Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ
  • Język

Wyniki wyszukiwania

Wyników: 60
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Rapidly developing artificial intelligence technologies are expected to help us in various sectors of life, but their applications also entail certain risks.
Przejdź do artykułu

Autorzy i Afiliacje

Piotr Kaczmarek-Kurczak
1

  1. Centre for Space Studies, Kozminski University– Kozminski ESA Lab in Warsaw

Abstrakt

Artificial intelligence technologies are moving forward by leaps and bounds, right before our very eyes. How well prepared are we to treat them not as tools or rivals, but as autonomous partners?
Przejdź do artykułu

Autorzy i Afiliacje

Artur Modliński
1
Aleksandra Przegalińska
2

  1. University of Łódź
  2. Kozminski University in Warsaw

Abstrakt

When we look at works of art, our brain reacts to what we see in subconscious ways. Certain aspects of our perceptions can be captured using algebraic methods.
Przejdź do artykułu

Autorzy i Afiliacje

Marek Kuś
1
Jacek Rogala
2
Joanna Dreszer
3
Beata Bajno
4

  1. PAS Center for Theoretical Physics in Warsaw
  2. Center for Research on Culture, Languageand Mind, University of Warsaw
  3. Institute of Psychology Nicolaus CopernicusUniversity in Toruń
  4. Association of Polish Artists and Designers,Warsaw Section

Abstrakt

Modern technologies are now allowing education to seamlessly transfer into the virtual realm, creating a user-friendly environment where students can acquire new skills.
Przejdź do artykułu

Autorzy i Afiliacje

Aureliusz Górski
1

  1. Founder & CEO of CampusAI in Warsaw

Abstrakt

Niniejsze rozważanie jest pisane przez inżyniera. W pierwszych dwóch punktach artykułu znajdujemy narysowany kilkoma kreskami szkic metodologicznych podstaw sztucznej inteligencji (SI) i czym dziś SI jest. W dalszych punktach zasygnalizujemy kształt najbliższej przyszłości SI, umieścimy SI w kontekście kultury, odnotujemy fenomen tzw. silnej sztucznej inteligencji i zakończymy całość paroma uwagami.

Przejdź do artykułu

Autorzy i Afiliacje

Jacek Koronacki
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The evolution of the economy and the formation of Industry 4.0 lead to an increase in the importance of intangible assets and the digitization of all processes at energy enterprises. This involves the use of technologies such as the Internet of Things, Big Data, predictive analytics, cloud computing, machine learning, artificial intelligence, robotics, 3D printing, augmented reality etc. Of particular interest is the use of artificial intelligence in the energy sector, which opens up such prospects as increased safety in energy generation, increased energy efficiency, and balanced energy-generation processes. The peculiarity of this particular instrument of Industry 4.0 is that it combines the processes of digitalization and intellectualization in the enterprise and forms a new part of the intellectual capital of the enterprise. The implementation of artificial intelligence in the activities of energy companies requires consideration of the features and stages of implementation. For this purpose, a conceptual model of artificial intelligence implementation at energy enterprises has been formed, which contains: the formation of the implementation strategy; the design process; operation and assessment of artificial intelligence. The introduction of artificial intelligence is a large-scale and rather costly project; therefore, it is of interest to assess the effectiveness of using artificial intelligence in the activities of energy companies. Efficiency measurement is proposed in the following areas: assessment of economic, scientific and technical, social, marketing, resource, financial, environmental, regional, ethical and cultural effects as well as assessment of the types of risks associated with the introduction of artificial intelligence.
Przejdź do artykułu

Bibliografia

Armenakis et al. 1993 – Armenakis, A.A., Harris, S.G. and Mossholder, K.W. 1993. Creating Readiness for Organizational Change. Human Relations 46, pp. 681–703.
Artificial intelligence the next digital frontier? McKinsey Global Institute. July 2017. 80 p. [Online] https://www.mckinsey.com/~/media/mckinsey/industries/advanced%20electronics/our%20insights/how%20 artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/mgi-artificial-intelligence- discussion-paper.ashx [Accessed: 2021-07-15].
Bakke, D. 2005. Joy a work: A Revolutionary Approach to Fun on the Job. Seattle: PVG, 314 pp.
Behrens, W. and Hawranek, P.M. 1978. Manual for the preparation of industrial feasibility studies. NY: Unated Nations, 404 pp.
Berger, R. 2013. How to Survive in the VUCA World. Hamburg: Roland Berger, 245 pp.
Blommaert, Т. and Broek, S. 2017. Management in Singularity: From linear to exponential management. Vakmedianet; 1 edition, 172 pp.
Borowski, P.F. 2016. Development strategies for electric utilities. Acta Energetica 4, pp. 16–21.
Borowski, P. 2021. Innovative Processes in Managing an Enterprise from the Energy and Food Sector in the Era of Industry 4.0. Processes 9(2), 381, DOI: 10.3390/pr9020381.
Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 352 pp.
Cheatham et al. 2019 – Cheatham, B., Javanmardian, K. and Samandari, H. 2019. Confronting the risks of artificial intelligence. [Online] https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/confronting-the-risks-of-artificial-intelligence [Accessed: 2021-07-15].
Doroshuk, H. 2019. Organizational development: theory, methodology, practice (Організаційний розвиток: теорія, методологія, практика). Odesa: Osvita Ukrainy, 368 pp. (in Ukrainian).
Doroshuk, H. 2020. Reform of the electricity sector in Ukraine – liberalization of the market and corporatization of companies. Polityka Energetyczna – Energy Policy Journal 23(4), pр. 105–122. [Online] https://epj.min-pan.krakow.pl/Reform-of-the-electricity-sector-in-Ukraine-liberalization-of-the-market- and-corporatization,127664,0,2.html/ [Accessed: 2021-07-15].
Edvinsson, L. and Malone, M. 1997. Intellectual Capital: Realizing your Company’s True Value by Finding its Hidden Brainpower. New York, NY: Harper Collins.
Firer, S. and Williams, S.M. 2003. Intellectual capital and traditional measures of corporate performance. Journal of Intellectual Capital 4(3) , pp. 348–360, DOI: 10.1108/14691930310487806.
Hoe, S.L. 2019. The topicality of the learning organization: Is the concept still relevant today? [In:] The Oxford Handbook of the Learning Organization, Oxford University Press: Oxford, UK, pp. 18–32.
Jackson, P.C. Jr. 2019. Introduction to Artificial Intelligence. New York: Dover Publication Inc., 170 pp. Jensen, P.E. 2005. A contextual theory of learning and the learning organization. Knowledge Process Management 12, pp. 53–64, DOI: 10.1002/kpm.217.
Jones, M.T. 2017. A Beginner’s Guide to Artificial Intelligence, Machine Learning and Cognitive Computing. [Online] https://developer.ibm.com/articles/cc-beginner-guide-machine-learning-ai-cognitive/ [Accessed: 2021-07-15].
Kinelski, G. 2020. The main factors of successful project management in the aspect of energy enterprises’ efficiency in the digital economy environment. Polityka Energetyczna – Energy Policy Journal 23(3), pр. 5–20, DOI: 10.33223/epj/126435.
Koistinen, P. 2021. Toward learning organization – Practices in nuclear power plants. [In:] Human Factors in the Nuclear Industry, Elsevier BV: Amsterdam, The Netherlands, pp. 239–247.
Laloux, Fr. 2014. Reinventing Organizations: A Guide to Creating Organizations Inspired by the Next Stage of Human Consciousness. Brussels: Nelson&Parker, 379 pp.
Levy, F. 2009. A simulated approach to valuing knowledge capital. Washington: The George Washington University, 189 pp.
Nazari, J.A. and Herremans, I.M. 2007. Extending VAIC model: measuring intellectual capital components. Journal of Intellectual Capital 8(4), DOI: 10.1108/14691930710830774.
Oklander et al. 2018 – Oklander, M., Oklander, T., Yashkina, O., Pedko, I. and Chaikovska, M. 2018. Analysis of technological innovations in digital marketing. Eastern-European Journal of Enterprise Technologies 5/3 (95), pp. 80–91, DOI: 10.1088/1755-1315/440/2/022026.
Pan et al. 2020 – Pan, T., Hu, T. and Geng, J. 2020. View learning organization in a situational perspective. IOP Conference Series: Earth and Environmental Science 440 pp.
Piano, S.L. 2020. Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward. Humanities and Social Science Communication 7, DOI: 10.1057/s41599-020-0501-9.
Romer, P.M. 1994. The Origins of Endogenous Growth. The Journal of Economic Perspectives 8(1), pp. 3–22.
Sozontov et al. 2019 – Sozontov, A., Ivanova, M. and Gibadullin, A. 2019. Implementation of artificial intelligence in the electric power industry. [In:] E3S Web of Conferences 114, DOI: 10.1051/e3sconf/201911401009. EDP Sciences.
Toffler, A. 1984. The Third Wave. NY: Bantam, 560 pp.
Tortorella et al. 2020 – Tortorella, G.L., Vergara, A.M.C., Garza-Reyes, J.A. and Sawhney, R. 2020. Organizational learning paths based upon Industry 4.0 adoption: An empirical study with Brazilian manufacturers. International Journal of Production Economics 219, pp. 284–294, DOI: 10.1016/j.ijpe.2019.06.023.
Von Ketelhod, Wöcke, A. 2008. The impact of electricity crises on the consumption behaviour of small and medium enterprises. Journal of Energy in Southern Africa 19(1), pp. 4–12
Przejdź do artykułu

Autorzy i Afiliacje

Hanna Doroshuk
1
ORCID: ORCID

  1. Department of Menegement, Odessa Polytechnic State University, Ukraine

Abstrakt

Machine learning methods, such as the random forests algorithm, have revolutionized how we analyze growing volumes of data. The algorithm can be usefully applied in studying… real forests.
Przejdź do artykułu

Autorzy i Afiliacje

Łukasz Pawlik
1
Marcin K. Dyderski
2

  1. Institute of Earth Sciences,Faculty of Natural Sciences,University of Silesia in Katowice
  2. Institute of Dendrology,Polish Academy of Sciences in Kórnik

Abstrakt

This paper proposes a new approach to the processing and analysis of medical images. We introduce the term and methodology of medical data understanding, as a new step in the way of starting from image processing, and followed by analysis and classification (recognition). The general view of the situation of the new technology of machine perception and image understanding in the context of the more well known and classic techniques of image processing, analysis, segmentation and classification is shown below

Przejdź do artykułu

Autorzy i Afiliacje

R. Tadeusiewicz
M.R. Ogiela

Abstrakt

In the paper an application of evolutionary algorithm to design and optimization of combinational digital circuits with respect to transistor count is presented. Multiple layer chromosomes increasing the algorithm efficiency are introduced. Four combinational circuits with truth tables chosen from literature are designed using proposed method. Obtained results are in many cases better than those obtained using other methods.

Przejdź do artykułu

Autorzy i Afiliacje

A. Słowik
M. Białko

Abstrakt

Background: a humidity sensor is used to sense and measure the relative humidity of air. A new composite system has been fabricated using environmental pollutants such as carbon black and low-cost zinc oxide, and it acts as a humidity sensor. Residual life of the sensor is calculated and an expert system is modelled. For properties and nature confirmation, characterization is performed, and a sensing material is fabricated. Methodology: characterization is performed on the fabricated material. Complex impedance spectroscopy (CIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are all used to confirm the surface roughness, its composite nature as well as the morphology of the composite. The residual lifetime of the fabricated humidity sensor is calculated by means of accelerated life testing. An intelligent model is designed using artificial intelligence techniques, including the artificial neural network (ANN), fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS). Results: maximum conductivity obtained is 6.4×10⁻³ S/cm when zinc oxide is doped with 80% of carbon black. Conclusion: the solid composite obtained possesses good humidity-sensing capability in the range of 30–95%. ANFIS exhibits the maximum prediction accuracy, with an error rate of just 1.1%.

Przejdź do artykułu

Autorzy i Afiliacje

C. Bhargava
J. Aggarwal
P.K. Sharma

Abstrakt

In recent years, due to the growing importance of eco-design and tightening EU regulations entrepreneurs are required to implement activities related to environmental protection. It influences the development of methods and tools enabling the implementation of eco-design into practice, which are increasingly used by modern information technologies. They are based on intelligent solutions that allows them to better match the requirements of designers and allows for the automation of processes, and in some cases they are able to do the work themselves, replacing designers. Details are useful in areas that require calculations, comparisons and making choices, which is the process of eco-design. The paper describes methodology of pro-ecological product design oriented towards recycling, based on agent technology, enables the design of environmentally friendly products including recycling. The description of the methodology was preceded by a literature analysis on the characteristics of tools supporting eco-design and the process of its development was presented. The proposed methodology can be used at the design stage of devices to select the best product in terms of ecology. It is based on the original set of recycling indicators, used to evaluate the recycling of the product, ensure the ability to operate in a distributed design environment, and the use of data from various CAD systems, allows full automation of calculations and updates (without user participation).
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Dostatni

Abstrakt

Due to fast-paced technical development, companies are forced to modernise and update

their equipment, as well as production planning methods. In the ordering process, the customer

is interested not only in product specifications, but also in the manufacturing lead

time by which the product will be completed. Therefore, companies strive towards setting

an appealing but attainable manufacturing lead date.

Manufacturing lead time depends on many different factors; therefore, it is difficult to predict.

Estimation of manufacturing lead time is usually based on previous experience. In the

following research, manufacturing lead time for tools for aluminium extrusion was estimated

with Artificial Intelligence, more precisely, with Neural Networks.

The research is based on the following input data; number of cavities, tool type, tool category,

order type, number of orders in the last 3 days and tool diameter; while the only output

data are the number of working days that are needed to manufacture the tool. An Artificial

Neural Network (feed-forward neural network) was noted as a sufficiently accurate method

and, therefore, appropriate for implementation in the company.

Przejdź do artykułu

Autorzy i Afiliacje

Nika Sajko
Simon Kovacic
Mirko Ficko
Iztok Palcic
Simon Klancnik

Abstrakt

We all face a wide array of different choices every day of our lives. Asst. Prof. Miłosz Kadziński explains how artificial intelligence could be used to help us make decisions.

Przejdź do artykułu

Autorzy i Afiliacje

Miłosz Kadziński

Abstrakt

Dr. Aleksandra Przegalinska explains why we find humanoid robots so creepy and considers whether watching machines play football is actually fun.

Przejdź do artykułu

Autorzy i Afiliacje

Aleksandra Przegalińska

Abstrakt

Turmeric is affected by various diseases during its growth process. Not finding its diseases at early stages may lead to a loss in production and even crop failure. The most important thing is to accurately identify diseases of the turmeric plant. Instead of using multiple steps such as image pre-processing, feature extraction, and feature classification in the conventional method, the single-phase detection model is adopted to simplify recognizing turmeric plant leaf diseases. To enhance the detection accuracy of turmeric diseases, a deep learning-based technique called the Improved YOLOV3-Tiny model is proposed. To improve detection accuracy than YOLOV3-tiny, this method uses residual network structure based on the convolutional neural network in particular layers. The results show that the detection accuracy is improved in the proposed model compared to the YOLOV3-Tiny model. It enables anyone to perform fast and accurate turmeric leaf diseases detection. In this paper, major turmeric diseases like leaf spot, leaf blotch, and rhizome rot are identified using the Improved YOLOV3-Tiny algorithm. Training and testing images are captured during both day and night and compared with various YOLO methods and Faster R-CNN with the VGG16 model. Moreover, the experimental results show that the Cycle-GAN augmentation process on turmeric leaf dataset supports much for improving detection accuracy for smaller datasets and the proposed model has an advantage of high detection accuracy and fast recognition speed compared with existing traditional models.
Przejdź do artykułu

Autorzy i Afiliacje

V. Devisurya
1
R. Devi Priya
1
N. Anitha
1

  1. Department of Information Technology, Kongu Engineering College, Perundurai, India

Abstrakt

This paper presents a deep learning-based image texture recognition system. The methodology taken in this solution is formed in a bottom-up manner. It means we swipe a moving window through the image in order to categorize if a given region belongs to one of the classes seen in the training process. This categorization is done based on the Deep Neural Network (DNN) of fixed architecture. The training process is fully automated regarding the training data preparation, investigation of the best training algorithm, and its hyper-parameters. The only human input to the system is the definition of the categories for further recognition and generation of the samples (region markings) in the external application chosen by the user. The system is tested on road surface images where its task is to categorize image regions to a different road category (e.g. curb, road surface damage, etc.) and is featured with 90% and above accuracy.

Przejdź do artykułu

Autorzy i Afiliacje

R. Kapela

Abstrakt

Artificial Intelligence begins to play an increasingly important role in medicine, in particular in diagnostics, therapy selection and drug design. This article shows how the latest machine learning algorithms support the work of physicians and pharmacists. However, the effective implementation of Artificial Intelligence methods in everyday medical practice requires overcoming a number of barriers. These challenges are discussed in the article. The objectives and functioning of the Artificial Intelligence Center in Medicine of the Medical University of Bialystok were also discussed, as an example of Polish contribution to the development of the latest computer algorithms supporting diagnostics and therapy.
Przejdź do artykułu

Autorzy i Afiliacje

Konrad Wojdan
1 2
Marcin Moniuszko
3

  1. Politechnika Warszawska, Instytut Techniki Cieplnej
  2. Transition Technologies Science sp. z o.o.
  3. Uniwersytet Medyczny w Białymstoku

Abstrakt

Science and technology frequently contribute to one another: scientific advances lead to the development of new technologies, and new technologies broaden the experimental potential of science, enabling advancement of research. This is a motivation behind introduction of the concept of technoscience addressing the integration of science and technology – the process progressing from the beginning of the twentieth century, which has been the source of extraordinary achievements of our civilisation, but – at the same time – has engendered global socioeconomic transformations whose negative side effects may endanger humanity. This paper is devoted to an outline of ethical challenges implied by the development of technoscience, with special emphasis of those which are rooted in the development of information technologies. It is suggested that those challenges should be met by people of technoscience in a concerted effort undertaken with philosophers and educators.
Przejdź do artykułu

Autorzy i Afiliacje

Roman Z. Morawski
1

  1. Politechnika Warszawska, Wydział Elektroniki Technik Informacyjnych

Abstrakt

One way to ensure the required technical characteristics of castings is the strict control of production parameters affecting the quality of

the finished products. If the production process is improperly configured, the resulting defects in castings lead to huge losses. Therefore,

from the point of view of economics, it is advisable to use the methods of computational intelligence in the field of quality assurance and

adjustment of parameters of future production. At the same time, the development of knowledge in the field of metallurgy, aimed to raise

the technical level and efficiency of the manufacture of foundry products, should be followed by the development of information systems

to support production processes in order to improve their effectiveness and compliance with the increasingly more stringent requirements

of ergonomics, occupational safety, environmental protection and quality. This article is a presentation of artificial intelligence methods

used in practical applications related to quality assurance. The problem of control of the production process involves the use of tools such

as the induction of decision trees, fuzzy logic, rough set theory, artificial neural networks or case-based reasoning.

Przejdź do artykułu

Autorzy i Afiliacje

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
K. Jaśkowiec
A. Smolarek-Grzyb

Abstrakt

The study presents the results of research aimed at the construction of a model of the relationship between the physical properties of metal and the types of toughening treatment and modifiers used in the modification of BA1044 alloy. Samples of melts were subjected to four variants of the heat treatment and to five types of modification. Studies of the samples consisted in measurements of five physical parameters. Consequently, it was necessary to seek a relationship between the nine input parameters and five output parameters. With this number of the variables and a limited number of samples, searching for the relationships by way of statistical methods was obviously impossible, so it was decided to create an approximate model through the use of fuzzy logic. This study describes the process of creating a model and presents the results of some simulation experiments that confirm the validity of the correct approach.
Przejdź do artykułu

Autorzy i Afiliacje

S. Kluska-Nawarecka
D. Wilk-Kołodziejczyk
Z. Górny
K. Saja

Abstrakt

AbstractThe Caputo-Fabrizio definition of the fractional derivative is applied to minimum energy control of fractional positive continuous- time linear systems with bounded inputs. Conditions for the reachability of standard and positive fractional linear continuous-time systems are established. The minimum energy control problem for the fractional positive linear systems with bounded inputs is formulated and solved.
Przejdź do artykułu

Autorzy i Afiliacje

T. Kaczorek

Abstrakt

AbstractThe paper presents the problem of estimating in-situ compressive strength of concrete in a comprehensive way, taking into account the possibility of direct tests of cored specimens and indirect methods of non-destructive tests: rebound hammer tests and ultrasonic pulse velocity measurements. The paper approaches the discussed problem in an original, scientifically documented and exhaustive way, in particular in terms of application.
Przejdź do artykułu

Autorzy i Afiliacje

L. Brunarski
M. Dohojda

Abstrakt

AbstractThe classical Cayley-Hamilton theorem is extended to Drazin inverse matrices and to standard inverse matrices. It is shown that knowing the characteristic polynomial of the singular matrix or nonsingular matrix, it is possible to write the analog Cayley-Hamilton equations for Drazin inverse matrix and for standard inverse matrices.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji