Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A problem is defined to investigate the effect of titanium traces on the corrosion behaviour of low carbon steel. In theory titanium effects surface properties like abrasion resistance in medium carbon steels and corrosion resistance in low as well as medium carbon steels. The present research as indicated by the topic is aimed to experimentally mark the effect of titanium traces on corrosion resistance in the available low carbon steel specimens.
The effect of microalloying with titanium (i.e.0.02wt.%) on the corrosion behavior of low carbon steel in a 3.5 wt.% NaCl solution was studied by electrochemical, SEM, and Raman spectroscopy techniques. The electrochemical results showed that the corrosion of the Ti-bearing steel improved by around 30% compared with the Ti-free steel. The titanium microalloying led to the formation of a more compact corrosion product layer on the metal surface. The SEM analysis showed that the Ti-bearing sample had a smoother surface compared with the Ti-free steel.
Go to article

Bibliography

[1] Yu, C., Wang, H., Gao, X. & Wang, H. (2020). Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment. Journal of Materials Engineering and Performance. 29(9), 6118-6129. DOI: 10.1007/s11665-020-05077-1.
[2] Liu, Z., Gao, X., Du, L., Li, J., Zheng, C. & Wang, X. (2018). Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions. Materials and Corrosion 69(9), 1180-1195. DOI: 10.1002/maco.201810047.
[3] Palumbo, G., Banaś, J., Bałkowiec, A., Mizera, J. & Lelek-Borkowska, U. (2014). Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. J. Solid State Electrochem. 18(11), 2933-2945. DOI: 10.1007/s10008-014-2430-2.
[4] Liu, Z.-G., Gao, X.-H., Du, L.-X., Li, J.-P., Li, P. & Misra, R.D.K. (2017). Comparison of corrosion behaviors of low-alloy steel exposed to vapor-saturated H2S/CO2 and H2S/CO2-saturated brine environments. Materials and Corrosion 68(5), 566-579. https://doi.org/10.1002/maco.201609165.
[5] Rozenfeld, I.L. (1981). Corrosion Inhibitors. New York: McGraw-Hill.
[6] Palumbo, G., Kollbek, K., Wirecka, R., Bernasik, A. & Górny, M. (2020). Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by gum arabic in a CO2-water saline environment for shale oil and gas industry. Materials. 13(19), 4245, 1-24. https://doi.org/10.3390/ma13194245.
[7] Bai, H., Wang, Y., Ma, Y., Zhang, Q., Zhang, N. (2018). Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials. 11(9), 1765, 1-15. DOI: 10.3390/ma11091765.
[8] Cui, L., Kang, W., You, H., Cheng, J., & Li, Z. (2021). Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature solution containing CO2 and NaCl. Journal of Bio- and Tribo-Corrosion. 7(1), 13, 1-14. DOI: 10.1007/s40735-020-00449-5.
[9] Islam, M.A., & Farhat, Z.N. (2015). Characterization of the corrosion layer on pipeline steel in sweet environment. Journal of Materials Engineering and Performance. 24(8), 3142-3158. DOI: 10.1007/s11665-015-1564-4.
[10] Zhang, T., Liu, W., Yin, Z., Dong, B., Zhao, Y., Fan, Y., Wu, J., Zhang, Z. & Li, X. (2020). Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments. Journal of Materials Engineering and Performance. 29(4), 2531-2541. DOI: 10.1007/s11665-020-04738-5.
[11] Weng, L., Du, L. & Wu, H. (2018). Corrosion behaviour of weathering steel with high-content titanium exposed to simulated marine environment. International Journal of Electrochemical Science. 13(6), 5888-5903. DOI: 10.20964/2018.06.61.
[12] Marcus, P. (1994). On some fundamental factors in the effect of alloying elements on passivation of alloys. Corrosion Science. 36(12), 2155-2158. https://doi.org/10.1016/0010-938X(94)90013-2.
[13] Liu, Z., Gao, X., Du, L., Li, J., Li, P. (2016). Corrosion Behaviour of Low-Alloy Steel with Titanium Addition Exposed to Seawater Environment. International Journal Electrochemical Science. 11(8), 6540-6551. DOI: 10.20964/2016.08.25.
[14] Banas, J., Lelek-Borkowska, U., Mazurkiewicz, B. & Solarski, W. (2007). Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water. Electrochim. Acta 52(18), 5704-5714. DOI: 10.1016/j.electacta.2007.01.086.
[15] Palumbo, G., Dunikowski, D., Wirecka, R., Mazur, T., Lelek-Borkowska, U., Wawer, K. & Banaś, J. (2021). Effect of Grain Size on the Corrosion Behavior of Fe-3wt.%Si-1wt.%Al Electrical Steels in Pure Water Saturated with CO2. Materials. 14(17), 5084, 1-19. https://doi.org/10.3390/ma14175084.
[16] Święch, D., Palumbo, G., Piergies, N., Pięta, E., Szkudlarek, A. & Paluszkiewicz, C. (2021). Spectroscopic investigations of 316L stainless steel under simulated inflammatory conditions for implant applications: the effect of tryptophan as corrosion inhibitor/hydrophobicity marker. Coatings. 11(9), 1097. https://doi.org/10.3390/coatings11091097.
[17] Święch, D., Paluszkiewicz, C., Piergies, N., Pięta, E., Kollbek, K. & Kwiatek, W.M. (2020). Micro- and nanoscale spectroscopic investigations of threonine influence on the corrosion process of the modified Fe surface by Cu nanoparticles. Materials. 13(20), 4482, 1-16. https://doi.org/10.3390/ma13204482.
[18] Chen, Z. & Yan, K. (2020). Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. Scientific Reports. 10(1), 16591, 1-8. https://doi.org/10.1038/s41598-020-73799-2.
[19] Kalisz, D. & Żak, P.L. (2015). Modeling of solute segregation and the formation of non-metallic inclusions during solidification of a titanium-containing steel. Kovove Materialy. 53(1), 35-41. DOI: 10.4149/km_2015_1_35.
[20] Podorska, D., Drozdz, P., Falkus, J. & Wypartowicz, J. (2006). Calculations of oxide inclusions composition in the steel deoxidized with Mn, Si and Ti. Archives of Metallurgy and Materials. 51(4), 581-586. ISSN: 1733-3490.
[21] Zhang, M., Li, M., Wang, S., Chi, J., Ren, L., Fang, M. & Zhou, C. (2020). Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316 L stainless steel matrix prepared via laser cladding. Optics and Lasers in Engineering. 128, 106043, 1-10. DOI: 10.1016/j.optlaseng.2020.106043.
[22] Sadeghpour, S., Kermanpur, A. & Najafizadeh, A. (2013). Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment. Materials Science and Engineering: A. 584, 177-183. DOI: 10.1016/j.msea.2013.07.014.
[23] Zhang, L.M., Ma, A.L., Hu, H.X.; Zheng, Y.G., Yang, B.J. & Wang, J.Q. (2017). Effect of microalloying with Ti or Cr on the corrosion behavior of Al-Ni-Y amorphous alloys. Corrosion. 74(1), 66-74. https://doi.org/10.5006/2451.
[24] Mustafa, A.H., Ari-Wahjoedi, B. & Ismail, M.C. (2013). Inhibition of CO2 corrosion of X52 steel by imidazoline-based inhibitor in high pressure CO2-water environment. Journal of Materials Engineering and Performance. 22(6), 1748-1755. DOI: 10.1007/s11665-012-0443-5.
[25] Nie, X.P., Yang, X.H. & Jiang, J.Z. (2009) Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses. Journal of Alloys Compounds. 481(1), 498-502. DOI: 10.1016/j.jallcom.2009.03.022.
[26] Palumbo, G., Górny, M. & Banaś, J. (2019). Corrosion inhibition of pipeline carbon steel (N80) in CO2-saturated chloride (0.5 M of KCl) solution using gum arabic as a possible environmentally friendly corrosion inhibitor for shale gas industry. Journal of Materials Engineering and Performance. 28(10), 6458-6470. https://doi.org/10.1007/s11665-019-04379-3.
[27] Heuer, J.K. & Stubbins, J.F. (1999). An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 41(7), 1231-1243. https://doi.org/10.1016/S0010-938X(98)00180-2.
[28] Mora-Mendoza, J.L., Turgoose, S. (2002) Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corrosion Science. 44(6), 1223-1246. DOI: 10.1016/S0010-938X(01)00141-X.
[29] Criado, M., Martínez-Ramirez, S. & Bastidas, J.M. (2015). A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Construction and Building Materials. 96, 383-390. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.034.
[30] Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X. & Huang, Y. (2011). In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42. Engineering Failure Analysis. 18(8), 1981-1989. DOI: 10.1016/j.engfailanal.2011.03.007.
[31] Święch, D., Paluszkiewicz, C., Piergies, N., Lelek-Borkowska, U. & Kwiatek, W.M. (2018). Identification of corrosion products on Fe and Cu metals using spectroscopic methods. Acta Physica Polonica Series A. 133(4), 286-288. DOI: 10.12693/APhysPolA.133.286.

Go to article

Authors and Affiliations

Ali R. Sheikh
1
ORCID: ORCID

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

‘Dhokra’ or ‘Dokra’ casting is a sophisticated cast metal craft tradition of the Indian subcontinent. It has been practiced by the countryfolk now since the Copper Age. It is a lost wax casting process in the hot clay mold. The technology is such sophisticated that it can produce up to 400 μm thin-walled hollow cast products with complicated and intricate shapes using Brass, Bronze, Copper, and other copper alloys. The investigation was for engraving Brass (2% lead) which is used by Dhokra artisans nowadays. In a field visit during dimensional analysis, one discrepancy was identified. The metal thicknesses of hollow castings are thicker than the thickness of the wax pattern. This cast metal dilation phenomenon is unusual. Shrinkage of metals compared to the pattern dimension is familiar in the casting world. The same abnormalities in the repeated investigation at different sites were observed. All the studies and experiments were organized to explain the reason hidden behind the phenomenon.
Go to article

Bibliography

[1] Mandal, B. & Datta P.K. (2010). Hot mold casting process of ancient east India and Bangladesh. China Foundry. 7(2), 171-177.
[2] Mukherjee, D. (2016). A comparative study of dokra metal craft technology and harappan metal craft technology. Heritage: Journal of Multidisciplinary Studies in Archaeology. 4, 757-768.
[3] Roy, S., Pramanick, A.K. & Datta, P.K. (2020). Precise filling time calculation of thin walled investment casting in hot mold. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42(10), 1-11. https://doi.org/10.1007/s40430-020-02634-6.
[4] Dong, Y.W., Li, X.L., Zhao, Q., Yang, J. & Dao, M. (2017). Modelling of shrinkage during investment casting of thin-walled hollow turbine blades. Journal of Materials Processing Technology. 244, 190-203. https://doi.org/10.1016/j.jmatprotec.2017.01.005.
[5] Cannell, N., Sabau, A.S. (2005). Predicting pattern tooling and casting, dimensions for investment casting, phase II. Final Technical Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
[6] Kroma, A. & Brzęk, P. (2021). Influence of mould material on the mechanical properties of wax models. Archive of Foundry Engineering. 21(3), 48-52. DOI: 10.24425/afe.2021.138664.
[7] Stefanescu, D. S. (2002). Science and engineering of casting solidification. New York: Springer Scienee.
[8] Garbacz-Klempka, A., Suchy, J.S., Kwak, Z., Tokarski, T., Klempka, R. & Stolarczyk, T. (2018). Study of investment casting technology from bronze age. Casting workshop in grzybiany (Southwest Poland). Archives of Metallurgy and Materials. 63(2), 615-624. DOI: 10.24425/122385.
[9] Roy, S., Pramanick, A.K. & Datta, P.K. (2017). Kinetics of liquid metal flow in gating design of investment casting production. Slévárenství. 5-6, 149-154.
[10] Raza, M. (2015). Experimental study of the filling of thin-walled investment castings In 17-4ph stainless steel. Metall Foundry Engineering. 41(2), 85-98. DOI: https://doi.org/10.7494/mafe.2015.41.2.85.
[11] Chang, S. & Stefanescu, D.M. (1996). A model formacrosegregation and its application to Al-Cu castings. Metallurgical and Materials Transaction A. 27(9), 2708-2721.
[12] Roy, S., Pramanick, A.K., Datta P.K. (2021). Quality analysis of tribal casting products by topsis for different gating system. In IOP Conference Series: Materials Science and Engineering, February, 2021 (p. 012014). IOP Publishing. DOI: 10.1088/1757-899X/1080/1/012014.
[13] Stefanescu, D.M.(1998). Casting. ASM handbook Volume: 15. 409-413. ASM International.
[14] Roy, S., Kr Pramanick, A., Kr Datta P. (2022). The effect of gating system on quality of traditional rural metal castings of india. Rrecent trends in industrial and production engineering. Lecture notes in mechanical engineering. (pp. 267-278). Singapore: Springer. https://doi.org/10.1007/978-981-16-3135-1_27. [15] Austral Wright Metals-Ferrous, Non-Ferrous and High Performance Alloys (2008, August). Metal alloys-properties and applications of brass and brass alloys. Retrieved May, 30 2022, from https://www.azom.com/article.aspx?ArticleID=4387
[16] Extra High Leaded Brass UNS C35600. Retrieved May, 30 2022, from https://www.azom.com/article.aspx?ArticleID=6389
[17] Mandal, B. & Datta, P. K. (2010). Understanding alloy design principles and cast metal technology in hot molds for medieval Bengal. Indian Journal of History of Science. 45(1), 101-140.
[18] Rao, P.N. (2019). Manufacturing technology. Vol.- I, (5th ed.) India: McGraw Hill Education.
[19] Horáček, M. (2005). Accuracy of investment casting. Archives of Foundry. 5(15). 121-137.
[20] Indian Minerals Yearbook 2015 (Part- III : Mineral Reviews), (2017, February) Retrieved May 28, 2022, from https://ibm.gov.in/writereaddata/files/02282017165033IMYB2015_Kaolin_28022015_Adv.pdf.
[21] Thampi, C.J. (2013). Soils Of Bankura District (West Bengal) For Land Use Planning. National Bureau of Soil Survey & Land Use Planning, India.
[22] RSP Green Development And Laboratories PVT. LTD, (July 2018) District Survey Report of Bankura District. India.
[23] Chakraborty A. K. (2014). Phase transformation of kaolinite clay. (1st ed.), New York, New Delhi: Springer. DOI 10.1007/978-81-322-1154-9.
[24] Hyslop, A. McMurdo, (1938). The thermal expansion of some clay mineral. Transactions and journal of the British Ceramic Society. 37, 180-186.
[25] Heindl, R.A. & Meng, L.E. (1939). Length changes and endothermic and exothermic effects during heating of flint and aluminous clays. Journal of Research of the National Bureau of Standards. 23(9), 427-441.
[26] Thiel. J. (2011). Thermal expansion of chemically bonded silica sands. AFS Transations - American Foundry Society. 11-116, 1-10.
[27] ISO 1: 2016: Geometrical product specifications (GPS)—standard reference temperature for the specification of geometrical and dimensional properties. https://www.iso.org/standard/67630.html.
[28] Anggono, J. (2005). Mullite ceramics: its properties, structure, and synthesis. Jurnal Teknik Mesin. 7(1), 1-10.
[29] Cannell, N., Sabau, A.S. (2007). Predicting pattern tooling and casting, dimensions for investment casting, phase III. Final Technical Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Go to article

Authors and Affiliations

S. Roy
1
ORCID: ORCID
A.K. Pramanick
1
P.K. Datta
1
ORCID: ORCID

  1. Dept. of Metallurgical and Material Engineering, Jadavpur University, Kolkata-700032, India
Download PDF Download RIS Download Bibtex

Abstract

The process of investment casting of AZ91 magnesium alloy open-cell porosity foams was analysed. A basic investment casting technique was modified to enable the manufacturing of magnesium foams of chosen porosities in a safe and effective way. Various casting parameters (mould temperature, metal pouring temperature, pressure during metal pouring and solidifying) were calculated and analysed to assure complete mould filling and to minimize surface reactions with mould material. The foams manufactured with this method have been tested for their mechanical strength and collapsing behaviour. The AZ91 foams acquired in this research turned out to have very high open porosity level (>80%) and performed with Young’s modulus of ~30 MPa on average. Their collapsing mechanism has turned out to be mostly brittle. Magnesium alloy foams of such morphology may find their application in fields requiring lightweight materials of high strength to density ratio or of high energy absorption properties, as well as in biomedical implants due to magnesium’s high biocompatibility and its mechanical properties similar to bone tissue.
Go to article

Bibliography

[1] Gawdzińska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal- ceramic composite foams. Archives of Foundry Engineering. 17(4), 47-50. DOI: 10.1515/afe-2017-0129.
[2] Bisht, A., Patel, V. K. & Gangil, B. (2019). Future of metal foam materials in automotive industry. In: Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V. (eds), Automotive Tribology. Energy, Environment, and Sustainability (pp. 51-63). Singapore: Springer. DOI: 10.1007/978-981-15-0434-1_4.
[3] Popielarski, P., Sika, R., Czarnecka-Komorowska, D., Szymański, P., Rogalewicz, M. & Gawdzińska, K. (2021). Evaluation of the cause and consequences of defects in cast metal-ceramic composite foams. Archives of Foundry Engineering. 21(1), 81-88. DOI: 10.24425/afe.2021.136082.
[4] Vilniškis, T., Januševičius, T. & Baltrėnas, P. (2020). Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation. Noise Control Engineering Journal. 68(3), 199-208. DOI: 10.3397/1/376817.
[5] Sivasankaran, S. & Mallawi, F.O.M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering. 26, 101095, 1-14. DOI: 10.1016/J.CSITE.2021.101095.
[6] Naplocha, K., Koniuszewska, A., Lichota, J. & Kaczmar, J. W. (2016). Enhancement of heat transfer in PCM by cellular Zn-Al structure. Archives of Foundry Engineering. 16(4), 91-94. DOI: 10.1515/afe-2016-0090.
[7] Lehmann, H., Werzner, E., Malik, A., Abendroth, M., Ray, S. & Jung, B. (2022). Computer-aided design of metal melt filters: geometric modifications of open-cell foams, effective hydraulic properties and filtration performance. Advanced Engineering Materials. 24(2), 1-11. DOI: 10.1002/adem.202100878.
[8] Kryca, J., Iwaniszyn, M., Piątek, M., Jodłowski, P.J., Jędrzejczyk, R., Pędrys, R., Wróbel, A., Łojewska, J. & Kołodziej, A. (2016). Structured foam reactor with CuSSZ-13 catalyst for SCR of NOx with ammonia. Topics in Catalysis. 59(10), 887-894. DOI: 10.1007/S11244-016-0564-4.
[9] Alamdari, A. (2015). Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 27(2), 934-944. DOI: 10.1016/J.JNGSE.2015.09.037.
[10] Anglani, A. & Pacella, M. (2021). Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. Procedia CIRP. 99, 307-312. DOI: 10.1016/j.procir.2021.03.046.
[11] Anglani, A. & Pacella, M. (2018). Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production. Procedia CIRP. 67, 504-509. DOI: 10.1016/J.PROCIR.2017.12.252.
[12] Wang, Y., Jiang, S., Wu, Z., Shao, H., Wang, K., & Wang, L. (2018). Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. Journal of Loss Prevention in the Process Industries. 56, 451-457. DOI: 10.1016/J.JLP.2018.09.009.
[13] Hua, L., Sun, H. & Gu Jiangsu, J. (2016). Foam metal metamaterial panel for mechanical waves isolation. Proceedings of the SPIE, 9802 (id.98021R), 8. DOI: 10.1117/12.2219470.
[14] Marx, J., & Rabiei, A. (2017). Overview of composite metal foams and their properties and performance. Advanced Engineering Materials, 19(11), 1600776. DOI: 10.1002/ADEM.201600776.
[15] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.
[16] Kang, L., Shi, Y. & Luo, X. (2021). Effects of sodium chloride on structure and compressive properties of foamed AZ91 Effects of sodium chloride on structure and compressive properties of foamed AZ91. AIP Advances.11, 015118, 1-4. DOI: 10.1063/5.0033314.
[17] Pelczar, D., Długosz, P., Darłak, P., Nykiel, M., & Hebda, M. (2022). The effect of BN or SiC addition on PEO properties of coatings formed on AZ91 magnesium alloy. Archives of Metallurgy and Materials. 67(1), 147-154. DOI: https://doi.org/10.24425/amm.2022.137483.
[18] Gupta, M., Mui Ling Sharon, N. (2010). Magnesium, Magnesium Alloys, and Magnesium Composites. Hoboken: John Wiley & Sons, Ltd. DOI: 10.1002/9780470905098.
[19] Dong-hui, Y., Shang-run, Y., Hui, W., Ai-bin, M., Jing-hua, J., Jian-qing, C. & Ding-lie, W. (2010). Compressive properties of cellular Mg foams fabricated by melt-foaming method. Materials Science & Engineering A. 527(21-22), 5405-5409. DOI: 10.1016/j.msea.2010.05.017.
[20] Kroupová, I., Radkovský, F., Lichý, P. & Bednářová, V. (2015). Manufacturing of cast metal foams with irregular cell structure. Archives of Foundry Engineering. 15(2), 55-58. DOI: 10.1515/afe-2015-0038.
[21] Shih, T., Wang, J. & Chong, K. (2004). Combustion of magnesium alloys in air. Materials Chemistry and Physics. 85(2-3), 302-309. DOI: 10.1016/j.matchemphys.2004.01.036.
[22] Fujisawa, S., Yonezu, A. (2014). Mechanical property of microstructure in die-cast magnesium alloy evaluated by indentation testing at elevated temperature. Recent Advances in Structural Integrity Analysis: Proceedings of the International Congress (APCF/SIF-2014). Woodhead Publishing Limited. 422-426. DOI: 10.1533/9780081002254.422.
[23] Vyas, A.V. & Sutaria, M.P. (2020). Investigation on influence of the cast part thickness on interfacial mold–metal reactions during the investment casting of AZ91 magnesium alloy. International Journal of Metalcasting. 20(4), 139-144. DOI: 10.1007/s40962-020-00530-2.
[24] Ravi, K.R., Pillai, R.M., Amaranathan, K.R., Pai, B.C. & Chakraborty, M. (2008). Fluidity of aluminum alloys and composites: A review. Journal of Alloys and Compounds. 456(1-2), 201-210. DOI: 10.1016/j.jallcom.2007.02.038.
[25] Voigt, R.C., Bertoletti, J., Kaley, A., Ricotta, S., Sunday, T. (2002). Fillability of thin-wall steel castings. Technical Report. https://doi.org/10.2172/801749.
[26] Dewhirst, B.A. (2008). Castability control in metal casting via fluidity measures: Application of error analysis to Variations in Fluidity Testing. Worcester Polytechnic Institute.
[27] Le, Q., Zhang, Z., Cui, J. & Chang, S. (2009). Study on the filtering purification of AZ91 magnesium alloy. Materials Science Forum. 610-613, 754-757. DOI: 10.4028/www.scientific.net/MSF.610-613.754.
[28] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.

Go to article

Authors and Affiliations

H. Kapłon
1
ORCID: ORCID
A. Dmitruk
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Poland

This page uses 'cookies'. Learn more