, Gong SP (2008) Effect of limited volume resuscitation on hemodynamic changes in pregnant rabbit with hemorrhagic shock. Zhonghua Fu Chan Ke Za Zhi 43: 50-53.

Weiss A, Loh G (1999) Allgemeine Pathologie. Fachhschaft Tiermedizin Skript. Iustus Liebig Universitat Giessen.
Go to article

Authors and Affiliations

G. Cotor
1
G. Zagrai
2
G. Gâjâilă
1
M. Ghiță
1
A.M. Ionescu
1
A. Damian
2
A.M. Zagrai (Măierean)
2
Ș. Dragosloveanu
3
D.C. Cotor
2 3

  1. Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Bucharest-050097, Splaiul Independentei 105, Bucharest, Romania
  2. Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca-400372, Calea Manastur 3-5, Cluj-Napoca, Romania
  3. Clinical Hospital of Orthopedics, Traumatology and Osetoarticular TB “Foișor”, Bucharest-030167, Bd. Ferdinand nr. 35-37, Romania
Download PDF Download RIS Download Bibtex

Abstract


Austenitic chromium-nickel cast steel is used for the production of machine parts and components operating under corrosive conditions combined with abrasive wear. One of the most popular grades is the GX2CrNi18-9 grade, which is used in many industries, and mainly in the chemical, food and mining industries for tanks, feeders, screws and pumps.
To improve the abrasion resistance of chromium-nickel cast steel, primary titanium carbides were produced in the metallurgical process by increasing the carbon content and adding titanium, which after alloy solidification yielded the test castings with the microstructure consisting of an austenitic matrix and primary carbides evenly distributed in this matrix.
The measured hardness of the samples in both as-cast conditions and after solution heat treatment was from 300 to 330HV0.02 and was higher by about 40-70 units compared to the reference GX2CrNi18-9 cast steel, which had the hardness of 258HV0.02.
The abrasive wear resistance of the tested chromium-nickel cast steel, measured in the Miller test, increased by at least 20% (with the content of 1.3 wt% Ti). Increasing the Ti content in the samples to 5.3 and 6.9 wt% reduced the wear 2.5 times compared to the common GX2CrNi18-9 cast steel.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings –applications. Kraków: Fotobit. (in Polish).
[2] Calliari, L., Brunelli, K., Dabala, M., & Ramous, E. (2009). Measuring secondary phases in duplex stainless steel. The Journal of The Minerals, Metals & Materials Society. JOM. 61, 80-83.
[3] Chen, T.H., & Yang, J.R. (2001). Effects of solution treatment and continuous cooling on σ phase precipitation in a 2205 duplex stainless steel. Materials Science and Engineering A. 313(1-2), 28-41.
[4] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[5] Jimenez, J.A., Carsi, M., Ruano, A. & Penabla, F. (2000). Characterization of a δ/γ duplex stainless steel. Journal of Materials Science. 35, 907-915.
[6] Voronenko, B.I. (1997). Austenitic-ferritic stainless steels: A state-of-the-art review. Metal Science and Heat Treatment. 39, 428-437.
[7] Pohl, M., Storz, O. & Glogowski, T. (2007). Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials Characterization. 58(1), 65-71.
[8] Gunn, R. N. (1999). Duplex Stainless Steels: Microstructure, Properties and Applications. Woodhead Publishing.
[9] Patil, A., Tambrallimath, V. & Hegde, A. (2014). Corrosion Behaviour of Sintered Austenitic Stainless Steel Composites. International Journal of Engineering Research & Technology. 3(12), 14-17.
[10] PN-EN 10088-1/2005(U).
[11] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122.
[12] Głownia, J., Kalandyk, B. & Camargo, M. (2002). Wear resistance of high Cr-Ni alloys in iron ore slurry conditions. Inżynieria Materiałowa (Material Engineering). 5, 694-697.
[13] Tęcza, G. (2019). Selected wear resistant cast steels with Ti, Nb, V, W and Mo carbides. Katowice-Gliwice: Wydawnictwo Komisja Odlewnictwa PAN. (in Polish).
[14] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[15] Charchalis, A., Dyl, T., Rydz, D., Stradomski, G. (2018). The effect of burnishing process on the change of the duplex cast steel surface properties. Inżynieria Materiałowa. 6(226), 223-227.
[16] Dyja, D., Stradomski, Z., Kolan, C. & Stradomski, G. (2012). Eutectoid Decomposition of δ-Ferrite in Ferritic-Austenitic Duplex Cast Steel - Structural and Morphological Study. Materials Science Forum. 706-709, 2314-2319.
Go to article

Authors and Affiliations

Grzegorz Tęcza
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

The possibilities of producing ductile cast iron with the addition of 1 ÷ 3% of tungsten are presented. Tungsten from waste chips from mechanical processing was introduced into the liquid cast iron in the form of specially prepared cartridges. Correct dissolution of tungsten in the metal bath was found, and there were no casting defects in the alloy. The form of carbide precipitates in the microstructure of cast iron was determined and the influence of increasing tungsten content on the reduction of the number of graphite precipitates in the structure was determined. Impact tests show that this property degrades with increasing tungsten content as opposed to hardness which increases. It was found that the addition of tungsten from machining waste is a potential source of enrichment of cast iron with this element.
Go to article

Bibliography

[1] Volkov, A.N. (1975). Abrasive wear resistance of manganese cast iron with tungsten. Metal Science and Heat Treatment. 17, 412-414.
[2] Duarte, L.I., Lourenço, N., Santos, H., Santos, J. & Sá, C. Tungsten carbide powder inserts in ductile iron. Materials Science Forum. 455-456, 267-270.
[3] Kopyciński, D. (2009). Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear. Archives of Foundry Engineering. 9(4), 109-112.
[4] Podrzucki, Cz. (1991). Cast Iron. The Structure, Property, Application. T.1 and T.2, Kraków: Ed. ZG STOP. (in Polish).
[5] Fraś, E. (2003). Crystallization of metals. Warsaw: WNT. (in Polish).
[6] Dean, N.F., Mortensen, A. & Flemings, M.C. (1994). Microsegregation in cellular solidification. Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science. A 25A, 2295-2301. DOI: 10.1007/BF 02652329.
[7] Wołczyński, W., Guzik, E., Kania, B. & Wajda, W. (2010). Structures field in the solidifying cast iron roll. Archives of Foundry Engineering. 10(spec.1), 41-46.
[8] Studnicki, A. (2008). Effect of boron carbide on primary crystallization of chromium cast iron. Archives of Foundry Engineering. 8(1), 173-176.
[9] Myszka, D. (2021). Cast Iron–Based Alloys. In: Rana, R. (eds) High-Performance Ferrous Alloys. Springer, Cham., 153-210.
Go to article

Authors and Affiliations

D. Myszka
1
Justyna Kasińska
ORCID: ORCID
A. Penkul
1

  1. Department of Metal Forming and Foundry, Warsaw University of Technology, Narbutta 85, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article discusses the possibility of using a two-track X-S control card on a Mesas device to control the production process parameters of piston castings for combustion engines. The research was carried out at the Federal-Mogul Gorzyce company. The basis for estimating the variability of the process results from the mean value (X) is the standard deviation (S). Thanks to specially designed measuring stations that use algorithms to calculate process indicators (Cp and/or Cpk) and their visualization, the cost of manufacturing products and the number of non-compliant products (scraps) are reduced. The process stability was investigated by measuring the key dimensions of the piston casting in a specific population and a given measurement cycle. Taking into account the precision of details, their technical condition, and surface quality, the production machines and cutting tools were optimally selected. It has been found that an important element of the effective use of Statistical Process Control (SPC) are trained/experienced operators who can correctly interpret the resulting control chart forms.
Go to article

Bibliography

[1] Czarski, A., Satora, K. (1998). Statistical process control. Teaching materials. Cracow: Stat-Q-Mat s.c.
[2] Dahlgaard, J.J., Kristensen, K., Kanji, G.K. (2002). Podstawy zarządzania jakością. Warsaw: PWN.
[3] Grant, E.L., Leavenworth, R.S. (1996). Statistical quality control. McGraw-Hill.
[4] Hamrol, A. (2005). Quality management with examples. Warsaw: PWN.
[5] Kończak, G. (2000). Application of control cards in quality control in the course of production. Katowice: Publishing House of the University of Economics in Katowice.
[6] Kończak, G. (2007). Statistical methods in controlling the quality of production. Katowice: Publishing House of the University of Economics in Katowice.
[7] Maliński, M. (2004). Computer aided verification of statistical hypotheses. Katowice: Publishing House of the Silesian University of Technology in Gliwice.
[8] Chrapoński, J. (2010). Fundamentals of statistical processes control. Katowice: Publishing House of the Silesian University of Technology in Gliwice.
[9] Statistical Process Control SPC Second edition. AIAG, Berlin-London, July 2005, p. 57.
[10] Polska Norma PN-ISO 8258+AC1: Karty kontrolne Shewharta. PKN, 1996.
[11] Quality Assurance for Suppliers. Quality Management in the Automotive Industry. Production process and product approval (PPA). 5th edition, Berlin 2012.
Go to article

Authors and Affiliations

A. Krępa
1
J. Piątkowski
2
ORCID: ORCID

  1. Federal-Mogul Gorzyce Sp. z o.o., Odlewników 52, 39-432 Gorzyce, Poland
  2. Silesian University of Technology, Krasińskiego 8 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to determine the morphology of graphite that occurs in vermicular cast iron, both in the as-cast state and after heat treatment including austenitization (held at a temperature of 890 °C or 960 °C for 90 or 150 min) and isothermal quenching (i.e. austempering, at a temperature of 290 °C or 390 °C for 90 or 150 min). In this case, the aim here was to investigate whether the heat treatment performed, in addition to the undisputed influence of the cast iron matrix on the formation of austenite and ferrite, also affects the morphology of the vermicular graphite precipitates and to what extent. The investigations were carried out for the specimens cut from test coupons cast in the shape of an inverted U letter (type IIb according to the applicable standard); they were taken from the 25mm thick walls of their test parts. The morphology of graphite precipitates in cast iron was investigated using a Metaplan 2 metallographic microscope and a Quantimet 570 Color image analyzer. The shape factor F was calculated as the quotient of the area of given graphite precipitation and the square of its perimeter. The degree of vermicularization of graphite was determined as the ratio of the sum of the graphite surface and precipitates with F <0.05 to the total area occupied by all the precipitations of the graphite surface. The examinations performed revealed that all the heat-treated samples made of vermicular graphite exhibited the lower degree of vermicularization of the graphite compared to the corresponding samples in the as-cast state (the structure contains a greater fraction of the nodular or nearly nodular precipitates). Heat treatment also caused a reduction in the average size of graphite precipitates, which was about 225μm2 for the as-cast state, and dropped to approximately 170-200 μm2 after the austenitization and austempering processes.
Go to article

Bibliography

[1] Sorelmetal, On the nodular cast iron. (2006). Warsaw: Ed. Metals & Minerals Ltd.
[2] Tupaj, M., Orłowicz, A. W., Mróz, M., Kupiec, B., et al. (2020). Ultrasonic Testing of Vermicular Cast Iron Microstructure. Archives of Foundry Engineering. 20(4), 36-40. DOI: 10.24425/afe.2020.133345.
[3] Guzik, E. & Kleingartner, T. (2009). A study on the structure and mechanical properties of vermicular cast iron with pearlitic-ferritic matrix. Archives of Foundry Engineering. 9(3), 55-60.
[4] Zhang, M.X., Pang, J.C., Qiu, Y., Li, S.X., et al. (2020). Influence of microstructure on the thermo-mechanical fatigue behavior and life of vermicular graphite cast irons. Materials Science & Engineering A. 771, 138617.DOI: 10.1016/J.MSEA.2019.138617.
[5] Zhang, Y., Guo, E., Wang, L., Zhao, S., et al. (2020). Effect of the matrix structure on vermicular graphite cast iron properties. International Journal of Materials Research. 111(5), 379-384. DOI: 10.3139/146.111891.
[6] Qiaoqin, G., Zhong, Y., Ding, G., Dong, T. et al. (2019). Research on the oxidation mechanism of vermicular graphite cast iron. Materials. 12, 3130; DOI: 10.3390/ma12193130.
[7] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2000). Foundry. Warsaw: ED. Science and Technology.
[8] Kosowski, A. (2008). Foundations of foundry. Krakow: Ed. Scientific Akapit.
[9] Soiński, M.S. & Warchala, T. (2006). Cast iron moulds for glassmaking industry. Archives of Foundry. 6(19), 289-294.
[10] Warchala, T. (1988). Metallurgy and iron founding. Part 1 The structure and properties of cast iron. Ed. Częstochowa University of Technology.
[11] Andrsova, Z., Volesky, L. (2012). The potential of isothermally hardened iron with vermicular graphite. Comat 2021. Recent trends in structural materials. 21 - 22. 11. 2012, Plzeň, Czech Republic, EU.
[12] Gumienny, G. & Kacprzyk, B. (2018). Copper in Ausferritic Compacted Graphite Iron. Archives of Foundry Engineering. 18(1), 162-166. DOI: 10.24425/118831.
[13] Pytel, A., Gazda, A. (2014) Evaluation of selected properties in austempered vermicular cast iron (AVCI). Transactions of Foundry Research Institute. LIV(4), 23-31. DOI: 10.7356/iod.2014.18.
[14] Andršová, Z., Kejzlar, P., Švec, M. & Skrbek, B. (2017). The effect of heat treatment on the structure and mechanical properties of austempered iron with vermicular graphite. Materials Science Forum. 891, 242-248. DOI: 10.4028/www.scientific.net/MSF.891.242.
[15] Kazazi, A., Montazeri, S.M. & Boutorabi, S.M.A. (2020). The austempering kinetics, microstructural development, and processing window in the austempered, Fe-3.2C-4.8Al compacted graphite cast iron. Iranian Journal of Materials Science and Engineering. 17(4), 46-54. DOI: 10.22068/ijmse.17.4.46.
[16] Jakubus, A., Kostrzewa, J., Ociepa, E. (2021). The influence of parameters of heat treatment on the microstructure and strength properties of the ADI and the AVGI irons. METAL 2021, 30th Anniversary International Conference on Metallurgy and Materials. May 26 - 28, 2021, Brno, Czech Republic, EU (pp.34-39). DOI: 10.37904/metal.2021.4082.
[17] Podrzucki, C. (1991). Cast iron. Structure, properties, applications. vol. 1 and 2, Cracow: Ed. ZG STOP. (in Polish).
[18] Soiński, M.S. & Mierzwa, P. (2011). Effectiveness of cast iron vermicularization including ‘conditioning’ of the alloy. Archives of Foundry Engineering. 11(2), 133-138.
[19] Warchala, T. (1995). Metallurgy and iron founding. Part 2 Cast iron technology. Ed. Czestochowa University of Technology.
[20] Mierzwa, P. & Soiński, M.S. (2010). The effect of thermal treatment on the mechanical properties of vermicular cast iron. Archives of Foundry Engineering. 10(spec.1), 99-102.
[21] Mierzwa, P., Soiński, M.S. (2012). Austempered cast iron with vermicular graphite. 70th World Foundry Congress (WFC 2012): Monterrey, Mexico, April 2012, (pp. 25-27).
[22] Mierzwa, P. & Soiński, M.S. (2014). Austempered cast iron with vermicular graphite. Foundry Trade Journal International. 188(3713), April 2014, 96-98.
[23] Polish Standard PN-EN 1563, Founding. Spheroidal graphite cast iron, (2000).
[24] Soiński, M.S. (1980). Application of shape measurement of graphite precipitates in cast iron in optimising the spheroidizing process. Acta Stereologica. 5(2), 311-317.
Go to article

Authors and Affiliations

M.S. Soiński
1
A. Jakubus
1
ORCID: ORCID
B. Borowiecki
1
P. Mierzwa
2

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
  2. Czestochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The technology of high-pressure die-casting (HPDC) of aluminum alloys is one of the most used and most economical technology for mass production of castings. High-pressure die-casting technology is characterized by the production of complex, thin-walled and dimensionally accurate castings. An important role is placed on the effective reduction of costs in the production process, wherein the combination with the technology of high-pressure die-casting is the possibility of recycling using returnable material. The experimental part of the paper focuses on the analysis of a gradual increase of the returnable material amount in combination with a commercial purity alloy for the production of high-pressure die-castings. The returnable material consisted of the so-called foundry waste (defective castings, venting and gating systems, etc.). The first step of the experimental castings evaluation consisted of numerical simulations, performed to determine the points of the casting, where porosity occurs. In the next step, the evaluation of areal porosity and microstructural analysis was performed on experimental castings with different amounts of returnable material in the batch. The evaluation of the area porosity showed only a small effect of the increased amount of the returnable material in the batch, where the worst results were obtained by the casting of the alloy with 90% but also with 55% of the returnable material in the batch. The microstructure analysis showed that the increase in returnable material in the batch was visibly manifested only by a change in the morphology of the eutectic Si.
Go to article

Bibliography

[1] Ragan, E. (2007). Die casting of metals. Prešov, Slovakia. (in Slovak).
[2] Eperješi, Ľ., Malik, J., Eperješi Š. & Fecko D. (2013) Influence of returning material on porosity of die castings. Manufacturing Technology. 13(1), 36-39. DOI: 10.21062/ujep/x.2013/a/1213-2489/MT/13/1/36.
[3] Gaustad, G., Olivetti, E. A. & Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources Conservation and Recycling. 58, 79-87.
[4] Matejka, M., Bolibruchová, D. & Kuriš, M. (2021). Crystallization of the structural components of multiple remelted AlSi9Cu3 alloy. Archives of Foundry Engineering. 21(2), 41-45. DOI: 10.24425/afe.2021.136096.
[5] Bruna, M., Remišová, A. & Sládek, A. (2019). Effect of filter thickness on reoxidation and mechanical properties of aluminium alloy AlSi7Mg0.3. Archives of Metallurgy and Materials. 3, 1100-1106. DOI: 10.24425/amm.2019.129500.
[6] Bryksi Stunova, B. & Bryksi, V. (2016). Analysis of defects in castings cast by rheocasting method SEED. Archives of Foundry Engineering. 16(3), 15-18. DOI: 10.1515/afe-2016-0041.
[7] Podprocká, R. & Bolibruchová, D. (2017). Iron intermetallic phases in the alloy based on Al-Si-Mg by applying manganese. Archives of Foundry Engineering. 17(3), 217-221. DOI: 10.24425/afe.2020.133321.
[8] Martinec, D., Pastircak, R. & Kantorikova, E. (2020). Using of technology semisolid squeeze casting by different initial states of material. Archives of Foundry Engineering. 20(1), 117-121. DOI: 10.24425/afe.2020.131292.
Go to article

Authors and Affiliations

M. Matejka
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
R. Podprocká
2

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitna 1, 010 26 Zilina, Slovak Republic
  2. Rosenberg-Slovakia s.r.o., Kováčska 38, 044 25 Medzev, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The present study was aimed to evaluate the growth performance and immune response of three genetic lines of Japanese quails. These lines i.e., selected for 4-week body-weight group (WBS), selected for egg number (EBS), and random-bred control (RBC), were selected for three consecutive generations from a base population of 1125 quails. In total, 2700 four-week-old quails from three selected groups were slaughtered in total of four generations (G0 to G3). Effects of selection and generations as well as their interactions were assessed for growth performance and immune response by applying a two-way analysis of variance. Significant means were compared with Duncan’s Multiple Range Test. The statistical analysis showed a significant effect of selection and generations on most of the growth and immune response parameters. WBS in G3 presented significantly higher values of body weight, weight gain, and FCR than RBC and EBS. FCR was better in WBS during G3 than those of EBS and RBC. However, Livability% was highest in RBC while the lowest was noted in G3 of WBS line. Thymus% and spleen% were higher in EBS as compared to RBC and WBS. RBC presented a better B/S ratio and ND titer than those of EBS and WBS. The decreasing trend of ND titer in both lines of WBS and EBS as compared to RBC suggested a decrease in New Castle disease resistance in progressive generations of selection. It was concluded that selection for body weight and egg number has a positive impact on respective traits but negatively affects the immunity in later generations.
Go to article

Bibliography


Ahmad S, Mehmood S, Javed K, Mahmud A, Usman M, Rehman A, Ishaq HM, Hussain J, Ghayas A (2018) Different selection strategies for the improvement of the growth performance and carcass traits of Japanese quails. Braz J Poult Sci 20: 497-506.

Akram M, Hussain J, Sahota AW, Iqbal A, Sultan A (2012) Genetic gain in 4-week body weight through mass selection in 4 close-bred stocks of Japanese quail. Book of Abstracts. 32nd Congress of Zoology, Lahore, Pakistan, pp 140.

Anthony NB, Nestor KE, Bacon WL (1986) Growth curves of Japanese quail as modified by divergent selection for 4 - week body weight. Poult Sci 65: 1825-1833.

Bayyari GR, Huff WE, Rath NC, Balog JM, Newberry LA, Villines JD, Skeeles JK, Anthony NB, Nestor KE (1997) Effect of the genetic selection of turkeys for increased body weight and egg production on immune and physiological responses. Poult Sci 76: 289-296.

Bhatti BM, Sahota AW (1994) Growth performance and carcass quality of different crosses of chickens. Pak Vet J 14: 250-253.

Caron N, Minvielle F, Desmarais M, Poste LM (1990) Mass Selection for 45-Day Body Weight in Japanese Quail: Selection Response, Carcass Composition, Cooking Properties, and Sensory Characteristics. Poult Sci 69: 1037-1045.

Cheema MA, Qureshi MA, Havenstein GB (2003) A comparison of the immune response of a 2001 commercial broiler with a 1957 random-bred broiler strain when fed representative 1957 and 2001 broiler diets. Poult Sci 82: 1519-1529.

Durmus I, Alkan S, Narinc D, Karabag K, Karslı T (2017) Effects of mass selection on egg production on some reproductive traits in Japanese quail. Eur Poult Sci 81: 1-9.

El-Bayomi KM, El-Tarabany MS, Nasr MA, Roushdy EM (2014) Effect of divergent selection for growth on carcass traits in Japanese quails. Zag Vet J 42: 51-56.

El-Nagar SH, Sharaf MM, Mahmoud S, Basha HA (2016) Effect of selection of Japanese quails for rapid growth on immune function. Alex J Vet Sci 49: 85-90.

Faisal BA, Abdel-Fattah SA, El-Hommosany YM, Abdel-Gawad NM, Ali MFM (2008) Immunocompetence, hepatic heat shock protein 70 and physiological responses to feed restriction and heat stress in two body weight lines of Japanese quail. Int J Poult Sci 7: 174-183.

Ghayas A, Hussain J, Mahmud A, Javed K, Rehman A, Ahmad S, Mehmood S, Usman M, Ishaq HM (2017) Productive performance, egg quality, and hatching traits of Japanese quail reared under different levels of glycerin. Poult Sci 96: 2226-2232.

Havenstein GB, Ferket PR, Scheideler SE, Larson BT (1994) Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed “typical” 1957 and 1991 broiler diets. Poult Sci 73: 1785-1794.

Hussain J (2014) Response to Selection for three week body weight in Japanese quail for three generations. Ph.D. Thesis. Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan pp 13.

Hussain J, Akram M, Sahota AW, Javed K, Ahmad HA, Mehmood S, Ahmad S, Sulaman R, Rabbani I, Jatoi AS (2013) Selection for higher three-week body weight in Japanese quail: 1. Effect on growth performance. J Anim Plant Sci 23: 1496-1500.

Hussain J, Akram M, Sahota AW, Javed K, Ahmad HA, Mehmood S, Jatoi AS, Ahmad S (2014) Selection for higher three weeks body weight in Japanese quail: 2. Estimation of genetic parameters. J Anim Plant Sci 24: 869-873.

Jatoi AS, Sahota AW, Akram M, Javed K, Jaspal MH, Hussain J, Mirani AH, Mehmood S (2013) Effect of different body weight categories on the productive performance of four closebred flocks of Japanese quails (Coturnix coturnix japonica). J Anim Plant Sci 23: 7-13.

Kankova Z, Drozdova A, Klobetzova Z, Lichovnikova M, Zeman M (2019) Development and reactivity of the immune system of Japanese quail lines divergently selected for the shape of the growth curve. Br Poult Sci 60: 700-707.

Kapczynski DR, Afonso CL, Miller PJ (2013) Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol 41: 447-453.

Khaldari M, Pakdel A, Yegane M, Javaremi AN, Berg P (2010) Response to selection and genetic parameters of body and carcass weights in Japanese quail selected for 4- week body weight. Poult Sci 89: 1834-1841.

Koenen ME, Boonstra-Blom AG, Jeurissen SH (2002) Immunological differences between layer and broiler-type chickens. Vet Immun Im-munopathol 89: 47-56.

Li Z, Nestor KE, Saif YM, Anderson JW, Patterson RA (2001) Effect of selection for increased body weight in turkeys on lymphoid organ weights, phagocytosis, and antibody responses to fowl cholera and Newcastle disease-inactivated vaccines. Poult Sci 80: 689-694.

Mohammed MS, Gupta BR, Narasimha RG, Rajasekhar RA (2006) Genetic evaluation of the performance of Japanese quails. Indian J Poult Sci 41: 129-133.

Narinç D, Aksoy T (2012) Effects of mass selection based on phenotype and early feed restriction on the performance and carcass characteris-tics in Japanese quails. Kafkas Uni Vet Fak Derg 18: 425-430.

Nestor K, Bacon WL (1982) Divergent selection for body weight and yolk precursor in Cotournix cotournix Japonica. 3. Correlated responses in mortality, reproduction traits and adult body weight. Poult Sci 61: 2137-2142.

Parks JR (1971) Phenomenology of animal growth. NC State Univ, Raleigh.

Paxton H, Anthony NB, Corr SA, Hutchison JR (2010) The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: a comparative study across modern and ancestral populations. J Anat 217: 153-166.

Paxton H, Daley MA, Corr SA, Hutchinson JR (2013) The gait dynamics of the modern broiler chicken: a cautionary tale of selective breed-ing. J Exp Biol 216: 3237-3248.

Pym RAE (1990) Nutritional genetics. In: Poultry breeding and genetics. Crawford RD, Elsevier Amsterdam, pp 209-237.

Rauw WM (2012) Immune response from a resource allocation perspective. Front Genet 3: 267.

Van der Most PJ, De Jong B, Parmentier HK, Verhulst S (2011) Trade-off between growth and immune function: a meta analysis of selection experiments. Funct Ecol 25: 74-80.
Go to article

Authors and Affiliations

A. Rehman
1
J. Hussain
1
A. Mahmud
2
K. Javed
3
A. Ghayas
1
S. Ahmad
1

  1. Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan, 54000
  2. Department of Poultry Production, Faculty of Animal Production and Technology,University of Veterinary and Animal Sciences, Lahore, Pakistan, 54000
  3. Department of Livestock Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan, 54000

This page uses 'cookies'. Learn more