Details

Title

Design and development of smokeless stove for a sustainable growth

Journal title

Archives of Thermodynamics

Yearbook

2022

Volume

vol. 43

Issue

No 1

Authors

Affiliation

Nayak, Ramesh Chandra : Synergy Institute of Technology, Bhubaneswar – 752101, Odisha, India ; Roul, Manmatha K. : GITA Autonomous College, Bhubaneswar – 752054, Odisha, India ; Roul, Prateek Debadarsi : Odisha University of Technology and Research, Bhubaneswar – 751003, Odisha, India

Keywords

combustion ; efficiency ; calorific value ; air pollution ; stove ; fuel ; superheater

Divisions of PAS

Nauki Techniczne

Coverage

109-125

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] James B.S., Shetty R.S., Kamath A., Shetty A.: Household cooking fuel use and its health effects among rural women in southern India — A cross-sectional study. PLoS ONE 15(2020), 4, e0231757.
[2] Balakrishnan K.: Examining health effects of air pollution in India. ICMR Cent. Adv. Res. Environ. Health, New Delhi 2013.
[3] Onah I., Ayuba H.K., Idris N.M.: Estimation of fuelwood-induced carbon emission from the use of improved cook stoves by selected households in Kwara State, Nigeria. Clim. Change 160 (2020), 3, 463–477.
[4] Obi O.F., Ezema J.C., Okonkwo W.I.: Energy performance of biomass cookstoves using fuel briquettes. Biofuels 11 (2020), 4, 467–478.
[5] Woldesemayate A.T., Atnaw S.M.: A review on design and performance of improved biomass cooks stoves. L. N. Inst. Comp. Sci. Soc.-Inf. Telecomm. Eng. LNICST 308(2020), 557–565.
[6] Flores W.C., Bustamante B., Pino H.N., Al-Sumaiti A., Rivera S.: A national strategy proposal for improved cooking stove adoption in Honduras: Energy consumption and cost-benefit analysis. Energies 13(2020), 4, en13040921.
[7] Mekonnen B.Y., Hassen A.A.: Design, construction and testing of hybrid solarbiomass cook stove. L. N. Inst. Comp. Sci. Soc.-Inf. Telecomm. Eng. LNICST 274 (2019), 225–238.
[8] Jain T., Sheth P.N.: Design of energy utilization test for a biomass cook stove. Formulation of an optimum air flow recipe. Energy 166(2019), 1097–1105.
[9] Manyuchi M.M., Mbohwa C., Muzenda E., Mpeta, M.: Adoption of eco cook stoves as a way of improving energy efficiency. In: Proc. Int. Conf. on Industrial Engineering and Operations Management, Pilsen, July 23–26, 2019, 35–39.
[10] Prasannakumaran K.M., Karthikeyan M., Sanjay Kumar C., Premkumar, D., Kirubakaran V.: Integration of cooking trays for waste heat recovery in the energy efficient wood stove. Indian J. Environ. Prot. 39(2019), 1, 69–73.
[11] Emetere M.E., Okonkwo O.D., Jack-Quincy S.: Investigating heat sink properties for an efficient construction of energy generating cook stove for rural settler. Int. J. Manuf. Mater. Mech. Eng. 8(2018), 3, 12–22.
[12] Tom S., Shuma M.R., Madyira D.M., Kaymakci A.: Performance testing of a multi-layer biomass briquette stove. In: Proc. Conf. Ind. Commer. Use Energy ICUE (2017), 8068008.
[13] Roul M.K., Nayak, R.C.: Experimental investigation of natural convection heat transfer through heated vertical tubes. Int. J. Eng Res Appl. 2(2012), 6, 1088–1096.
[14] Nayak R.C., Roul M.K., Sarangi S.K.: Experimental investigation of natural convection heat transfer in heated vertical tubes with discrete rings. Exp. Tech. 41(2017), 585–603.
[15] Nayak R.C., Roul M.K., Sarangi S.K.: Experimental investigation of natural convection heat transfer in heated vertical tubes. Int. J. Appl. Eng. Res. 12(2017), 2538–2550.
[16] Nayak R.C., Roul M.K., Sarangi, S.K.: Natural convection heat transfer in heated vertical tubes with internal rings. Arch. Thermodyn. 39(2018), 4, 85–111.
[17] Sahoo L.K., Roul, M.K., Swain R.K.: CFD analysis of steady laminar natural convection heat transfer from a pin finned isothermal vertical plate. Heat Transf. – Asian Res. 46(2017), 840–862.
[18] Sahoo L.K., Roul M.K., Swain R.K.: Natural convection heat transfer augmentation factor with square conductive pin fin arrays. J. Appl. Mech. Tech. Phys. 58(2017), 1115–1122.
[19] Sahoo L.K., Roul M.K., Swain R.K.: CFD analysis of natural convection heat transfer augmentation from square conductive horizontal and inclined pin fin arrays. Int. J. Ambient Energy 39(2018), 840–851.
[20] Baqir M., Bharti S.K., Kothari R., Singh, R.P.: Assessment of an energyefficient metal stove for solid biomass fuel and evaluation of its performance. Int. J. Environ. Sci. Technol. 16(2019), 11, 6773–6784.
[21] Saravanna J.Y., KantamnenR., Fasil N., Sivamani S., Hariram V., Micha Premkumar T., Mohan., T.: Modelling and analysis of water heating using recovered waste heat from hot flue gases of stove. ARPN J. Eng. Appl. Sci. 12(2017), 21, 6164–6171.
[22] Thakur M., Boudewijns E.A., Babu G.R., Winkens B., de Witte L.P., Gruiskens J., Sushama P., Ghergu C.T., van Schayck O.C.P.: Low-smoke stove in Indian slums: Study protocol for a randomised controlled trial. BMC Public Health 17(2017), 1, 454.
[23] Smith K.R., Sagar A.: Making the clean available: Escaping India’s Stove Trap. Energy Policy 75(2014), 410–414.
[24] Hanbar R.D., Karve, P.: National Programme on Improved Stove (NPIC) of the Government of India: an overview. Energy Sustain. Dev. 6(2002), 2, 49–55.
[25] Gowda M.C., Raghavan G.S.V., Ranganna B., Barrington S.: Rural waste management in a south Indian village – A case study. Bioresour. Technol. 53(1995), 2, 157–164.
[26] Wang Y., Bailis R.: The revolution from the kitchen: Social processes of the removal of traditional cookstoves in Himachal Pradesh, India. Energy Sustain. Dev. 27(2015), 127–136.
[27] Kammen D.M.: Cook stoves for the developing world. Sci. Am. 273(1995), 1, 72–75.
[28] Asi E.M.: An integrated analytical framework for analysing expansive learning in improved cook stove practice. Learn. Cult. Soc. Interact. 26(2020), 100414.
[29] Kshirsagar M.P., Kalamkar V.R.: Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove. Renew. Energy 153(2020), 1127–1139.
[30] Koroll G.W., Mulpuru S.R.: The effect of dilution with steam on the burning velocity and structure of premixed hydrogen flames. Symp. (Int.) Combust. 21(1988), 1, 1811–1819.
[31] Mujumdar A.S.: Superheated steam drying. In: Handbook of Industrial Drying (3rd Edn.). CRC Press, Boca Raton 2006.
[32] Potter D.: Measuring Temperature with Thermocouples – A Tutorial. National Instruments Application Note 043, Nov. (1996).

Date

2022.04.13

Type

Article

Identifier

DOI: 10.24425/ather.2022.140927

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×