Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ
  • Język

Wyniki wyszukiwania

Wyników: 43
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Transportation networks respond differently to applied policies. The Tehran Metropolitan Area has one of the most complex networks with complex users, which has experienced many of these policies change within the past decades. In this study, some of these policies and their effect on air pollution is investigated. The goal is to pinpoint the variables which have the most effect on various transportation models and investigate how new policies should be focused. In order to do so, long-term variations of air pollution monitoring stations were analyzed. Results show that the most significant parameter that may affect air pollution is users' behavior due to the lack of a public transportation network and its level of comfort. The results of this study will be useful in developing new policies and evaluating their long-term consequences in appropriate models.

Przejdź do artykułu

Autorzy i Afiliacje

Mansour Hadji Hosseinlou
Shahab Kabiri

Abstrakt

Microbiological and chemical analysis of air was carried out on the area of landfill of wastes other than inert or hazardous. The landfill covers 20 ha and 40 000 Mg of wastes is deposited annually. Municipal waste is not segregated at the landfill. The research was conducted in April, May and November 2012. Number of the psychrophilic and mesophilic bacteria and fungi was estimated by a culture-based method. Quantitative determination of sulfur compounds and meteorological and olfactrometric examinations were also carried out. Chemical analysis was conducted with a Photovac Voyager portable gas chromatograph. Air samples were collected at 5 points. The largest group of microbes were psychrophilic bacteria, especially in summer. The highest concentration of hydrogen sulfide and other odorants was found at leachate tank and landfill body. According to the Polish Standard for the assessment of atmospheric air pollution the air in the area of the landfill is classified as not contaminated and sporadically moderately contaminated. In spring and summer the number of microscopic fungi was increased also in control samples.

Przejdź do artykułu

Autorzy i Afiliacje

Ewa Miaśkiewicz-Pęska
Mirosław Szyłak-Szydłowski
Słowa kluczowe smog air pollution in Poland

Abstrakt

What is smog, what does it consist of, and where does it come from? How badly polluted is the air in Poland in relation to other countries in Europe?

Przejdź do artykułu

Autorzy i Afiliacje

Jacek Wojciech Kamiński
Joanna Strużewska
Słowa kluczowe physics aerosols air pollution

Abstrakt

Sometimes just a single spark of curiosity can be the beginning of a successful scientific career, says Prof. Lidia Morawska, Professor at the Queensland University of Technology and Director of the International Laboratory for Air Quality and Health (ILAQH).
Przejdź do artykułu

Autorzy i Afiliacje

Lidia Morawska
1 2

  1. Uniwersytet Technologiczny w Queensland, Australia
  2. International Laboratory for Air Quality and Health– ILAQH
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aim of the study is to present the FAPPS (Forecasting of Air Pollution Propagation System) based on the CALPUFF puff dispersion model, used for short-term air quality forecasting in Krakow and Lesser Poland. The article presents two methods of operational air quality forecasting in Krakow. The quality of forecasts was assessed on the basis of PM10 concentrations measured at eight air quality monitoring stations in 2019 in Krakow. Apart from the standard quantitative forecast, a qualitative forecast was presented, specifying the percentage shares of the city area with PM10 concentrations in six concentration classes. For both methods, it was shown how the adjustment of the emissions in the FAPPS system to changes in emissions related to the systemic elimination of coal furnaces in Krakow influenced the quality of forecasts. For standard forecasts, after the emission change on June 7, 2019, the average RMSE value decreased from 23.9 μg/m3 to 14.9 μg/m3, the average FB value changed from -0.200 to -0.063, and the share of correct forecasts increased from 0.74 to 0.91. For qualitative forecasts, for the entire year 2019 and separately for the periods from January to March and October to December, Hit Rate values of 5.43, 2.18 and 3.48 were obtained, the False Alarm Ratios were 0.28, 0.24 and 0,26, and the Probability of Detection values were 0.66, 0.75, and 0.74. The presented results show that the FAPPS system is a useful tool for modelling air pollution in urbanized and industrialized areas with complex terrain
Przejdź do artykułu

Bibliografia

  1. Chlebowska-Styś, A., Kobus, D., Zathey, M. & Sówka, I. (2019). The impact of road transport
  2. on air quality in selected Polish cities, Ecol. Chem Eng. A. 26(1–2), pp.19–36
  3. CIBSE TM41 (2006). Degree-days: theory and application, The Chartered Institution of Building Services Engineers 222 Balham High Road, London SW12 9BS
  4. Dresser, A.L. & Huizer, R.D. (2011). CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited, J. Air Waste Manage. Assoc. 61, pp. 647–659. DOI:10.3155/1047-3289.61.6.647.
  5. EEA Report 9/2020 (2020). Air quality in Europe — 2020 report (https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report/(25.02.2022)).
  6. EMEP/CEIP (2018). Present state of emission data; https://www.ceip.at/status-of-reporting-and-review-results/2019-submissions
  7. ETC/ACM (2013). Technical Paper 2013/11 (R. Rouil, B. Bessagnet, eds). How to start with PM modelling for air quality assessment and planning relevant to AQD
  8. Gawuc, L., Szymankiewicz, K., Kawicka, D., Mielczarek, E., Marek, K., Soliwoda, M. & Maciejewska, J. (2021). Bottom–Up Inventory of Residential Combustion Emissions in Poland for National Air Quality Modelling: Current Status and Perspectives, Atmosphere 12, no. 11: 1460. DOI:10.3390/atmos12111460
  9. Ghannam, K. & El-Fadel, M. (2013). Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach. Atmos. Environ. 69, pp.156–169. DOI:10.1016/j.atmosenv.2012.12.022.
  10. GMES Mapping Guide for a European Urban Atlas v.1.01, (2010). (http://www.eea.europa.eu/data-and-maps/data )
  11. Godlowska, J., Tomaszewska, A.M., Kaszowski, W. .& Hajto, M. J. (2012) Comparison between modelled (ALADIN/MM5/CALMET) and measured (SODAR) planetary boundary layer height. in: Proc. ICUC8 – 8th International Conference on Urban Climates, 6-10.08.2012, Dublin, Ireland, 255 (http://smog.imgw.pl/pdf/255.pdf )
  12. Godłowska, J. (2019). The impact of meteorological conditions on air quality in Krakow. Comparative research and an attempt at a model approach. Seria: Monografie Instytutu Meteorologii I Gospodarki Wodnej Państwowego Instytutu Badawczego, p. 104, ISBN: 978-83-64979-29-3 9 (In Polish) (https://www.imgw.pl/sites/default/files/2019-12/wplyw-warunkow-meteorologicznych-na-jakosc-powietrza-w-krakowie.pdf )
  13. Godłowska, J. & Kaszowski, W. (2019): Testing various morphometric methods to determine vertical profile of wind speed in Krakow, Poland, Bound.-Layer Meteorol., 172, pp.107-132 DOI:10.1007/s10546-019-00440-9
  14. Grimmond, C. S. B. & Oke, T. R. (1999). Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form, J. Appl. Meteorol.38, 1262- 1292. DOI:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
  15. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration, Arch. Environ. Prot. 43, pp. 48–64. DOI:10.1515/aep-2017-0005 .
  16. Jiřík, V., Hermanová, B., Dalecká, A., Pavlíková, I., Bitta, J., Jančík, P., Ośródka, L., Krajny, E., Sładeczek, F., Siemiątkowski, G., Kiprian, K. & Głodek Bucyk, E. (2020). Wpływ zanieczyszczenia powietrza na zdrowie ludności w obszarze polsko-czeskiego pogranicza. Opole 2020, ISBN 978-83-7342-714-3 (In Polish and Czech)
  17. Juda-Rezler, K. (2010) New challenges in air quality and climate modeling. Arch. Environ. Prot. 36, pp.3–28.
  18. Juginović, A., Vuković, M., Aranza, I. et al. (2021). Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries. Sci Rep 11, 22516. DOI:10.1038/s41598-021-01802-5.
  19. Kanda, M, Inagaki, A, Miyamoto, T, Gryschka, M. & Raasch, S. (2013). A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteorol.148, pp.357–377.DOI:10.1007/s10546-013-9818-x
  20. Oleniacz, R. & Rzeszutek, M. (2018). Intercomparison of the CALMET/CALPUFFmodeling system for selected horizontal grid resolutions at a local scale: a case study of the MSWI Plant in Krakow, Poland. Appl. Sci. 8, 1–19. DOI:10.3390/app8112301.
  21. PSU/NCAR Mesoscale Modeling System (https://a.atmoswashington.edu/~ovens/newwebpage/mm5-home.html (26.02.2022))
  22. Rood, A.S. (2014). Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos. Environ. 89, pp.707–720. DOI:10.1016/j.atmosenv.2014.02.054.
  23. Rzeszutek M. (2019). Parameterization and evaluation of the CALMET/CALPUFF model system in near-field and complex terrain– Terrain data, grid resolution and terrain adjustment method, Sci. Total Environ 689, pp.31–46, DOI:10.1016/j.scitotenv.2019.06.379
  24. Samek, L., Styszko, K., Stegowski, Z., Zimnoch, M., Skiba, A., Turek-Fijak, A., Gorczyca, Z., Furman,P., Kasper-Giebl, A., Rozanski, K. (2021) Comparison of PM10 Sources at Traffic and Urban Background Sites Based on Elemental, Chemical and Isotopic Composition: Case Study from Krakow, Southern Poland. Atmosphere, 12, 1364. DOI:10.3390/atmos12101364
  25. Scire, J. S., Robe, F. R., Fernau, M. E. & Yamartino R. J. (2000a). A user’s guide for the CALMET Meteorological Model (Version 5.0). Earth Tech, Inc., Concord, MA
  26. Scire, J. S., Strimaitis, D. G. & Yamartino R.J. (2000b). A user’s guide for the CALPUFF Dispersion Model (Version 5.0). Earth Tech, Inc., Concord, MA
  27. Schlünzen, K.H. & Sokhi, R.S. (2008). Overview of Tools And Methods For Meteorological And Air Pollution Mesoscale Model Evaluation And User Training. Joint Report by WMO and COST Action 728, GURME. pp. 116.
  28. Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C.& Joly, A. (2018). The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1 . Geosci. Model Dev., 11, pp.257–281. DOI:10.5194/gmd-11-257-2018
  29. Thunis, P., Miranda, A., Baldasano, J.M., Blond, N., Douros, J., Graff, A., Janssen, S., Juda-Rezler, K., Karvosenoja, N., Maffeis, G., Martilli, A., Rasoloharimahefa, M., Real, E., Viaene, P., Volta, M. & White, L. (2016). Overview of current regional and local scale air quality modelling practices: assessment and planning tools in the EU. Environ. Sci. Policy. 65, pp.13–21. DOI:10.1016/j.envsci.2016.03.013.
  30. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), nitrogen dioxide, sulfur dioxide and carbon monoxide. (2021). Geneva: World Health Organization; 2021
  31. Yessad K. (2019). Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 46t1r1 of ARPEGE/IFS (http://www.umr-cnrm.fr/gmapdoc/IMG/pdf/ykarpbasics46t1r1.pdf /28.02.2022
Przejdź do artykułu

Autorzy i Afiliacje

Jolanta Godłowska
1
ORCID: ORCID
Kamil Kaszowski
1
Wiesław Kaszowski
1

  1. Institute of Meteorology and Water Management – National Research Institute, Poland

Abstrakt

The results of studies on the air pollution and on the natural sedimentation from the atmosphere in the South Shetlands are (Admiralty Bay) are presented. The amount of dust in the air varied from 0.11 to 10.90 μg x m-3 (the mean being 3.70 μg x m-3). The total amount of substances transported from the atmosphere in the Admiralty Bay region was estimated at 12.7t x km-2 per year, whereas the precipitation transports some 2.5 t x km-2 per year in this region. Preliminary data on the contents of Cu. Cd. Co. Ni. Pb and Zn in the samples of surface waters, snow and rain in the region of the Admiralty Bay are presented and compared with the results of the authors.

Przejdź do artykułu

Autorzy i Afiliacje

Kazimierz Pęcherzewski
Słowa kluczowe human health air pollution smog

Abstrakt

How does breathing polluted air affect us? What broader impact does it have on our health?

Przejdź do artykułu

Autorzy i Afiliacje

Janusz Milanowski

Abstrakt

Can the fight against smog be won? Can new technologies become our allies in this struggle?

Przejdź do artykułu

Autorzy i Afiliacje

Jan Kiciński

Abstrakt

The paper investigates the air quality in the urban area of Warsaw, Poland. Calculations are carried out using the emissions and meteorological data from the year 2012. The modeling tool is the regional CALMET/CALPUFF system, which is used to link the emission sources with the distributions of the annual mean concentrations. Several types of polluting species that characterize the urban atmospheric environment, like PM10, PM2.5, NOx, SO2, Pb, B(a)P, are included in the analysis. The goal of the analysis is to identify the most polluted districts and polluting compounds there, to check where the concentration limits of particular pollutants are exceeded. Then, emission sources (or emission categories) which are mainly responsible for violation of air quality standards and increase the adverse health effects, are identified. The modeling results show how the major emission sources – the energy sector, industry, traffic and the municipal sector – relate to the concentrations calculated in receptor points, including the contribution of the transboundary inflow. The results allow to identify districts where the concentration limits are exceeded and action plans are needed. A quantitative source apportionment shows the emission sources which are mainly responsible for the violation of air quality standards. It is shown that the road transport and the municipal sector are the emission classes which substantially affect air quality in Warsaw. Also transboundary inflow contributes highly to concentrations of some pollutants. The results presented can be of use in analyzing emission reduction policies for the city, as a part of an integrated modeling system.

Przejdź do artykułu

Autorzy i Afiliacje

Piotr Holnicki
Andrzej Kałuszko
Zbigniew Nahorski
Krystyna Stankiewicz
Wojciech Trapp

Abstrakt

Praca charakteryzuje stan zanieczyszczenia powietrza atmosferycznego na terenie miasta Wrocławia w okresie od 1990 do 1999 roku. Pod uwagę wzięto zanieczyszczenia podstawowe pyl, SO,, NO2, F, Pb, Cd, B(a)P, omówiono źródła ich emisji, monitoring a także metody oznaczeń. Badania wykazały zdecydowany spadek stężeń pyłu i SO,, wysoki poziom stężeń: NO2 i F z tendencją wzrostową pod koniec okresu obserwacji oraz niedostateczne monitorowanie zanieczyszczeń szczególnie niebezpiecznych dla zdrowia: Pb, Cd, B(a)P. Otrzymane wyniki wskazują na konieczność reorganizacji istniejącego systemu monitoringu powietrza ze szczególnym uwzględnieniem zanieczyszczeń komunikacyjnych. W pracy zaproponowano nowe wytyczne dla nadzoru nad jakością powietrza we Wrocławiu.
Przejdź do artykułu

Autorzy i Afiliacje

Jolanta Tracz
Jolanta Prawdzik

Abstrakt

The major aim of the study was to identify the relationships of photosynthetic pigments with elemental contents of plants exposed to various ambient air conditions. Lolium multiflorum L. plants were exposed at five sites varying in environmental characteristics, including potential air pollution levels. The effect of air pollution by trace elements on plants was examined. Selected trace elements (Pb, Cd, As, Ni, Cr), some macro-elements as well as chlorophyll content were measured after each of four series. The graphical visualization revealed groups of sites with similar response of elements and chlorophyll contents. Sites located outside the city were grouped into one, and two urban sites were grouped into another. The trace element contents were relatively low and, excluding Ni and As, did not reach toxic levels in dry mass of leaves. However, some relations could be noted, which indicates the sensitivity of the photosynthetic process even at low levels of trace elements in ambient air. Chlorophyll b was found to be more sensitive to most of the analyzed trace elements than chlorophyll a. The results revealed chlorophylls, K and Na as indicators of plant stress caused by trace elements present in ambient air, even at relatively low levels.
Przejdź do artykułu

Autorzy i Afiliacje

Klaudia Borowiak
Anna Budka
Anetta Hanć
Dariusz Kayze
Marta Lisiak
Janina Zbierska
Danuta Barałkiewicz
Donata Iwaniuk
Natalia Łopatka

Abstrakt

The aim of this study was to identify a suitable lichen species for the long−term monitoring of heavy−metal atmospheric pollution in Svalbard. Cladonia and Cetraria s.l. species that have been widely used until now for assessing heavy−metal deposition in the Arctic are in decline over extensive areas of Svalbard, mainly due to climate change and over−grazing by reindeer. Cetrariella delisei , rarely used for biomonitoring, is still common and widespread in this area. Levels of Cr, Ni, Fe, Cu, Pb, Zn, Cd and Mn were measured in three lichen species: Cetrariella delisei , Cladonia uncialis , Flavocetraria nivalis and in a moss Racomitrium lanuginosum from Sørkapp Land, South Spitsbergen. The results imply that Cetrariella delisei can be safely compared to Cladonia uncialis for identifying the levels of heavy metals, but direct comparison between Cetrariella delisei and other species studied is more difficult owing to differences in levels of heavy metals even in samples from the same site.
Przejdź do artykułu

Autorzy i Afiliacje

Michał Węgrzyn
Maja Lisowska
Paweł Nicia

Abstrakt

W artykule przedstawiono wyniki badań jakości powietrza atmosferycznego w bezpośrednim sąsiedztwie szlaków komunikacyjnych Gliwic. Celem badań była ocena stanu zanieczyszczenia powietrza dwutlenkiem azotu pochodzenia motoryzacyjnego w warunkach typowych dla miast o dużym natężeniu ruchu tranzytowego nieposiadających obwodnic miejskich. Zaprezentowane wyniki wykorzystane zostaną w przyszłości do określenia wpływu uruchomienia obwodnicy na stan zanieczyszczenia powietrza w mieście. W badaniach wykorzystywano pasywną metodę pobierania próbek powietrza z późniejszym zastosowaniem techniki spektrofotometrycznej do oznaczania stężeń dwutlenku azotu. W oparciu o stężenia średniodobowe dwutlenku azotu zmierzone w okresie od lipca 2004 do czerwca 2005 r. w 16 punktach pomiarowych obliczone zostały średnic wartości stężeń średniodobowych w tych punktach. Ze względu na spclnicnic warunków o losowym rozkładzie dni pomiarowych i pokryciu czasu pomiarowego, potraktowano je jako średnic stężenia dwutlenku azotu w roku kalendarzowym i porównano ze stężeniem dopuszczalnym w celu dokonania oceny jakości powietrza.
Przejdź do artykułu

Autorzy i Afiliacje

Magdalena Żak
Anna Loster
Barbara Kozielska
Edyta Melaniuk-Wolny
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents an assessment of the mycological air quality in classrooms of school buildings located in Lesser Poland. In 10 schools, 5 sampling points were designated: 4 indoors and 1 as an "outdoor background". A 6-stage Andersen impactor was used to collect fungal aerosol samples. During sampling, dust measurements were made (using the DustTrak II dust meter) as well as temperature and relative humidity. The predominant genera of fungi were determined by the MALDI-TOF MS method. The results indicated no statistically significant differences in indoor air fungal concentrations among the tested locations (p>0.05). The highest concentrations were observed in large classrooms (max. 2,678 CFU∙m-3), however, these differences were not statistically significant across different types of school rooms (Kruskal-Wallis test: p>0.05). All rooms exhibited similar levels of fungal aerosol contamination. Relative air humidity had a significant influence on the number of microorganisms. The most frequently isolated fungi belonged to Cladosporium, Penicillium, and Aspergillus genera. Fungal aerosol concentrations in the tested classrooms did not exceed proposed limit values for this type of indoor environment. The results suggest that natural ventilation in classrooms is insufficient to ensure adequate microbiological quality of indoor air.
Przejdź do artykułu

Bibliografia

[1]. Auger, E.J., & Moore-Colyer, M.J.S. (2017). The effect of management regime on airborne respirable dust concentrations in two different types of horse stable design. J. Equine Vet. Sci, 51, pp.105–109. DOI:10.1016/j.jevs.2016.12.007
[2]. Augustyńska, D. & Pośniak, M. (2016). Harmful factors in the working environment: acceptable values. CIOP – PIB, Warszawa. (in Polish)
[3]. Basińska, M. & Michałkiewicz, M. (2016). Variability of microbial air pollution and dust concentration inside and outside a selected school in Poznań. Ecol. Eng. 50, pp. 17–25. DOI:10.12912/23920629/65479
[4]. Brągoszewska, E., Mainka, A., Pastuszka, J.S., Lizończyk, K. & Desta, G.Y (2018). Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere, 9,87. DOI:10.3390/atmos9030087
[5]. Bulski, K. & Frączek, K. (2021). Mycological Air Quality at Animal Veterinary Practice. Yearbook of Environmental Protection (Rocznik Ochrona Środowiska), 23, pp. 168-179. DOI:10.54740/ros.2021.011
[6]. Canha, N., Almeida, S.M., Carmo Freitas do, C. & Wolterbeek, H.T. (2015) Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch. Environ. Prot. 41, pp. 11–22. DOI:10.1515/aep-2015-0034
[7]. Chegini, F.M., Baghani, A.N., Hassanvand, M.S., Sorooshian, A., Golbaz, S., Bakhtiari, R., Ashouri, A., Joubani, M.N. & Alimohammadi, M. (2020). Indoor and outdoor airborne bacterial and fungal air quality in kindergartens: Seasonal distribution, genera, levels, and factors influencing their concentration. Build Environ, 175. DOI:10.1016/j.buildenv.2020.106690
[8]. Clauß, M. (2015). Particle size distribution of airborne microorganisms in the environment – a review. Landbauforsch -·Appl. Agric. Forestry Res., 65, pp. 77-100. DOI:10.3220/LBF1444216736000
[9]. Dumała, S.M. & Dudzińska, M.R.., (2013). Microbiological Indoor Air Quality in Polish Schools. Annual Set Environ. Prot., 15, pp. 231-244.
[10]. Ejdys, E. (2009). The influence of atmospheric air on the quality of bioaerosol in school rooms in spring and autumn - mycological assessment. Ochrona Środowiska i Zasobów Naturalnych, 41, pp. 142-150. (in Polish)
[11]. Estillore, A.D., Trueblood, J.V. & Grassian, V.H. (2016). Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci., 7, pp. 6604-6616. DOI:10.1039/c6sc02353c
[12]. Eytyugina, M.G., Alves, C.A., Nunes, T. & Cerqueira, M. (2010). Outdoor/indoor air quality in primary schools in Lisbon: a preliminary study. Quim. Nova, 5, pp. 1145–1149. DOI:10.1590/S0100-40422010000500027
[13]. Faridi, S., Hassanvand, M.S., Naddafi, K., Yunesian, M., Nabizadeh, R., Sowlat, M.H., Kashani, H., Gholampour, A., Niazi, S., Zare, A., Nazmara, S. & Alimohammadi, M. (2015) Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory Environ. Sci. Pollut. Res., 22, pp. 8190–8200. DOI:10.1007/s11356-014-3944-y
[14]. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Arch. Environ. Prot., 47(3), pp. 98-107, DOI 10.24425/aep.2021.138468
[15]. Fsadni, P., Frank, B., Fsadni, C. & Montefort, S. (2017). The Impact of Microbiological Pollutants on School Indoor Air Quality. Journal Geoscience and Environment Protection, 5, pp. 54-65. DOI:10.4236/gep.2017.55004
[16]. Gołofit-Szymczak, M. & Górny, R.L. (2010). Bacterial and fungal aerosols in air -conditioned office buildings in Warsaw, Poland – the winter season. Int. J. Occup. Saf. Ergon., 16, pp. 465-476. DOI:10.1080/10803548.2010.11076861
[17]. Gołofit-Szymczak, M., Górny, R.L., Ławniczek-Wałczyk, A., Cyprowski, M. & Stobnicka, A. (2015) Bacteria and fungal aerosols in the work environment of cleaners. Occupational Medicine (Medycyna Pracy), 66(6), pp. 779–791. (in Polish)
[18]. Górny, R.L., Frączek, K. & Ropek, D.R. (2020). Size distribution of microbial aerosols in overground and subterranean treatment chambers at health resorts. J. Environ. Health Sci. Eng., 18(2), pp. 1437-1450. DOI:10.1007/s40201-020-00559-9.
[19]. Górny, R.L. (2019). Microbial aerosols: sources, properties, health effects, exposure assessment – A review. KONA Powder and Particle Journal, 37, pp. 64-84. DOI:10.14356/kona.2020005
[20]. Górny, R.L., Cyprowski, M., Ławniczek-Wałczyk, A., Gołofit-Szymczak, M. & Zapór, L. (2011). Biohazards in the indoor environment – a role for threshold limit values in exposure assessment, [in:] Management of indoor air quality, Dudzińska MR (Ed.). Taylor & Francis Group, London, pp. 1-20.
[21]. Grzyb, J. & Lenart-Boroń, A. (2020) Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiol., 36, pp: 233–248. DOI:10.1007/s10453-020-09625-z
[22]. Jiayu, C., Qiaoqiao, R., Feilong, C., Chen, L., Jiguo, W., Zhendong, W., Lingyun, C., Liu, R. & Guoxia, Z. (2019). Microbiology Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Health, 3, pp. 347-357. DOI:10.26502/jesph.96120068 23. Jo, W.K. & Seo, Y.J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere, 61(11), pp. 1570–1579. DOI:10.1016/j.chemosphere.2005.04.103
[24]. Jurado, S.R., Bankoff, A.D.P., Jurado, S.R., Bankoff, A.D.P. & Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[25]. Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[26]. Kim, K.H., Kabir, E. & Jahan, S.A. (2018). Airborne bioaerosols and their impact on human health. J. Environ. Sci. (China), 67, pp. 23-35. DOI:10.1016/j.jes.2017.08.027
[27]. Lang-Yona, N., Shuster-Meiseles, T., Mazar, Y., Yarden, O. & Rudich, Y. (2016). Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: outdoor exposure study supported by laboratory experiments. Sci. Total Environ., 541, pp. 365-371. DOI:10.1016/j.scitotenv.2015.09.058
[28]. Lee, J.H. & Jo, W.K. (2006). Characteristic of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ. Res., 101, pp. 11-17. DOI:10.1016/j.envres.2005.08.009
[29]. Li, Y., Ge, Y., Wu, C., Guan, D., Liu, J. & Wang, F. (2020). Assessment of culturable airborne bacteria of indoor environments in classrooms, dormitories and dining hall at university: a case study in China. Aerobiol., 36, pp. 313–324. DOI:10.1007/s10453-020-09633-z
[30]. Mainka, A., Zajusz-Zubek, E., Kozielska, B. & Brągoszewska, E. (2015). Study of air pollution affecting children in a municipal kindergarten located on a road with heavy traffic. Engineering and Environmental Protection (Inżynieria i Ochrona Środowiska), 18(1), pp. 119-133. (in Polish)
[31]. Piersanti, A., D’Elia, I., Gualtieri, M., Briganti, G., Cappelletti, A., Zanini, G. & Ciancarella, L. (2021). The Italian National Air Pollution Control Programme: Air Quality, Health Impact and Cost Assessment. Atmosphere, 12(2), pp. 196. DOI:10.3390/atmos12020196
[32]. Puspita, I.D., Kamagata, Y., Tanaka, M., Asano, K. & Nakatsu, C.H. (2012). Are uncultivated bacteria really uncultivable? Microbes Environ., 27(4), pp. 356-366. DOI:10.1264/jsme2.ME12092
[33]. Sheik, G.B., Rheam, A.I., Shehri, Z.S. & Otaibi, O.B.M. (2015). Assessment of bacteria and fungi in air from College of Applied Medical Sciences (Male) at AD-Dawadmi, Saudi Arabia. Int. Res. J Biological Sci., 4(9), pp. 49-53.
[34]. Simon, X. & Duquenne, P. (2014). Assessment of workers' exposure to bioaerosols in a French cheese factory. Ann. Occup. Hyg., 58, pp. 677-692. DOI:10.1093/annhyg/meu027
[35]. Wlazło, A., Górny, R.L., Złotowska, R., Ławniczek, A., Łudzień-Izbińska, B., Harkawy A.S., Janczyk, E. (2008). Exposure of employees to selected harmful biological agents in the libraries of the Silesian Voivodship. Occupational Medicine (Medycyna Pracy), 59, pp. 159-170. (in Polish)
Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Frączek
1
Karol Bulski
1
Maria Chmiel
1
ORCID: ORCID

  1. Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics,Hugo Kołłątaj University of Agriculture, Krakow, Poland

Abstrakt

W pracy przedstawiono wyniki badania zawartości pierwiastków śladowych, składu ziarnowego i mineralnego cząstek aerozolowych i cząstek osiadłego pyłu w jednej z sal ćwiczeniowych Politechniki Lubelskiej. Porównano je z wynikami takich samych badań dla cząstek aerozolowych i osiadłego pyłu na zewnątrz budynku. Porównanie to wykazało znaczące różnice w jakości i zawartości części stałych w powietrzu wewnętrznym i zewnętrznym. Cząstki aerozolowe wewnątrz pomieszczenia zawierały więcej Ca i K, natomiast na zewnątrz budynku zawierały więcej Fe i Pb. Na podstawie uzyskanych danych podjęto próbę identyfikacji źródeł aerozolowych skażeń powietrza wewnątrz sali. Zwrócono uwagę na znaczenie badań cząstek aerozolowych przy ocenie ekspozycji studentów (uczniów) na określone, specyficzne skażenia znajdujące się we wdychanym przez nich powietrzu. Wskazano również na użyteczność takich badań dla działań mających na celu eliminację źródeł niebezpiecznych, aerozolowych skażeń w szkołach.
Przejdź do artykułu

Autorzy i Afiliacje

Bernard Połednik

Abstrakt

Jedną z istotnych funkcji zintegrowanego systemu oceny jakości powietrza atmosferycznego jest ilościowe oszacowanie wpływu poszczególnych źródeł emisji na zagrożenie środowiska. Problem ten jest szczególnie trudny w przypadku dużych aglomeracji miejsko-przemysłowych charakteryzujących się bardzo złożonym opisem pola emisji i dużą liczbą źródeł. W podejściu prezentowanym w pracy, jako podstawowe narzędzie prognostyczne wykorzystano eulerowsk.i model rozprzestrzeniania się zanieczyszczeń atmosferycznych w skali regionalnej. Wynik.i prognoz modelu wykorzystano do oszacowania ilościowego udziału wybranych (dominujących) źródeł emisji w zagrożeniu środowiska. Udział ten jest określany z punktu widzenia przyjętego wskaźnika jakości powietrza atmosferycznego. Sformułowanie matematyczne ma postać zadania sterowania optymalnego dla systemu o parametrach rozłożonych (opisanego odpowiednim układem równań transportu zanieczyszczeń). Równanie sprzężone wykorzystano do oceny wrażliwości przyjętego wskaźnika jakości ze względu na wielkość emisji poszczególnych źródeł sterowanych. Podejście to wykorzystano do sformułowania i rozwiązania zadania sterowania emisją w czasie rzeczywistym. Przedstawiono przykładowe wyniki dotyczące implementacji zadania dla wybranego regionu przemysłowego.
Przejdź do artykułu

Autorzy i Afiliacje

Piotr Holnicki

Abstrakt

Artykuł omawia metodologię zintegrowanych ocen redukcji zanieczyszczeń powietrza oraz redukcji emisji gazów cieplarnianych. Opisano model RAINS/GAINS opracowany w Międzynarodowym Instytucie Stosowanej Analizy Systemowej (NASA). Omówiono zastosowanie modelu w studiach mających znaczenie dla kształtowania europejskiej polityki środowiskowej, ze szczególnym uwzględnieniem polityki Unii Europejskiej oraz prac w ramach Konwencji EKG ONZ w sprawie transgranicznego zanieczyszczenia powietrza na dalekie odległości. Podkreślono znacznie interakcji i synergii między strategiami kontroli zanieczyszczenia powietrza i redukcji emisji gazów cieplarnianych. Zintegrowane oceny są ważnym elementem działań na rzecz poprawy jakości środowiska w Europie. Dotychczas metody te były stosowane przede wszystkim do badań na poziomie międzynarodowym. Ostatnio znajdują one coraz szersze zastosowanie w badaniach krajowych do szczegółowych analiz na poziomie regionalnym. Celowe jest dalsze rozpowszechnianie zastosowań tej metodologii oraz narzędzi do ocen regionalnych.
Przejdź do artykułu

Autorzy i Afiliacje

Janusz Cofała
Markus Amann
Willem Asman
Imrich Bertok
Chris Heyes
Lena Hoglund-Isaksson
Zbigniew Klimont
Wolfgang Schopp
Fabian Wagner
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The prediction of PM2.5 is important for environmental forecasting and air pollution control. In this study, four machine learning methods, ground-based LiDAR data and meteorological data were used to predict the ground-level PM2.5 concentrations in Beijing. Among the four methods, the random forest (RF) method was the most effective in predicting ground-level PM2.5 concentrations. Compared with BP neural network, support vector machine (SVM), and various linear fitting methods, the accuracy of the RF method was superior by 10%. The method can describe the spatial and temporal variation in PM2.5 concentrations under different meteorological conditions, with low root mean square error (RMSE) and mean square deviation (MD), and the consistency index (IA) reached 99.69%. Under different weather conditions, the hourly variation in PM2.5 concentrations has a good descriptive ability. In this paper, we analyzed the weights of input variables in the RF method, constructed a pollution case to correspond to the relationship between input variables and PM2.5, and analyzed the sources of pollutants via HYSPLIT backward trajectory. This method can study the interaction between PM2.5 and air pollution variables, and provide new ideas for preventing and forecasting air pollution.
Przejdź do artykułu

Bibliografia

  1. Belle, J. & Liu, Y. 2016).( Evaluation of Aqua MODIS Collection 6 AOD Parameters for Air Quality Research over the Continental United States. Remote Sensing, 8(10), pp. 815-820.
  2. Berdnik, V.V. & Loiko, V.A. (2016). Neural networks for aerosol particles characterization. Journal of Quantitative Spectroscopy & Radiative Transfer, 184.
  3. Bishop, C.M., (1995). Neural Networks for Pattern Recognition. Agricultural Engineering International the Cigr Journal of Scientific Research & Development Manuscript Pm, 12(5), pp. 1235 - 1242.
  4. Breiman & Leo, (1996). Bagging Predictors. Machine Learning, 24(2), pp. 123-140.
  5. Butt, E.W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., Regayre, L. A., Pringle, K. J., Mann, G. W. & Spracklen, D. V. (2017). Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environmental Research Letters. 10 (12). DOI: 10.1088/1748-9326/aa87be
  6. Chan, P.W. (2009). Comparison of aerosol optical depth (AOD) derived from ground-based LIDAR and MODIS. Open Atmospheric Science Journal, 3(1), pp. 131-137.
  7. Chu, Y., Liu, Y., Li, X., Liu, Z., Lu, H., Lu, Y., Mao, Z., Chen, X., Li, N., Ren, M., Liu, F., Tian, L., Zhu, Z., & Xiang, H. (2016). A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere, 7(10), p. 129. Doi: 10.3390/atmos7100129
  8. Fernald, F.G. (1984). Analysis of atmospheric lidar observations: some comments. Applied optics, 5, pp. 652-653.
  9. Gui, K., Che, H., Chen, Q., An, L., Zeng, Z., Guo, Z., Zheng, Y., Wang, H., Wang, Y., Yu, J., & Zhang, X. (2016)., Aerosol Optical Properties Based on Ground and Satellite Retrievals during a Serious Haze Episode in December 2015 over Beijing. Atmosphere, 7(5), pp. 70. DOI: 10.3390/atmos7050070
  10. Hu, S, Wang, Z., Xu, Q., Zhou, J. & Hu. H. (2006). Study on Lidar Measurement of Atmospheric Aerosol Optical Thickness. Journal of Quantum Electronics, 3, p. 307-310.(in Chinese)
  11. Hutchison, K.D., Faruqui, S.J. & Smi, S. (2008). The Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses. Atmosphere Environment, 3(42), pp. 530-554. DOI: 10.1016/j.atmosenv.2007.09.050
  12. Jones, R.M. (2008). Experimental evaluation of a Markov model of contaminant transport in indoor environments with application to tuberculosis transmission in commercial passenger aircraft. Dissertations & Theses - Gradworks, 2008.
  13. Kaufman, Y.J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), pp. 215-23.
  14. Li, X. & Zhang, X. (2019). Predicting ground-level PM 2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach. Environmental Pollution, 249, pp. 735-749. DOI: 10.1016/j.envpol.2019.03.068
  15. Bing,-C.L., Binaykia, A., Chang, P-C., Tiwari, M.K. & Tsao, C-C. (2017). Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. Plos One, 12(7), pp. e0179763. DOI: 10.1371/journal.pone.0179763
  16. Mao, X., Shen, T. & Feng, X. (2017). Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China. Atmospheric Pollution Research, 6(8), pp. 1005-1015. S1309104217300296.
  17. Nabavi, S.O., et al., Prediction of aerosol optical depth in West Asia using deterministic models and machine learning algorithms. Aeolian Research, 2018. 35C: p. 69-84.
  18. Stein, A.F., et al., NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 2016: p. 150504130527006. DOI: 10.1016/j.apr.2017.04.002
  19. Toth, T.D., Campbell, J.R., Reid, J.S., Tackett, J.L., Vaughan, M.A., Zhang, J. & Marquis, J.W. (2018). Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products. Atmospheric Measurement Techniques, 11, p. 499-514. DOI: 10.5194/amt-11-499-2018
  20. Yan, D., Lei, Y., Shi, Y., Zhu, Q., Li, L.& Zhang, Z. (2018). Evolution of the spatiotemporal pattern of PM2.5 concentrations in China – a 2 case study from the Beijing-Tianjin-Hebei region. Atmosphere Environment. 183, pp. 225-233. DOI: 10.1016/j.atmosenv.2018.03.041
  21. Yang, G., Lee, H. & Lee, G. (2020). A Hybrid Deep Learning Model to Forecast Particulate Matter Concentration Levels in Seoul, South Korea. Atmosphere, 11(4): pp. 348. DOI: 10.3390/atmos11040348
  22. Wang, Y., Chen, L., Li, S., Wang, X., Yu, C., Si, Y. & Zhang, Z. (2017). Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD) Retrieval Algorithm. Remote Sensing, 2017. 9(4): p. 397. DOI: 10.3390/rs9040397
  23. Chen, Z., Zhang, J., Zhang, T., Liu, W. & Liu, J. (2015). Haze observations by simultaneous lidar and WPS in Beijing before and during APEC, 2014. Science China(Chemistry), 2015. 09(v.58): p. 33-40. DOI: 10.1007/s11426-015-5467-x
Przejdź do artykułu

Autorzy i Afiliacje

Zhiyuan Fang
1 2 3
Hao Yang
1 2 3
Cheng Li
1 2 3
Liangliang Cheng
1 2 3
Ming Zhao
1 2
Chenbo Xie
1 2

  1. Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Hefei 230031, China
  2. Science Island Branch of Graduate School, University of Science and Technology of China,Hefei 230026, China
  3. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Chin

Abstrakt

Pomiary stężeń 16 wielopierścieniowych węglowodorów aromatycznych w powietrzu związanych z pyłami o frakcjach poniżej 2,5 μm prowadzono w 4 punktach pomiarowych województwa małopolskiego i śląskiego, w latach 2004-2006. Zebrany na podkładach filtracyjnych pyl respirabilny pochodził z terenu reprezentatywnego dla tła miejskiego, tras komunikacyjnych oraz emisji przemysłowej. Zaobserwowano wyraźne różnice w stężeniach WWA w sezonie letnim i grzewczym. Jak wynika z pomiarów najwyższe stężenia WWA w powietrzu związanych z pyłem PM2,5 zaobserwowano w Krakowie, w rejonie oddziaływania źródeł przemysłowo-komunikacyjnych, ma to miejsce zarówno w okresie letnim jak i w sezonie grzewczym. W ramach badań, w oparciu o uzyskane wyniki wyznaczono wzajemne stosunki poszczególnych WWA związanych z PM2,5 w powietrzu w wybranych miastach. Uzyskane wyniki badań wskazują, że poziom zanieczyszczenia badanych pyłów PM2,5 jest znaczny i zbliżony do danych uzyskiwanych z obszarów o podobnym stopniu urbanizacji i industrializacji.
Przejdź do artykułu

Autorzy i Afiliacje

Katarzyna Ćwiklak
Wioletta Rogula
Halina Pyta
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Road dust should be considered as a secondary source of contamination in the environment, especially when re-suspended. In our study road dust samples were collected from 8 high-capacity urban roads in two districts of Kraków (Krowodrza and Nowa Huta). Total concentration of toxic elements, such as Cd, Cr, Cu, Mn, Zn, Co, Pb, Ni, Ba and Se were determined using ICP –MS ELAN 6100 Perkin Elmer. A fractionation study were performed using VI step sequential extraction, according to the modified method provided by Salomons and Fӧrstner. Appropriate quality control was ensured by using reagent blanks and analysing certified reference material BCR 723 and SRM 1848a. Concentration of metals in the road dust varied as follows [mg/kg]: Cd 1.02-1.78, Cr 34.4-90.3, Cu 65-224, Mn 232-760, Zn 261-365, Co 4.32-6.46, Pb 85.6-132, Ni 32.2-43.9, Ba 98.9-104 and Se 78.3-132. Degree of contamination of road dust from Nowa Huta was very high (Cdeg 54) and considerable for road dust from Krowodrza (Cdeg 25). Results revealed that road dust samples were heavily contaminated with Cd, Cu, Zn, Mn, Co, Pb, Ni, Ba and Se, in amounts exceeding multiple times geochemical background values. The chemical speciation study using VI step sequential extraction, followed by assessing risk assessment code (RAC) revealed that elements in road dust are mostly bound with mobile and easy bioavailable fractions such as carbonates and exchangeable cations, with the exception for Cr and Cu being mostly associated and fixed with residual and organic matter fraction.
Przejdź do artykułu

Bibliografia

  1. Adamiec, E., Jarosz-Krzemińska E., Wieszała R. (2016). Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental monitoring and assessment 188, 1-11
  2. Adamiec, E. (2017a). Road Environments: Impact of Metals on Human Health in Heavily Congested Cities of Poland. Int J Environ Res Public Health 14(697), 1–17, DOI: 10.3390/ijerph14070697.
  3. Adamiec, E. (2017b). Traffic related metals as sources of urban environment pollution: a case study of Kraków, Poland. WIT Transactions on Ecology and the Environment 214, 87–89.
  4. Ali-Taleshi M. S., Moeinaddini M., Feiznia S., Squizzato S. (2020). Heavy Metal Pollution in Street Dust from Tehran in 2018: Metal Richness and Degree of Contamination Assessment. Journal of Envir. Health Engin. 7 (2) :179-194
  5. Ali-Taleshi, M.S., Feiznia, S., Bourliva, A., Squizzato, S. (2021). Road dusts-bound elements in a major metropolitan area, Tehran (Iran): Source tracking, pollution characteristics, ecological risks, spatiotemporal and geochemical patterns. Urban Climate, 39, 100933.
  6. Ali-Taleshi M.S., Squizzato S., Feiznia S., Carabalí G. (2022). From dust to the sources: The first quantitative assessment of the relative contributions of emissions sources to elements (toxic and non-toxic) in the urban roads of Tehran, Iran. Microchemical Journal, 181, 107817, DOI: 10.1016/j.microc.2022.107817.
  7. AQEG (2012) Fine Particle Matter (PM2.5) in the United Kingdom. Air Quality Expert Group. https://www.gov.uk/goverment/publications/fine-particulate-matter-pm2-5-in-the-uk.
  8. Ayrault S., Catinon M., Boudouma O., Bordier L., Agnello G., Reynaud S., Tissut M. 2013. Street Dust: Source and Sink of Heavy Metals To Urban Environment. E3S Web of Conferences, Vol 1, Proceedings of the 16th International Conference on Heavy Metals in the Environment, DOI:10.1051/e3sconf/2013012000.
  9. Brewer, P. 1997. M.Sc. Thesis: ‘Vehicles as a source of heavy metal contamination in the environment’. University of Reading, Berkshire, UK.
  10. EPA (2020). Smog, Soot, and Other Air Pollution from Transportation, https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution
  11. Filgueiras, A. F., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Environmental Monitoring, 4, 823–857.
  12. Godłowska J., Kaszowski K, Kaszowski W. (2022). Application of the FAPPS system based
  13. on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland. Archives of Environmental Protection. 48 (3), 109-117,
  14. DOI: 10.24425/aep.2022.142695
  15. Gunawardana C., Goonetilleke A., Egodawatta P., Dawes L., Kokot S. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 87 (2), 163-170, DOI: 10.1016/j.chemosphere.2011.12.012.
  16. Hakanson L. (1980). An ecological risk index for aquatic pollution control: A sediment ecological approach. Water Res.14:975–1001.
  17. Holnicki P., Kałuszko A., Nahorski Z. (2021) Analysis of emission abatement scenario to improve urban air quality. Archives of Environmental Protection. 47(2) 103–114. DOI 10.24425/aep.2021.137282.
  18. Hu X., Zhang Y., Luo J., Wang T. & Lian H. (2011) Total concentrations and fractionation of heavy metals in road-deposited sediments collected from different land use zones in a large city (Nanjing), China, Chemical Speciation & Bioavailability, 23:1, 46-52, DOI: 10.3184/095422911X12971903458891
  19. Kowalik R., Gawdzik J., Bąk-Patyna P., Ramiączek P., Jurišević N. (2022), Risk Analysis of Heavy Metals Migration from Sewage Sludge of Wastewater Treatment Plants. Int J Environ Res Public Health, 19(18):11829. DOI: 10.3390/ijerph191811829. PMID: 36142102; PMCID: PMC9517408.
  20. Li J.L., He M., Han W., Gu Y.F. (2009). Availability and mobility of metal fractions related to the characteristics of the coastal soils developed from alluvial deposits. Environ Monit Assess 158:459–469, DOI: 10.1007/s10661-008-0596-8
  21. Lis J., Pasieczna A. (1995). Atlas geochemiczny Krakowa i okolic 1:100 000. Państwowy Instytut Geologiczny, Warszawa.
  22. Marin J., Colina M., Ledo H., Gardiner P. H. E. (2022). Ecological risk by potentially toxic elements in surface sediments of the Lake Maracaibo (Venezuela). Environ. Eng. Res, 27(4), 210232, DOI: 10.4491/eer.2021.232.
  23. Matabane D. L., Godeto T. W., Mampa R. M., Ambushe A. A. (2021). Sequential Extraction and Risk Assessment of Potentially Toxic Elements in River Sediments. Minerals, 11(8), 874, DOI: 10.3390/min11080874.
  24. Muschack W. (1990) Pollution of street run-off by traffic and local conditions. Science of The Total Environment, 93, 419-431, DOI: 10.1016/0048-9697(90)90133-f.
  25. Miazgowicz A., Krennhuber K., Lanzerstorfer C. (2020). Metals concentrations in road dust from high traffic and low traffic area: a size dependent comparison. Int. J. Environ. Sci. Technol. 17, 3365–3372, DOI:1007/s13762-020-02667-3.
  26. Michlaski R., Pecyna-Utylska P. (2022). Chemical characterization of bulk deposition in two cities of Upper Silesia (Zabrze, Bytom), Poland. Case study. Archives of Environmental Protection, 48(2),106–116, DOI 10.24425/aep.2022.140784.
  27. Perin G., Craboledda L., Lucchese M., Cirillo R., Dotta L., Zanetta M. L., Oro A. A. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In Heavy Metals in the Environment; LakkasT.D., Ed.; CEP Consultants: Edinburgh, Scotland; 2, 454–456.
  28. Sabouhi, M., Ali-Taleshi, M.S., Bourliva, A., Nejadkoorki, F., Squizzato, S. (2020).Insights into the anthropogenic load and occupational health risk of heavy metals in floor dust of selected workplaces in an industrial city of Iran.Science of The total Envir.744, 140862.Salomons W. , Förstner (1985). U. Metals in the Hydrocycle (Springer Verlag)
  29. Sutherland R. A., Tack F. M. G, Ziegler A.D. (2012) Road-deposited sediments in an urban environment: A first look at sequentially extracted element loads in grain size fractions. Journal of Hazardous Materials 225– 226, 54– 62.
  30. Świetlik, R., Trojanowska, M., Strzelecka, M., & Bocho-Janiszewska, A. (2015). Fractionation and mobility of Cu, Fe, Mn, Pb and Zn in the road dust retained on noise barriers along expressway. A potential tool for determining the effects of driving conditions on speciation of emitted particulate metals. Environmental Pollution, 196, 404–413
  31. Vlasov D., Ramirez O., Luhar A. (2022). Road dust in Urban and Industrial Environments: Sources, Pollutants, Impacts, and Management. Atmosphere, 13, 607, DOI: 10.3390/atmos13040607.
  32. Zhang, M. & Wang, H. (2009) Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China. J. Environ. Sci., 21, 625 – 631.
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Adamiec
1
ORCID: ORCID
Elżbieta Jarosz-Krzemińska
1
ORCID: ORCID
Robert Brzoza-Woch
1
ORCID: ORCID
Mateusz Rzeszutek
1
ORCID: ORCID
Jakub Bartyzel
1
ORCID: ORCID
Tomasz Pełech-Pilichowski
1
ORCID: ORCID
Janusz Zyśk
1

  1. AGH – University of Science and Technology, Poland

Abstrakt

Badania powietrza atmosferycznego przeprowadzono na terenie i w otoczeniu mechaniczno-biologicznej oczyszczalni ścieków komunalnych (z udziałem ścieków z przemysłu mleczarskiego) o przepustowości około 3000 mvd'. Badano liczebność bakterii heterotroficznych psychrofilnych, psychrotrofowych i mezofilnych oraz wybranych grup fizjologicznych drobnoustrojów: z rodziny Enterobacteriaceae, rodzajów Staphylococcus i Enterococcus, gatunków Pseudomonasfluorescens i P. aeruginosa, bakterii hemolizujących oraz promieniowców. Powietrze do badań pobierano w sezonach letnim.jesiennym, zimowym i wiosennym, równolegle metodą sedymentacyjną i zderzeniową na 6 stanowiskach usytuowanych na terenie oczyszczalni oraz na 5 stanowiskach usytuowanych w jej otoczeniu. Tio wyznaczano w zależności od kierunku wiatru po stronie nawietrznej w stosunku do położenia oczyszczalni. Ponadto prowadzono pomiary temperatury i wilgotności powietrza oraz prędkości wiatru na poszczególnych stanowiskach badawczych. Stwierdzono statystycznie istotne różnice w liczebności poszczególnych grup badanych drobnoustrojów w powietrzu pobieranym w różnych sezonach badawczych (z wyjątkiem bakterii psychrofilnych) oraz różnymi metodami (z wyjątkiem bakterii psychrofilnych i bakterii z rodziny Enterobacteriaceae). Najwyższe średnic ich liczebności stwierdzano zazwyczaj w próbach powietrza pobieranego metodą sedymentacyjną zwłaszcza jesienią (z wyjątkiem promieniowców. których maksymalne liczebności stwierdzano wiosną), najniższe zaś zimą i/lub latem. Zazwyczaj (z wyjątkiem bakterii z rodziny Enterobocteriaceaei nie stwierdzano istotnych statystycznie różnic w liczebności badanych grup drobnoustrojów w powietrzu pobieranym na poszczególnych stanowiskach. Jednakże wyższe ich liczebności występowały najczęściej w powietrzu pobieranym na stanowiskach usytuowanych na terenie oczyszczalni ścieków. a szczególnie w pobliżu piaskownika, komory defosfatacji, komór nitryfikacji i denitryfikacji oraz osadnika wtórnego. Uwzględniając kryteria oceny stopnia zanieczyszczenia powietrza atmosferycznego zawarte w Polskich Normach, powietrze pobierane zarówno na terenie, jak i w otoczeniu oczyszczalni zaklasyfikowano jako mało zanieczyszczone, sporadycznie, głównie w sezonach wiosennym i jesiennym występowało silne zanieczyszczenie powietrza bakteriami psychrofilnymi, psychrotrofowymi i mezofilnymi. Nie stwierdzono podwyższonej emisji badanych grup drobnoustrojów, w tym również pochodzenia kałowego, poza obszar terenu oczyszczalni.
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Korzeniewska
Zofia Filipkowska
Anna Gotkowska-Płachta
Wojciech Janczukowicz
Bartosz Rutkowski

Abstrakt

W artykule przedstawiono wyniki eksperymentu obliczeniowo-pomiarowego, jaki przeprowadzono na obszarze Nowego Sącza w lipcu 1993 r. Celem eksperymentu była ocena przydatności ,,box-modelu" do symulacji przebiegów czasowych stężeń ozonu i innych zanieczyszczeń w przyziemnej warstwic atmosfery. Przeprowadzone obliczenia numeryczne weryfikowano danymi pomiarowymi pochodzącymi z naziemnych stacji monitoringu jakości powietrza. Ocenę skuteczności prognostycznej modelu dokonano w oparciu o analizę jakościową i ilościową zebranych danych pomiarowych oraz wyników obliczeń. Dla analizowanego epizodu błąd obliczonych wartości maksymalnych stężeń ozonu nic przekroczy! ±22% w stosunku do maksymalnych wartości pomiarowych. W przypadku stężeń średniodobowych ozonu wartości obliczone były zaniżone w stosunku do wartości pomiarowych średnio o 29%. Błąd obliczeń w dużej micrze zdeterminowany był niepewnością wprowadzonego do obliczeń przebiegu głębokości warstwy mieszania.
Przejdź do artykułu

Autorzy i Afiliacje

Marek Bogacki
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Air pollution has a serious impact on the health of human beings and is a major cause of death worldwide every year. Out of the many sources of air pollution, the smoke generated from household combustion devices is very dangerous due to the incomplete combustion of fuel. Women from rural areas suffer a lot due to this harmful smoke. Diseases like cancer, throat, and lung infection occur in adults and children due to inhalation of this smoke. The traditional chulha used by rural women is operated by using cow dung, straw, and wood, and the air is blown manually by using small metallic pipes. This paper presents the design and development of an innovative stove to maximize flame temperature and minimize air pollution to overcome the health-related issues of rural women. A smokeless stove is presented, in which wood, straw, and cow dung are taken as primary fuel, and superheated steam as a secondary oxidizer for its operation. In this stove, a forced draft is created by the provision of a small fan, which is operated by solar power thus eliminating the need of creating a forced draft manually by the cook which makes this innovative stove superior to the traditional chulha. Owing to the provision of superheated steam, the flame temperature as well as the burning efficiency increases. The cooking time is reduced due to higher flame temperature as compared to the liquefied petroleum gas stove. The main objective of this work is to minimize air pollution and provide a smoke-free environment to the people using such devices as this innovative stove offers complete combustion of fuel. The flame temperature of the designed stove ranges from 595˚C to 700˚C and its thermal efficiency is 10–17% higher than that of the traditional chulha. The design of this stove is unique, and its maintenance cost is also much less.
Przejdź do artykułu

Bibliografia

[1] James B.S., Shetty R.S., Kamath A., Shetty A.: Household cooking fuel use and its health effects among rural women in southern India — A cross-sectional study. PLoS ONE 15(2020), 4, e0231757.
[2] Balakrishnan K.: Examining health effects of air pollution in India. ICMR Cent. Adv. Res. Environ. Health, New Delhi 2013.
[3] Onah I., Ayuba H.K., Idris N.M.: Estimation of fuelwood-induced carbon emission from the use of improved cook stoves by selected households in Kwara State, Nigeria. Clim. Change 160 (2020), 3, 463–477.
[4] Obi O.F., Ezema J.C., Okonkwo W.I.: Energy performance of biomass cookstoves using fuel briquettes. Biofuels 11 (2020), 4, 467–478.
[5] Woldesemayate A.T., Atnaw S.M.: A review on design and performance of improved biomass cooks stoves. L. N. Inst. Comp. Sci. Soc.-Inf. Telecomm. Eng. LNICST 308(2020), 557–565.
[6] Flores W.C., Bustamante B., Pino H.N., Al-Sumaiti A., Rivera S.: A national strategy proposal for improved cooking stove adoption in Honduras: Energy consumption and cost-benefit analysis. Energies 13(2020), 4, en13040921.
[7] Mekonnen B.Y., Hassen A.A.: Design, construction and testing of hybrid solarbiomass cook stove. L. N. Inst. Comp. Sci. Soc.-Inf. Telecomm. Eng. LNICST 274 (2019), 225–238.
[8] Jain T., Sheth P.N.: Design of energy utilization test for a biomass cook stove. Formulation of an optimum air flow recipe. Energy 166(2019), 1097–1105.
[9] Manyuchi M.M., Mbohwa C., Muzenda E., Mpeta, M.: Adoption of eco cook stoves as a way of improving energy efficiency. In: Proc. Int. Conf. on Industrial Engineering and Operations Management, Pilsen, July 23–26, 2019, 35–39.
[10] Prasannakumaran K.M., Karthikeyan M., Sanjay Kumar C., Premkumar, D., Kirubakaran V.: Integration of cooking trays for waste heat recovery in the energy efficient wood stove. Indian J. Environ. Prot. 39(2019), 1, 69–73.
[11] Emetere M.E., Okonkwo O.D., Jack-Quincy S.: Investigating heat sink properties for an efficient construction of energy generating cook stove for rural settler. Int. J. Manuf. Mater. Mech. Eng. 8(2018), 3, 12–22.
[12] Tom S., Shuma M.R., Madyira D.M., Kaymakci A.: Performance testing of a multi-layer biomass briquette stove. In: Proc. Conf. Ind. Commer. Use Energy ICUE (2017), 8068008.
[13] Roul M.K., Nayak, R.C.: Experimental investigation of natural convection heat transfer through heated vertical tubes. Int. J. Eng Res Appl. 2(2012), 6, 1088–1096.
[14] Nayak R.C., Roul M.K., Sarangi S.K.: Experimental investigation of natural convection heat transfer in heated vertical tubes with discrete rings. Exp. Tech. 41(2017), 585–603.
[15] Nayak R.C., Roul M.K., Sarangi S.K.: Experimental investigation of natural convection heat transfer in heated vertical tubes. Int. J. Appl. Eng. Res. 12(2017), 2538–2550.
[16] Nayak R.C., Roul M.K., Sarangi, S.K.: Natural convection heat transfer in heated vertical tubes with internal rings. Arch. Thermodyn. 39(2018), 4, 85–111.
[17] Sahoo L.K., Roul, M.K., Swain R.K.: CFD analysis of steady laminar natural convection heat transfer from a pin finned isothermal vertical plate. Heat Transf. – Asian Res. 46(2017), 840–862.
[18] Sahoo L.K., Roul M.K., Swain R.K.: Natural convection heat transfer augmentation factor with square conductive pin fin arrays. J. Appl. Mech. Tech. Phys. 58(2017), 1115–1122.
[19] Sahoo L.K., Roul M.K., Swain R.K.: CFD analysis of natural convection heat transfer augmentation from square conductive horizontal and inclined pin fin arrays. Int. J. Ambient Energy 39(2018), 840–851.
[20] Baqir M., Bharti S.K., Kothari R., Singh, R.P.: Assessment of an energyefficient metal stove for solid biomass fuel and evaluation of its performance. Int. J. Environ. Sci. Technol. 16(2019), 11, 6773–6784.
[21] Saravanna J.Y., KantamnenR., Fasil N., Sivamani S., Hariram V., Micha Premkumar T., Mohan., T.: Modelling and analysis of water heating using recovered waste heat from hot flue gases of stove. ARPN J. Eng. Appl. Sci. 12(2017), 21, 6164–6171.
[22] Thakur M., Boudewijns E.A., Babu G.R., Winkens B., de Witte L.P., Gruiskens J., Sushama P., Ghergu C.T., van Schayck O.C.P.: Low-smoke stove in Indian slums: Study protocol for a randomised controlled trial. BMC Public Health 17(2017), 1, 454.
[23] Smith K.R., Sagar A.: Making the clean available: Escaping India’s Stove Trap. Energy Policy 75(2014), 410–414.
[24] Hanbar R.D., Karve, P.: National Programme on Improved Stove (NPIC) of the Government of India: an overview. Energy Sustain. Dev. 6(2002), 2, 49–55.
[25] Gowda M.C., Raghavan G.S.V., Ranganna B., Barrington S.: Rural waste management in a south Indian village – A case study. Bioresour. Technol. 53(1995), 2, 157–164.
[26] Wang Y., Bailis R.: The revolution from the kitchen: Social processes of the removal of traditional cookstoves in Himachal Pradesh, India. Energy Sustain. Dev. 27(2015), 127–136.
[27] Kammen D.M.: Cook stoves for the developing world. Sci. Am. 273(1995), 1, 72–75.
[28] Asi E.M.: An integrated analytical framework for analysing expansive learning in improved cook stove practice. Learn. Cult. Soc. Interact. 26(2020), 100414.
[29] Kshirsagar M.P., Kalamkar V.R.: Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove. Renew. Energy 153(2020), 1127–1139.
[30] Koroll G.W., Mulpuru S.R.: The effect of dilution with steam on the burning velocity and structure of premixed hydrogen flames. Symp. (Int.) Combust. 21(1988), 1, 1811–1819.
[31] Mujumdar A.S.: Superheated steam drying. In: Handbook of Industrial Drying (3rd Edn.). CRC Press, Boca Raton 2006.
[32] Potter D.: Measuring Temperature with Thermocouples – A Tutorial. National Instruments Application Note 043, Nov. (1996).
Przejdź do artykułu

Autorzy i Afiliacje

Ramesh Chandra Nayak
1
Manmatha K. Roul
2
Prateek Debadarsi Roul
3

  1. Synergy Institute of Technology, Bhubaneswar – 752101, Odisha, India
  2. GITA Autonomous College, Bhubaneswar – 752054, Odisha, India
  3. Odisha University of Technology and Research, Bhubaneswar – 751003, Odisha, India

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji