Details
Title
Performance of a combined cycle power plant due to auxiliary heating from the combustion chamber of the gas turbine topping cycleJournal title
Archives of ThermodynamicsYearbook
2021Volume
vol. 42Issue
No 1Authors
Affiliation
Khan, Mohammad Nadeem : Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi ArabiaKeywords
Pressure ratio ; Air-Fuel ratio ; Supplement heating ; Exergy analysis ; Energy analysisDivisions of PAS
Nauki TechniczneCoverage
147-162Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliography
[1] Gao M., Beig G., Song S., Zhang H., Hu J., Ying Q.: The impact of power generation emissions on ambient PM 2.5 pollution and human health in China and India. Environ. Int. 121(2018), 1, 250–259.[2] Friedler F.: Process integration, modelling and optimisation for energy saving and pollution reduction. Appl. Therm. Eng. 30(2010), 16, 2270–2280.
[3] Colera M., Soria Á., Ballester J.: A numerical scheme for the thermodynamic analysis of gas turbines. Appl. Therm. Eng. 147(2019), 521–536.
[4] Athari H., Soltani S., Rosen M.A., Seyed Mahmoudi S.M., Morosuk T.: Gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel: A thermodynamic assessment. Renew. Energy 92(2016), 95–103.
[5] Ibrahim T.K., Rahman M.M.: Effect of compression ratio on performance of combined cycle gas turbine. Environ. Int. Energy Eng. 2(2012), 1, 9–14.
[6] Ibrahim T.K., Rahman M.M., Abdalla A.N.: Optimum gas turbine configuration for improving the performance of combined cycle power plant. Procedia Eng. 15(2011), 4216–4223.
[7] Padture N.P., Gell M., Jordan E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296(2002), 5566, 280–284.
[8] Ibrahim T.K., Basrawi F., Awad O.I., Abdullah A.N., Najafi G., Mamat R.: Thermal performance of gas turbine power plant based on exergy analysis. Appl. Therm. Eng. 115(2017), 977–985.
[9] Paepe W. De., Montero M., Bram S., Contino F., Parente A.: Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts. Appl. Energy 207(2017), 218–229.
[10] Alklaibi A.M., Khan M.N., Khan W.A.: Thermodynamic analysis of gas turbine with air bottoming cycle. Energy 107(2016), 603–611.
[11] Ayub A., Sheikh N.A., Tariq R., Khan M.M.: Thermodynamic optimization of air bottoming cycle for waste heat recovery. In: Proc. 2nd Int. Conf. Energy Syst. Sustain Dev. 2018, 59–62.
[12] Kotowicz J., Job M.: Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion. Arch. Thermodyn. 34(2013), 4, 215–233.
[13] Khan M.N., Tlili I.: Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energ. Rep. 4(2018), 497–506.
[14] González-Díaz A., Alcaráz-Calderón A.M., González-Díaz M.O., Méndez- Aranda Á., Lucquiaud M., González-Santaló J.M.: Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture. Energy 134(2017), 221–233.
[15] Günnur Sen., Mustafa Nil., Hayati Mamur, Halit Dogan, Mustafa Karamolla, Mevlüt Karaçor, Fadıl Kuyucuoglu, Nuran Yörükeren, Mohammad R.A.B.: The effect of ambient temperature on electric power generation in natural gas combined cycle power plant – A case study. Energy 4(2018), 682–690.
[16] Singh S., Kumar R.: Ambient air temperature effect on power plant. Environ. Int. Sc. Tech. 4(2012), 8, 3916–3923.
[17] Khan M.N., Tlili I.: Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. J. Clean. Prod. 192(2018), 443–452.
[18] Ghazikhani M., Khazaee I., Abdekhodaie E.: Exergy analysis of gas turbine with air bottoming cycle. Energy 72(2014), 599–607.
[19] Costea M., Feidt M., Alexandru G., Descieux D.: Optimization of gas turbine cogeneration system for various heat exchanger configurations. Oil Gas Sci. Technol. 67(2011), 3, 517–535.
[20] Khan M.N., Tlili I.: New approach for enhancing the performance of gas turbine cycle: A comparative study. Results. Eng. 2(2019), 100–108.
[21] Bataineh K., Khaleel B.A.: Thermodynamic analysis of a combined cycle power plant located in Jordan: A case study. Arch. Thermodyn. 41(2020), 1, 95–123.
[22] Ghazikhani M., Passandideh-Fard M., Mousavi M.: Two new high-performance cycles for gas turbine with air bottoming. Energy 36(2011), 294–304. 162 M.N. Khan
[23] Cáceres I.E., Montanés R.M., Nord L.O.: Flexible operation of combined cycle gas turbine power plants with supplementary firing. J. Power Technol. 98(2018), 9, 188–197.
[24] Díaz A.G., Sancheza E., Gonzalez Santalób J.M., Gibbinsa J., Lucquiaud M.: On the integration of sequential supplementary firing in natural gas combined cycle for CO2 – Enhanced Oil Recovery: A technoeconomic analysis for Mexico. Energy Proced. 63(2014), 7558–7567.
[25] González A., Sanchez E., Gibbins J.: Sequential supplementary firing in combined cycle power plant with carbon capture: Part-load operation scenarios in the context of EOR. Energy Proced. 114(2017), 1453–1468.
[26] Díaz A.G., Fernández E.S., Gibbins J., Lucquiaud M.: Sequential supplementary firing in natural gas combined cycle with carbon capture: A technology option for Mexico for low-carbon electricity generation and CO2 enhanced oil recovery. Environ. Int. Greenh. Gas Control 51(2020), 330–345.
[27] Arora B.B., Rai J.N., Hasan N.: Effect of supplementary heating on the performance of combined cycle. Environ. Int. Eng. Studies 4(2010), 2, 481–489.
[28] Fratzscher W.: The exergy method of thermal plant analysis. Environ. Int. Refrig. 20(1997), 5, 374–385.
[29] Szargut J.: Exergy Method: Technical and Ecological Applications. WIT Press, Southamptom 2005.
[30] Kotas T.J.: The Exergy Method of Thermal Plant Analysis. Butterworths, 1985.
[31] Szargut J.: International progress in second law analysis. Energy 5(1980), 8–9, 709–718.
[32] Ahmadi M.H., Alhuyi Nazari M., Sadeghzadeh M., Pourfayaz F., Ghazvini M., Ming T.: Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: A review. Energy Sci Eng 7(2019), 30–65.
[33] Coskun C., Oktay Z., Ilten N.: A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition. Energy 34(2009), 11, 1898–1902.
[34] Sukanta K.D.: Engineering Equation Solver:Application to Engineering and Thermal Engineering Problem. Alpha Sci. Int., 2014.
Date
2021.03.31Type
ArticleIdentifier
DOI: 10.24425/ather.2021.136952Source
Archives of Thermodynamics; 2021; vol. 42; No 1; 147-162Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China