Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the noise propagation analysis in ship structures tested in a number of AHTS (Anchor Handling Tug Supply) vessels. Statistical Energy Analysis (SEA) based on numerical model developed specially for the purpose of this numerical investigation were conducted. This numerical model enabled the analysis of both the structural elements and the acoustic spaces. For the detailed studies 47 points fixed at various ship locations were selected. Prediction results with use of the numerical model were compared with the experimental results carried out in six identical AHTS vessels. Experimental studies were performed in accordance with the requirements of the International Maritime Organization (IMO) Resolution A.468 (XII). As a result one presented a comparison of the model analysis and experimental tests results.
Go to article

Authors and Affiliations

Grażyna Grelowska
Mateusz Weryk
Eugeniusz Kozaczka
Download PDF Download RIS Download Bibtex

Abstract

In the present study, energy and exergy analysis has been evaluated for roughened solar air heater (SAH) using arc shaped wire ribs. To achieve this aim, two different types of flow arrangement have been considered. These arrangements are: apex upstream flow and apex downstream flo. In addition to this, a smooth duct SAH has been used for comparative study. The experiments were performed using the mass flow rate of 0.007– 0.022 kg/s on outdoor condition at Jamshedpur city of India. The absorber plate roughness geometry has been designed with relative roughness height 0.0395, rib size 2.5 mm, relative roughness pitch 10 and arc angle 60 . The energetic and exergetic performances have been examined on the basis of the first and second law of thermodynamics. According to the results, there is observed to be the maximum thermal efficiency and exergy efficiency as 73.2% and 2.64%, respectively, for apex upstream flow SAH at 0.022 kg/s, while, at same mass flow rate the maximum thermal efficiency and exergy efficiency is obtained as 69.4% and 1.89%, respectively, for apex downstream flow SAH. In addition to this, results reported that the maximum outlet temperature and temperature difference observed at lower mass flow rate. Also examined the outlet air temperature of SAH with various mass flow rates is very important for both analysis.
Go to article

Bibliography

[1] Duffie J.A., Beckman W.A.: Solar Engineering of Thermal Processes (3rd Edn.). Wiley, New York 2006.
[2] Garg H.P., Prakash J.: Solar Energy Fundamentals and Applications. Tata Mc- Graw Hill, New Delhi 2006.
[3] Ghritlahre H.K.: Performance Evaluation of solar air heating systems using artificial neural network. PhD thesis, National Institute of Technology, Jamshedpur 2019.
[4] Ghritlahre H.K., Chandrakar P., Ahmad A.: A comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann. Data Sci. 8(2019), 405–449).
[5] Prakash C., Saini R.P.: Use of artificial roughness for performance enhancement of solar air heaters – a review. Int. J. Green Energy 16(2019), 7, 551–572.
[6] Ghritlahre H.K., Sahu P.K., Chand S.: Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – An experimental study. Sol. Energy 199(2020), 173–182.
[7] Ghritlahre HK, Prasad RK.: Exergetic performance prediction of a roughened solar air heater using artificial neural network. Strojniški vestnik/J. Mech. Eng. 64(2018), 3, 195–206.
[8] Ghritlahre H.K., Prasad R.K.: Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. J. Environ. Manage. 223(2018), 566–575.
[9] Ghritlahre H.K., Prasad R.K.: Prediction of exergetic efficiency of artificial arc shape roughened solar air heater using ANN model. Int. J. Heat Technol. 36(2018), 3, 1107–1115.
[10] Kurtbas I., Durmus A.: Efficiency and exergy analysis of a new solar air heater. Renew. Energ. 29(2004), 9, 1489–1501.
[11] Kurtbas I, Turgut E.: Experimental investigation of solar air heater with free and fixed fins: Efficiency and exergy loss. Int. J. Sci. Technol. 1(2006), 1, 75–82.
[12] Karsli S.: Performance analysis of new-design solar air collectors for drying applications. Renew. Energ. 32(2007), 10, 1645–1660.
[13] Esen H.: Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 43(2008), 6, 1046–1054.
[14] Gupta M.K., Kaushik S.C.: Exergetic performance evaluation and parametric studies of solar air heater. Energy 33(2008), 11, 1691–1702.
[15] Gupta M.K., Kaushik S.C.: Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies. Renew. Energ. 34(2009), 3, 465–476.
[16] Akpinar E.K., Koçyigit F.: Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Appl. Energ. 87(2010), 11, 3438–3450.
[17] Alta D., Bilgili E., Ertekin C., Yaldiz O.: Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl. Energ. 87(2010), 10, 2953–2973.
[18] Bouadila S., Kooli S., Lazaar M., Skouri S., Farhat A.: Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl. Energ. 110(2013), 267–275.
[19] Benli H.: Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew. Energ. 50(2013), 58–67.
[20] Bayrak F., Oztop H.F., Hepbasli A.: Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energ. Buildings 57(2013), 338–345.
[21] Velmurugana P., Kalaivanan R.: Energy and exergy analysis of multi-pass flat plate solar air heater – An analytical approach. Int. J. Green Energy 12(2015), 8, 810–820.
[22] Acır A., Ata I., Sahin I.: Energy and exergy analyses of a new solar air heater with circular-type turbulators having different relief angles. Int. J. Exergy 20(2016), 1, 85–104.
[23] Ghritlahre H.K., Prasad R.K.: Energetic and exergetic performance prediction of roughened solar air heater using artificial neural network. Cienc. Tec. Vitivinic. 32(2017), 11, 2–24
[24] Abuska M.: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Appl. Therm. Eng. 131(2018), 115–124.
[25] Matheswaran M.M., Arjunan T.V., Somasundaram D.: Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Sol. Energy 161(2018), 25–37.
[26] Aktas M. Sevik S., Dolgun E.C., Demirci B.: Drying of grape pomace with a double pass solar collector. Dry. Technol. 37(2019), 1, 105–117.
[27] Aktas M., Sözen A., Tuncer A.D., Arslan E., Kosan M., Çürük O.: Energyexergy analysis of a novel multi-pass solar air collector with perforated fins. Int. J. Renew. Energ. Dev. 8(2019), 1, 47–55.
[28] Kumar A., Layek A.: Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. J. Clean. Prod. 232(2019), 617– 628.
[29] Ural T.: Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses. Energy 188(2019), 116116.
[30] Abdelkader T.K., Zhang Y., Gaballah E.S., Wang S., Wan Q., Fan Q.: Energy and exergy analysis of a flat-plate solar air heater coated with carbon nanotubes and cupric oxide nanoparticles embedded in black paint. J. Clean. Prod. 250(2020), 19501.
[31] Dheep G.R., Sreekumar A.: Experimental studies on energy and exergy analysis of a single pass parallel flow solar air heater. J. Sol. Energy Eng. 142(2020), 1, 011003 SOL-19-1038 .
[32] Debnath S., Das B., Randive P.: Energy and exergy analysis of plain and corrugated solar air collector: effect of seasonal variation. Int. J. Amb. Energ. (2020), doi: 10.1080/01430750.2020.1778081.
[33] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Application of ANN model to predict the performance of solar air heater using relevant input parameters. Sustain. Energ. Technol. Asses. 40(2020), 100764.
[34] Ghritlahre H.K.: Heat transfer and friction factor characteristics investigation of roughened solar air heater using arc shaped wire rib roughness. Int. J. Amb. Energ. (2021), doi: 10.1080/01430750.2021.1934115.
[35] Ghritlahre H.K., Verma M.: Accurate prediction of exergetic efficiency of solar air heaters using various predicting methods. J. Clean. Prod. 288(2021), 125115.
[36] Kline S.J„ McClintock F.A.: Describe uncertainties in single sample experiments. Mech. Eng. 75(1953), 1, 3–8.
[37] Holman J.P.: Experimental Methods for Engineers. McGraw-Hill, New York 2007.
[38] Petela R.: An approach to the exergy analysis of photosynthesis. Sol. Energy, 82(2008), 4, 311–328.
[39] Ghritlahre H.K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
[40] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Solar air heater performance prediction using artificial neural network technique with relevant input variables. Arch. Thermodyn. 41(2020), 3, 255–282.

Go to article

Authors and Affiliations

Harish Kumar Ghritlahre
1

  1. Department of Energy and Environmental Engineering, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
Download PDF Download RIS Download Bibtex

Abstract

Energy demand is increasing exponentially in the last decade. To meet such demand there is an urgent need to enhance the power generation capacity of the electrical power generation system worldwide. A combined- cycle gas turbines power plant is an alternative to replace the existing steam/gas electric power plants. The present study is an attempt to investigate the effect of different parameters to optimize the performance of the combined cycle power plant. The input physical parameters such as pressure ratio, air fuel ratio and a fraction of combustible product to heat recovery heat exchanger via gas turbine were varied to determine the work output, thermal efficiency, and exergy destruction. The result of the present study shows that for maximum work output, thermal efficiency as well as total exergy destruction, extraction of combustible gases from the passage of the combustion chamber and gas turbine for heat recovery steam generator is not favorable. Work output and thermal efficiency increase with an increase in pressure ratio and decrease in air fuel ratio but for minimum total exergy destruction, the pressure ratio should be minimum and air fuel ratio should be maximum.
Go to article

Bibliography

[1] Gao M., Beig G., Song S., Zhang H., Hu J., Ying Q.: The impact of power generation emissions on ambient PM 2.5 pollution and human health in China and India. Environ. Int. 121(2018), 1, 250–259.
[2] Friedler F.: Process integration, modelling and optimisation for energy saving and pollution reduction. Appl. Therm. Eng. 30(2010), 16, 2270–2280.
[3] Colera M., Soria Á., Ballester J.: A numerical scheme for the thermodynamic analysis of gas turbines. Appl. Therm. Eng. 147(2019), 521–536.
[4] Athari H., Soltani S., Rosen M.A., Seyed Mahmoudi S.M., Morosuk T.: Gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel: A thermodynamic assessment. Renew. Energy 92(2016), 95–103.
[5] Ibrahim T.K., Rahman M.M.: Effect of compression ratio on performance of combined cycle gas turbine. Environ. Int. Energy Eng. 2(2012), 1, 9–14.
[6] Ibrahim T.K., Rahman M.M., Abdalla A.N.: Optimum gas turbine configuration for improving the performance of combined cycle power plant. Procedia Eng. 15(2011), 4216–4223.
[7] Padture N.P., Gell M., Jordan E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296(2002), 5566, 280–284.
[8] Ibrahim T.K., Basrawi F., Awad O.I., Abdullah A.N., Najafi G., Mamat R.: Thermal performance of gas turbine power plant based on exergy analysis. Appl. Therm. Eng. 115(2017), 977–985.
[9] Paepe W. De., Montero M., Bram S., Contino F., Parente A.: Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts. Appl. Energy 207(2017), 218–229.
[10] Alklaibi A.M., Khan M.N., Khan W.A.: Thermodynamic analysis of gas turbine with air bottoming cycle. Energy 107(2016), 603–611.
[11] Ayub A., Sheikh N.A., Tariq R., Khan M.M.: Thermodynamic optimization of air bottoming cycle for waste heat recovery. In: Proc. 2nd Int. Conf. Energy Syst. Sustain Dev. 2018, 59–62.
[12] Kotowicz J., Job M.: Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion. Arch. Thermodyn. 34(2013), 4, 215–233.
[13] Khan M.N., Tlili I.: Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energ. Rep. 4(2018), 497–506.
[14] González-Díaz A., Alcaráz-Calderón A.M., González-Díaz M.O., Méndez- Aranda Á., Lucquiaud M., González-Santaló J.M.: Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture. Energy 134(2017), 221–233.
[15] Günnur Sen., Mustafa Nil., Hayati Mamur, Halit Dogan, Mustafa Karamolla, Mevlüt Karaçor, Fadıl Kuyucuoglu, Nuran Yörükeren, Mohammad R.A.B.: The effect of ambient temperature on electric power generation in natural gas combined cycle power plant – A case study. Energy 4(2018), 682–690.
[16] Singh S., Kumar R.: Ambient air temperature effect on power plant. Environ. Int. Sc. Tech. 4(2012), 8, 3916–3923.
[17] Khan M.N., Tlili I.: Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. J. Clean. Prod. 192(2018), 443–452.
[18] Ghazikhani M., Khazaee I., Abdekhodaie E.: Exergy analysis of gas turbine with air bottoming cycle. Energy 72(2014), 599–607.
[19] Costea M., Feidt M., Alexandru G., Descieux D.: Optimization of gas turbine cogeneration system for various heat exchanger configurations. Oil Gas Sci. Technol. 67(2011), 3, 517–535.
[20] Khan M.N., Tlili I.: New approach for enhancing the performance of gas turbine cycle: A comparative study. Results. Eng. 2(2019), 100–108.
[21] Bataineh K., Khaleel B.A.: Thermodynamic analysis of a combined cycle power plant located in Jordan: A case study. Arch. Thermodyn. 41(2020), 1, 95–123.
[22] Ghazikhani M., Passandideh-Fard M., Mousavi M.: Two new high-performance cycles for gas turbine with air bottoming. Energy 36(2011), 294–304. 162 M.N. Khan
[23] Cáceres I.E., Montanés R.M., Nord L.O.: Flexible operation of combined cycle gas turbine power plants with supplementary firing. J. Power Technol. 98(2018), 9, 188–197.
[24] Díaz A.G., Sancheza E., Gonzalez Santalób J.M., Gibbinsa J., Lucquiaud M.: On the integration of sequential supplementary firing in natural gas combined cycle for CO2 – Enhanced Oil Recovery: A technoeconomic analysis for Mexico. Energy Proced. 63(2014), 7558–7567.
[25] González A., Sanchez E., Gibbins J.: Sequential supplementary firing in combined cycle power plant with carbon capture: Part-load operation scenarios in the context of EOR. Energy Proced. 114(2017), 1453–1468.
[26] Díaz A.G., Fernández E.S., Gibbins J., Lucquiaud M.: Sequential supplementary firing in natural gas combined cycle with carbon capture: A technology option for Mexico for low-carbon electricity generation and CO2 enhanced oil recovery. Environ. Int. Greenh. Gas Control 51(2020), 330–345.
[27] Arora B.B., Rai J.N., Hasan N.: Effect of supplementary heating on the performance of combined cycle. Environ. Int. Eng. Studies 4(2010), 2, 481–489.
[28] Fratzscher W.: The exergy method of thermal plant analysis. Environ. Int. Refrig. 20(1997), 5, 374–385.
[29] Szargut J.: Exergy Method: Technical and Ecological Applications. WIT Press, Southamptom 2005.
[30] Kotas T.J.: The Exergy Method of Thermal Plant Analysis. Butterworths, 1985.
[31] Szargut J.: International progress in second law analysis. Energy 5(1980), 8–9, 709–718.
[32] Ahmadi M.H., Alhuyi Nazari M., Sadeghzadeh M., Pourfayaz F., Ghazvini M., Ming T.: Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: A review. Energy Sci Eng 7(2019), 30–65.
[33] Coskun C., Oktay Z., Ilten N.: A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition. Energy 34(2009), 11, 1898–1902.
[34] Sukanta K.D.: Engineering Equation Solver:Application to Engineering and Thermal Engineering Problem. Alpha Sci. Int., 2014.
Go to article

Authors and Affiliations

Mohammad Nadeem Khan
1

  1. Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

The power injection method (PIM) is an experimental method used to identify the statistical energy analysis (SEA) parameters (called loss factors – LFs) of a vibroacoustic system. By definition, LFs are positive real numbers. However, it is not uncommon to obtain negative LFs during experiments, which is considered a measurement error. To date, a recently proposed method, called Monte Carlo filtering (MCF), of correcting negative coupling loss factors (CLFs) has been validated for systems that meet SEA assumptions. In this article, MCF was validated for point connections and in conditions where SEA assumptions are not met (systems with low modal overlap, non-conservative junctions, strong coupling). The effect of removing MCF bias on the results was also examined. During the experiments, it was observed that the bias is inversely proportional to the damping loss factor of the examined subsystems. The obtained results confirm that the PIM, combined with MCF, allows to determine non-negative SEA parameters in all considered cases.
Go to article

Authors and Affiliations

Paweł Nieradka
1 2
Andrzej Dobrucki
1

  1. Wrocław University of Science and Technology, Department of Acoustics, Multimedia and Signal Processing, Wroclaw, Poland
  2. KFB Acoustics, Acoustic Research and Innovation Center, Domasław, Poland

This page uses 'cookies'. Learn more