Details

Title

Effect of Microalloying with Ti on the Corrosion Behaviour of Low Carbon Steel in a 3.5 wt.% NaCl Solution Saturated with CO 2

Journal title

Archives of Foundry Engineering

Yearbook

2023

Volume

vol. 23

Issue

No 1

Affiliation

Sheikh, Ali R. : AGH University of Science and Technology, Kraków, Poland

Authors

Keywords

Raman spectroscopy ; Carbon dioxide corrosion ; Titanium microalloying ; Electrochemical experiments

Divisions of PAS

Nauki Techniczne

Coverage

5-10

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Yu, C., Wang, H., Gao, X. & Wang, H. (2020). Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment. Journal of Materials Engineering and Performance. 29(9), 6118-6129. DOI: 10.1007/s11665-020-05077-1.
[2] Liu, Z., Gao, X., Du, L., Li, J., Zheng, C. & Wang, X. (2018). Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions. Materials and Corrosion 69(9), 1180-1195. DOI: 10.1002/maco.201810047.
[3] Palumbo, G., Banaś, J., Bałkowiec, A., Mizera, J. & Lelek-Borkowska, U. (2014). Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. J. Solid State Electrochem. 18(11), 2933-2945. DOI: 10.1007/s10008-014-2430-2.
[4] Liu, Z.-G., Gao, X.-H., Du, L.-X., Li, J.-P., Li, P. & Misra, R.D.K. (2017). Comparison of corrosion behaviors of low-alloy steel exposed to vapor-saturated H2S/CO2 and H2S/CO2-saturated brine environments. Materials and Corrosion 68(5), 566-579. https://doi.org/10.1002/maco.201609165.
[5] Rozenfeld, I.L. (1981). Corrosion Inhibitors. New York: McGraw-Hill.
[6] Palumbo, G., Kollbek, K., Wirecka, R., Bernasik, A. & Górny, M. (2020). Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by gum arabic in a CO2-water saline environment for shale oil and gas industry. Materials. 13(19), 4245, 1-24. https://doi.org/10.3390/ma13194245.
[7] Bai, H., Wang, Y., Ma, Y., Zhang, Q., Zhang, N. (2018). Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials. 11(9), 1765, 1-15. DOI: 10.3390/ma11091765.
[8] Cui, L., Kang, W., You, H., Cheng, J., & Li, Z. (2021). Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature solution containing CO2 and NaCl. Journal of Bio- and Tribo-Corrosion. 7(1), 13, 1-14. DOI: 10.1007/s40735-020-00449-5.
[9] Islam, M.A., & Farhat, Z.N. (2015). Characterization of the corrosion layer on pipeline steel in sweet environment. Journal of Materials Engineering and Performance. 24(8), 3142-3158. DOI: 10.1007/s11665-015-1564-4.
[10] Zhang, T., Liu, W., Yin, Z., Dong, B., Zhao, Y., Fan, Y., Wu, J., Zhang, Z. & Li, X. (2020). Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments. Journal of Materials Engineering and Performance. 29(4), 2531-2541. DOI: 10.1007/s11665-020-04738-5.
[11] Weng, L., Du, L. & Wu, H. (2018). Corrosion behaviour of weathering steel with high-content titanium exposed to simulated marine environment. International Journal of Electrochemical Science. 13(6), 5888-5903. DOI: 10.20964/2018.06.61.
[12] Marcus, P. (1994). On some fundamental factors in the effect of alloying elements on passivation of alloys. Corrosion Science. 36(12), 2155-2158. https://doi.org/10.1016/0010-938X(94)90013-2.
[13] Liu, Z., Gao, X., Du, L., Li, J., Li, P. (2016). Corrosion Behaviour of Low-Alloy Steel with Titanium Addition Exposed to Seawater Environment. International Journal Electrochemical Science. 11(8), 6540-6551. DOI: 10.20964/2016.08.25.
[14] Banas, J., Lelek-Borkowska, U., Mazurkiewicz, B. & Solarski, W. (2007). Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water. Electrochim. Acta 52(18), 5704-5714. DOI: 10.1016/j.electacta.2007.01.086.
[15] Palumbo, G., Dunikowski, D., Wirecka, R., Mazur, T., Lelek-Borkowska, U., Wawer, K. & Banaś, J. (2021). Effect of Grain Size on the Corrosion Behavior of Fe-3wt.%Si-1wt.%Al Electrical Steels in Pure Water Saturated with CO2. Materials. 14(17), 5084, 1-19. https://doi.org/10.3390/ma14175084.
[16] Święch, D., Palumbo, G., Piergies, N., Pięta, E., Szkudlarek, A. & Paluszkiewicz, C. (2021). Spectroscopic investigations of 316L stainless steel under simulated inflammatory conditions for implant applications: the effect of tryptophan as corrosion inhibitor/hydrophobicity marker. Coatings. 11(9), 1097. https://doi.org/10.3390/coatings11091097.
[17] Święch, D., Paluszkiewicz, C., Piergies, N., Pięta, E., Kollbek, K. & Kwiatek, W.M. (2020). Micro- and nanoscale spectroscopic investigations of threonine influence on the corrosion process of the modified Fe surface by Cu nanoparticles. Materials. 13(20), 4482, 1-16. https://doi.org/10.3390/ma13204482.
[18] Chen, Z. & Yan, K. (2020). Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. Scientific Reports. 10(1), 16591, 1-8. https://doi.org/10.1038/s41598-020-73799-2.
[19] Kalisz, D. & Żak, P.L. (2015). Modeling of solute segregation and the formation of non-metallic inclusions during solidification of a titanium-containing steel. Kovove Materialy. 53(1), 35-41. DOI: 10.4149/km_2015_1_35.
[20] Podorska, D., Drozdz, P., Falkus, J. & Wypartowicz, J. (2006). Calculations of oxide inclusions composition in the steel deoxidized with Mn, Si and Ti. Archives of Metallurgy and Materials. 51(4), 581-586. ISSN: 1733-3490.
[21] Zhang, M., Li, M., Wang, S., Chi, J., Ren, L., Fang, M. & Zhou, C. (2020). Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316 L stainless steel matrix prepared via laser cladding. Optics and Lasers in Engineering. 128, 106043, 1-10. DOI: 10.1016/j.optlaseng.2020.106043.
[22] Sadeghpour, S., Kermanpur, A. & Najafizadeh, A. (2013). Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment. Materials Science and Engineering: A. 584, 177-183. DOI: 10.1016/j.msea.2013.07.014.
[23] Zhang, L.M., Ma, A.L., Hu, H.X.; Zheng, Y.G., Yang, B.J. & Wang, J.Q. (2017). Effect of microalloying with Ti or Cr on the corrosion behavior of Al-Ni-Y amorphous alloys. Corrosion. 74(1), 66-74. https://doi.org/10.5006/2451.
[24] Mustafa, A.H., Ari-Wahjoedi, B. & Ismail, M.C. (2013). Inhibition of CO2 corrosion of X52 steel by imidazoline-based inhibitor in high pressure CO2-water environment. Journal of Materials Engineering and Performance. 22(6), 1748-1755. DOI: 10.1007/s11665-012-0443-5.
[25] Nie, X.P., Yang, X.H. & Jiang, J.Z. (2009) Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses. Journal of Alloys Compounds. 481(1), 498-502. DOI: 10.1016/j.jallcom.2009.03.022.
[26] Palumbo, G., Górny, M. & Banaś, J. (2019). Corrosion inhibition of pipeline carbon steel (N80) in CO2-saturated chloride (0.5 M of KCl) solution using gum arabic as a possible environmentally friendly corrosion inhibitor for shale gas industry. Journal of Materials Engineering and Performance. 28(10), 6458-6470. https://doi.org/10.1007/s11665-019-04379-3.
[27] Heuer, J.K. & Stubbins, J.F. (1999). An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 41(7), 1231-1243. https://doi.org/10.1016/S0010-938X(98)00180-2.
[28] Mora-Mendoza, J.L., Turgoose, S. (2002) Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corrosion Science. 44(6), 1223-1246. DOI: 10.1016/S0010-938X(01)00141-X.
[29] Criado, M., Martínez-Ramirez, S. & Bastidas, J.M. (2015). A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Construction and Building Materials. 96, 383-390. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.034.
[30] Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X. & Huang, Y. (2011). In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42. Engineering Failure Analysis. 18(8), 1981-1989. DOI: 10.1016/j.engfailanal.2011.03.007.
[31] Święch, D., Paluszkiewicz, C., Piergies, N., Lelek-Borkowska, U. & Kwiatek, W.M. (2018). Identification of corrosion products on Fe and Cu metals using spectroscopic methods. Acta Physica Polonica Series A. 133(4), 286-288. DOI: 10.12693/APhysPolA.133.286.

Date

2023.01.31

Type

Article

Identifier

DOI: 10.24425/afe.2023.144273
×