Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A contactless laser hygrometer based on light absorption by H2O molecules at 1392.5 nm is described. However, measurement results can be affected by optical noise when applied to an atmospheric tunnel or glass cuvette. The noises (occurring in the form of periodic fringes in the recorded spectrum) come from unexpected interference of the light beams reflected from surfaces of the windows or other optical elements. The method of their suppression is described in this article. It is based on wavelength modulation and signal averaging over the fringes period. Also, an experiment confirming the usefulness of this method is described here.
Go to article

Authors and Affiliations

Tadeusz Stacewicz
1
Mateusz Winkowski
1
Natalia Kuk
1

  1. Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
Download PDF Download RIS Download Bibtex

Abstract

Number of trace compounds (called biomarkers), which occur in human breath, provide an information about individual feature of the body, as well as on the state of its health. In this paper we present the results of experiments about detection of certain biomarkers using laser absorption spectroscopy methods of high sensitivity. For NO, OCS, C2H6, NH3, CH4, CO and CO(CH3)2 an analysis of the absorption spectra was performed. The influence of interferents contained in exhaled air was considered. Optimal wavelengths of the detection were found and the solutions of the sensors, as well as the obtained results were presented. For majority of the compounds mentioned above the detection limits applicable for medicine were achieved. The experiments showed that the selected optoelectronic techniques can be applied for screening devices providing early diseases detection.

Go to article

Authors and Affiliations

T. Stacewicz
Z. Bielecki
J. Wojtas
P. Magryta
J. Mikolajczyk
D. Szabra
Download PDF Download RIS Download Bibtex

Abstract

The paper describes an integrated laser absorption system as a potential tool for breath analysis for clinical diagnostics, online therapy monitoring and metabolic disorder control. The sensors operate basing on cavity enhanced spectroscopy and multi-pass spectroscopy supported by wavelength modulation spectroscopy. The aspects concerning selection of operational spectral range and minimization of interference are also discussed. Tests results of the constructed devices collected with reference samples of biomarkers are also presented. The obtained data provide an opportunity to analyse applicability of optoelectronic sensors in medical screening.

Go to article

Authors and Affiliations

Janusz Mikołajczyk
Tadeusz Stacewicz
Paweł Magryta
Jacek Wojtas
Zbigniew Bielecki
Dariusz Szabra
Artur Prokopiuk
Arkadiusz Tkacz
Małgorzata Panek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis and practical study of the temperature and pressure influence on a nondispersive infrared (NDIR) sensor for measuring the concentration of carbon dioxide in human breath. This sensor is used for monitoring patients’ carbon dioxide (CO2) in the exhaled air. High precision and accuracy of CO2 concentration measurements are essential in air sampling systems for breath analysers. They, however, require an analysis of the influence of the human exhaled air pressure and temperature on the NDIR CO2 sensor. Therefore, analyses of the changes in concentration were carried out at a pressure from 986 mbar to 1027 mbar and a temperature from 20°C to 36°C. Finally, corresponding correction coefficients were determined which allow to reduce the relative uncertainty of CO2 sensor measurements results from 19% to below 5%.
Go to article

Bibliography

[1] Chludzinski, T.,&Kwiatkowski, A. (2020). Exhaled breath analysis by resistive gas sensors. Metrology and Measurement Systems, 27(1), 81–89. http://dx.doi.org/10.24425/mms.2020.131718
[2] Bielecki, Z., Stacewicz, T., Wojtas, J., Mikołajczyk, J., Szabra, D., & Prokopiuk, A. (2018). Selected optoelectronic sensors in medical applications. Opto-Electronics Review, 26(2), 122–133. https://doi.org/10.1016/j.opelre.2018.02.007
[3] Buszewski, B., Kęsy, M., Ligor, T., & Amann, A. (2007). Human exhaled air analytics: biomarkers of diseases. Biomedical Chromatography, 21(6), 553–566. https://doi.org/10.1002/bmc.835
[4] Schubert, J. K., Spittler, K. H., Braun, G., Geiger, K.,& Guttmann, J. (2001). CO2-controlled sampling of alveolar gas in mechanically ventilated patients. Journal of Applied Physiology, 90(2), 486–492. https://doi.org/10.1152/jappl.2001.90.2.486
[5] Levitzky, M. G. (2013). Pulmonary Physiology (8th ed.): McGraw-Hill Education.
[6] Singh, O. P., & Malarvili, M. B. (2018). Review of infrared carbon-dioxide sensors and capnogram features for developing asthma-monitoring device. Journal of Clinical and Diagnostic Research, 12(10). https://doi.org/10.7860/JCDR/2018/35870.12099
[7] Singh, O. P., Howe, T. A., & Malarvili, M. B. (2018). Real-time human respiration carbon dioxide measurement device for cardiorespiratory assessment. Journal of Breath Research, 12(2), 026003. https://doi.org/10.1088/1752-7163/aa8dbd
[8] Chen, H.-Y., & Chen, C. (2019). Development of a Breath Analyzer for O2 and CO2 Measurement. The Open Biomedical Engineering Journal, 13(1), 21–32. https://doi.org/10.2174/1874120701913010021
[9] Mikołajczyk, J., Bielecki, Z., Stacewicz, T., Smulko, J.,Wojtas, J., Szabra, D., Lentka, Ł., Prokopiuk, A., & Magryta, P. (2016). Detection of gaseous compounds with different techniques. Metrology and Measurement Systems, 23(2). https://doi.org/10.1515/mms-2016-0026
[10] Prokopiuk, A. (2017). Optoelectronics sensors of hydrocarbons based on NDIR technique. Proceedings of SPIE – The International Society for Optical Engineering, 10455. https://doi.org/10.1117/12.2282779
[11] Hamamatsu. (2021, September 2). Mid infrared LED L13201-0430M. http://www.hamamatsu.com.cn/UserFiles/upload/file/20190527/l13201_series_kled1069e.pdf
[12] Pike Technologies. (2021). Stainless Steel Short-Path Gas Cells. https://www.piketech.com/product/stainless-steel-short-path-gas-cells/
[13] Elliot Scientific. (2021, September 2). BPF 4260-120 Iridian mid-IR Filter. https://elliotscientific.com/Iridian-BPF-4260-120
[14] Vigo. (2021, September 2). PV-3TE-5. https://vigo.com.pl/produkty/pv-3te/
[15] Richards, P. L. (1994). Bolometers for infrared and millimeter waves. Journal of Applied Physics, 76(1), 1–24. https://doi.org/10.1063/1.357128
[16] American Thoracic Society. (2005). ATS / ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. American Journal of Respiratory and Critical Care Medicine, 171(8), 912–930. https://doi.org/10.1164/rccm.200406-710ST
[17] Mansour, E., Vishinkin, R., Rihet, S., Saliba,W., Fish, F., Sarfati, P., & Haick, H. (2020). Measurement of temperature and relative humidity in exhaled breath. Sensors and Actuators B: Chemical, 304, 127371. https://doi.org/10.1016/j.snb.2019.127371
[18] UTECH Co., Ltd. (2021, September 2). UT100C Handheld Capnograph Vital Signs Monitor. https://www.chinautech.com/ut100c-capnograph-monitor-and-pulse-oximeter-etco2-spo2-pulse-rate-. html
[19] Memmert. (2021, September 2). Universal oven UF30. https://www.memmert.com/products/heatingdrying-ovens/universal-oven/UF30/
Go to article

Authors and Affiliations

Artur Prokopiuk
1
Zbigniew Bielecki
1
ORCID: ORCID
Jacek Wojtas
1
ORCID: ORCID

  1. Military University of Technology, Institute of Optoelectronics, 00-908 Warsaw, 2 Gen. Sylwestra Kaliskiego St.
Download PDF Download RIS Download Bibtex

Abstract

Sensing technology has been developed for detection of gases in some environmental, industrial, medical, and scientific applications. The main tasks of these works is to enhance performance of gas sensors taking into account their different applicability and scenarios of operation. This paper presents the descriptions, comparison and recent progress in some existing gas sensing technologies. Detailed introduction to optical sensing methods is presented. In a general way, other kinds of various sensors, such as catalytic, thermal conductivity, electrochemical, semiconductor and surface acoustic wave ones, are also presented. Furthermore, this paper focuses on performance of the optical method in detecting biomarkers in the exhaled air. There are discussed some examination results of the constructed devices. The devices operated on the basis of enhanced cavity and wavelength modulation spectroscopies. The experimental data used for analyzing applicability of these different sensing technologies in medical screening. Several suggestions related to future development are also discussed.

Go to article

Authors and Affiliations

Janusz Mikołajczyk
Paweł Magryta
Tadeusz Stacewicz
Janusz Smulko
Zbigniew Bielecki
Jacek Wojtas
Dariusz Szabra
Łukasz Lentka
Artur Prokopiuk
Download PDF Download RIS Download Bibtex

Abstract

The methods arc described for determinations of Al, Fe, Ca, Mg, Ba, Cr, Mn, Ni, Cu, Zn, Pb, Cd, V and Sr in botanical, coal fly ash and soil samples by flame atomic absorption spectrometry (FAAS), and inductively coupled plasma atomic emission spectrometry (!CP-AES). Special attention has been paid to sample preparation, an important stage at which a sample is explored to contaminants. Results of the analysis of all samples arc discussed.
Go to article

Authors and Affiliations

Krystyna Srogi

This page uses 'cookies'. Learn more