Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 31
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We used the Dpph method to assess in vitro the antiradical activity of extracts from the roots, leaves and fruits of six Rumex L. (dock) species. Data from preliminary screening indicated that all the tested extracts showed antioxidant properties. The degree of antiradical activity depended upon the plant part. Fruit extracts from R. hydrolapathum Huds., R. obtusifolius L. and R. confertus Willd. showed stronger antiradical properties than the other tested material. We also determined tannin content levels in the extracts and their correlation with antioxidant activity.

Go to article

Authors and Affiliations

Magdalena Wegiera
Paweł Grabarczyk
Barbara Baraniak
Helena Smolarz
Download PDF Download RIS Download Bibtex

Abstract

Cystic endometrial hyperplasia-pyometra complex (CEH-P) is a common disease in sexually mature bitches. Disease progression leads to oxidative stress, resulting in the depletion of uterine antioxidants and lipid peroxidation of associated cells, which further aggravates the condition. The concentration of antioxidant enzymes, the level of lipid peroxidation within the uterine tissue, and its reflection in the serum and urine need to be elucidated. The aim of this study was to analyze the concentration of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and the lipid peroxidation marker malonaldehyde (MDA) in three types of samples, i.e., serum, urine, and uterine tissue. For this purpose, 58 pyometra-affected and 44 healthy bitches were included in the present study. All animals underwent ovariohysterectomy (OVH). Our data indicated highly significant difference (p<0.01) in the antioxidant concentrations of uterine, serum and urine samples. Furthermore, there was a highly significant (p<0.01) difference in the serum levels of ferric reducing antioxidant power (FRAP) and free radical scavenging activity (FRSA) indicated poor capacity to overcome oxidative stress in the CEH-Pyometra condition. We showed that CEH-P induces oxidative stress, which further depletes the antioxidant enzyme reserves in the uterus. Thus, the weak antioxidant defence predisposes to uterine damage and disease progression. The simultaneous depletion of antioxidants and an increase in lipid peroxidation in the serum and urine may also act as early indicators of uterine pathology.
Go to article

Bibliography

1. Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3: 28.
2. Al-Gubory KH, Fowler PA, Garrel C (2010) The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 42: 1634-1650.
3. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016: 5698931.
4. Clemo FA (1998) Urinary enzyme evaluation of nephrotoxicity in the dog. Toxicol Pathol 26: 29-32.
5. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62: 649-671.
6. Ďuračková Z (2010) Some current insights into oxidative stress. Physiol Res 59: 459-469.
7. Egenvall A, Hagman R, Bonnett BN, Hedhammar A, Olson P, Lagerstedt AS (2001) Breed risk of pyometra in insured dogs in Sweden. J Vet Intern Med 15: 530-538.
8. El-Bahr SM, El-Deeb WM (2016) Acute-phase proteins, oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin in Arabian mares affected with pyometra. Theriogenology 86: 1132-1136
9. Emanuelli MP, Martins DB, Wolkmer P, Antoniazzi AQ, Emanuelli T, de Vargas AC, dos Anjos Lopes ST (2012) Complete blood count, total plasma protein, neutrophil oxidative metabolism, and lipid peroxidation in female dogs with pyometra associated with Esche-richia coli. Comp Clin Pathol 21: 309-313.
10. Ercan N, Fidancı UR (2012) Urine 8-Hydroxy-2’-Deoxyguanosine (8-OHdG) Levels of Dogs in Pyoderma. Ankara Univ Vet Fak Derg 59: 163-168.
11. Ghezzi P (2011) Role of glutathione in immunity and inflammation in the lung. Int J Gen Med 4: 105-113.
12. Gogoi J, Leela V, Suganya G, Shafiuzama M, Vairamuthu S, Rajamanickam K, Pandiyan AS (2018) Effect of ovariohysterectomy on oxidative stress markers in pyometra affected bitches. Int J Chem Stud 6: 994-998.
13. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141: 312-322.
14. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142: 231-255.
15. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev 7432797.
16. Jitpean S, Hagman R, Ström Holst B, Höglund OV, Pettersson A, Egenvall A (2012) Breed variations in the incidence of pyometra and mammary tumours in Swedish dogs. Reprod Domest Anim 47(Suppl): 347-350.
17. Jitpean S, Ström-Holst B, Emanuelson U, Höglund OV, Pettersson A, Alneryd-Bull C, Hagman R (2014) Outcome of pyometra in fe-male dogs and predictors of peritonitis and prolonged postoperative hospitalization in surgically treated cases. BMC Vet Res 10: 6.
18. Kumar A, Saxena A (2018) Canine pyometra: Current perspectives on causes and management – a review. Ind J Vet Sci Biotechnol 14: 52-56.
19. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43: 1209-1214.
20. Prasad VD, Kumar PR, Sreenu M (2017) Pyometra in bitches: a review of literature. Res Rev J Vet Sci Technol 6: 12-20.
21. Rivers BJ, Walter PA, O’Brien TD, King VL, Polzin DJ (1996) Evaluation of urine gamma-glutamyl transpeptidase-to-creatinine ratio as a diagnostic tool in an experimental model of aminoglycoside-induced acute renal failure in the dog. J Am Anim Hosp Assoc 32: 323–336.
22. Santos C, dos Anjos Pires M, Santos D, Payan-Carreira R (2016) Distribution of superoxide dismutase 1 and glutathione peroxidase 1 in the cyclic canine endometrium. Theriogenology 86: 738-748.
23. Sasidharan JK, Patra MK, Khan JA, Singh AK, Karikalan M, De UK, Saxena AC, Dubal ZB, Singh SK, Kumar H, Krishnaswamy N (2023) Differential expression of inflammatory cytokines, prostaglandin synthases and secretory leukocyte protease inhibitor in the en-dometrium and circulation in different graded CEH-pyometra in bitch. Theriogenology 197: 139-149.
24. Smith FO (2006) Canine pyometra. Theriogenology 66: 610-612.
25. Szczubial M, Dabrowski R, Bochniarz M, Brodzki P (2019) Uterine non-enzymatic antioxidant defence mechanisms (glutathione, vita-min C, copper and zinc) in diagnosis of canine pyometra. Pol J Vet Sci 22: 549-555.
26. Szczubiał MA, Dąbrowski RO (2009) Activity of antioxidant enzymes in uterine tissues of bitches with pyometra. Bull Vet Inst Puławy 53: 673-676.
27. Todorova I, Simeonova G, Kyuchukova D, Dinev D, Gadjeva V (2005) Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comp Clin Pathol 13: 190-194.
28. Toydemir Karabulut TS (2018) SOD, CAT, TBARS, and TNF-α concentrations in uterine tissues of bitches with pyometra and dioestrus bitches. Acta Vet Eurasia 44: 59-62.
29. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84.
30. Woźna-Wysocka M, Rybska M, Błaszak B, Jaśkowski BM, Kulus M, Jaśkowski JM (2021) Morphological changes in bitches endome-trium affected by cystic endometrial hyperplasia-pyometra complex – the value of histopathological examination. BMC Vet Res 17: 174.

Go to article

Authors and Affiliations

A. Kumar
1 4
J.K. Prasad
2
S. Verma
3
A. Gattani
5
G.D. Singh
6
V.K. Singh
6

  1. Department of Veterinary Gynaecology and Obstetrics, Bihar Veterinary College, Bihar Animal Sciences University, Patna, Bihar 800014, India
  2. Dean, Bihar Veterinary College, Bihar Animal Sciences University, Patna, Bihar 800014, India
  3. Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, Deen-dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-anusandhan Sansthan (DUVASU), Mathura, U.P. 281001 India
  4. Department of Veterinary Biochemistry, Bihar Veterinary College, Bihar Animal Sciences University, Patna, Bihar 800014, India
  5. Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University (NDVSU), Jabalpur, M.P., 483220 India
  6. Veterinary Clinical Complex, Bihar Veterinary College, Bihar Animal Sciences University, Patna, Bihar 800014, India
Download PDF Download RIS Download Bibtex

Abstract

The influence of ambient solar UV-A or UV-B radiation on growth responses was investigated in three varieties of cotton (Gossypium hirsutum L.) after exclusion of solar UV-A/B radiation: JK-35, IH-63 and Khandwa-2. Cotton plants were grown from seeds in UV-exclusion chambers lined with selective UV filters to exclude either UV-B (280-315 nm) or UV-A/B (280-400 nm) from the solar spectrum under field conditions. Excluding UV-B and UV-A/B significantly increased plant height, leaf area and dry weight accumulation in all three varieties of cotton. The varieties differed considerably in their sensitivity to ambient UV-A/B. Khandwa-2 was most sensitive and JK-35 least sensitive to ambient solar UV. We monitored the activity of the antioxidant enzymes superoxide dismutase (SOD), ascorbic acid peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX), as well as the level of the antioxidant ascorbic acid (ASA), in primary leaves of the most UV-sensitive variety (Khandwa-2). The level of UV-B-absorbing substances was significantly decreased by exclusion of solar UV-B and UV-A/B. Exclusion of solar UV decreased the activity of all the antioxidant enzymes monitored and the level of ascorbic acid versus control plants (+UV-A/B) grown under filters transparent to solar UV. Reduction of the antioxidant defense after UV exclusion indicates that ambient solar UV exerts significant stress and induces some reactive oxygen species to accumulate, which in turn retards the growth and development of cotton plants. Ambient solar UV stresses cotton plants, shifting their metabolism towards defense against solar UV. Exclusion of solar UV eliminates the need for that defense and leads to enhancement of primary metabolism.

Go to article

Authors and Affiliations

Sunita Kataria
Priti Dehariya
K.N. Guruprasad
G.P. Pandey
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt, incited by Fusarium oxysporum f. sp. lycopersici (FOL), causes serious production losses of tomato ( Solanum lycopersicum L.) plants. Biological control, using an antagonistic of Trichoderma species, is a bio-rationale and an alternative method to synthetic pesticides against most phytopathogens. The present study was undertaken to evaluate the effects of T. harzianum and/or T. viride in reducing Fusarium wilt and to determine the relationship between disease severity and plant growth promoting traits of these species. Trichoderma viride exhibited better phosphate solubilization and production of cellulases, ligninases, chitinases, proteases, hydrogen cyanide (HCN), siderophores and indole acetic acid (IAA) than T. harzianum. For field assessment, five treatments with three replicates were used. The field was inoculated with the wilt fungus (FOL). Both Trichoderma spp. used were applied as a seed treatment, mixed in the soil, and FOL inoculated soil served as the untreated control. During the two consecutive years, seed treatment with T. viride exhibited the least disease severity, the highest physiological activity, the highest biochemical and antioxidant contents, and tomato plants treated with it exhibited the best growth and yield. It was concluded that Trichoderma viride can potentially be used to reduce Fusarium wilt and promote plant growth and yield in commercial tomato production.
Go to article

Bibliography


Abd-El-Khair H., Elshahawy I.E., Haggag H.K. 2019. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean. Bulletin of the National Research Centre 43 (1): 19. DOI: https://doi.org/10.1186/s42269-019-0062-5
Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S.P. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI: https://doi.org/10.1016/j.plantsci.2016.02.008
Ahanger M.A., Tyagi S.R., Wani M.R., Ahmad P. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. p. 25–55. In: Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment (P. Ahmad, M. Wani, eds.). Springer, New York, USA. DOI: https://doi.org/10.1007/978-1-4614-8591-9_2
Ahemad M., Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University – Science 26 (1):1–20. DOI: https://doi.org/10.1016/j.jksus.2013.05.001
Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science 6: 868. DOI: https://doi.org/10.3389/fpls.2015.00868
Ahmed M. 2011. Management of Fusarium wilt of tomato by soil amendment with Trichoderma koningii and a white sterile fungus. Indian Journal of Research 5: 35–38.
Al-Ani L.K.T. 2018. Trichoderma: beneficial role in sustainable agriculture by plant disease management. “Plant Microbiome: Stress Response 5: 105–126. DOI: https://doi.org/10.1007/978-981-10-5514-0_5
Antoun H., Kloepper J.W. 2001. Plant growth-promoting rhizobacteria (PGPR). p. 1477–1480. In: “Encyclopedia of genetics” (S. Brenner, J.F. Miller, eds.). Academic Press, New York, USA. DOI: https://doi.org/10.1006/rwgn.2001.1636
Benítez T., Rincón A.M., Limón M.C., Codon A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7 (4): 249–260.
Blumer C., Haas D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173 (3): 170–177. DOI: https://doi.org/10.1007/s002039900127
Castano R., Borrero C., Trillas M.I., Avilés M. 2013. Selection of biological control agents against tomato Fusarium wilt and evaluation in greenhouse conditions of two selected agents in three growing media. BioControl 58 (1): 105–116. DOI: https://doi.org/10.1007/s10526-012-9465-z
Chaves-Gómez J.L., Chavez-Arias C.C., Cotes Prado A.M., Gómez-Caro S., Restrepo-Díaz H. 2019. Physiological response of cape gooseberry seedlings to three biological control agents under Fusarium oxysporum f. sp. physali infection. Plant Disease 104 (2): 388–397. DOI: https://doi.org/10.1094/pdis-03-19-0466-re
Chet I., Inbar J. 1994. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology 48 (1): 37–43. DOI: https://doi.org/10.1007/BF02825358
Contreras-Cornejo H.A., Macías-Rodríguez L., Vergara A.G., López-Bucio J. 2015. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. Journal of Plant Growth Regulation 34 (2): 425–432. DOI: http://dx.doi.org/10.1007/s00344-014-9471-8
de Rodríguez D.J., Angulo-Sánchez J.L., Hernández-Castillo F.D. 2006. An overview of the antimicrobial properties of Mexican medicinal plants. Advances in Phytomedicine 3: 325–377. DOI: https://doi.org/10.1016/s1572-557x(06)03014-5
Deng J.J., Shi D., Mao H.H., Li Z.W., Liang S., Ke Y., Luo X.C. 2019. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. International Journal of Biological Macromolecules 134: 113–121. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.177
Ehmann A. 1977. The Van Urk-Salkowski reagent – a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 132 (2): 267–276. DOI: https://doi.org/10.1016/s0021-9673(00)89300-0
Eisendle M., Oberegger H., Buttinger R., Illmer P., Haas H. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3 (2): 561–563. DOI: https://doi.org/10.1128/ec.3.2.561-563.2004
Elshahawy I.E., El-Mohamady R.S. 2019. Biological control of Pythium damping-off and root-rot of tomato using Trichoderma isolates employed alone or in combinations. Journal of Plant Pathology 101 (3): 597–608. DOI: https://doi.org/10.1007/s42161-019-00248-z
Fang-Fang X., Ming-Fu G., Zhao-Ping H., Ling-Chao F. 2017. Identification of Trichoderma strain M2 and related growth promoting effects on Brassica chinensis L. International Journal of Agricultural Resources 34 (1): 80.
Fish W.W., Perkins-Veazie P., Collins J.K. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis 15 (3): 309–317. DOI: https://doi.org/10.1006/jfca.2002.1069.
Harikrushana P., Ramchandra S., Shah K.R. 2014. Study of wilt producing Fusarium spp. from tomato (Lycopersicon esculentum Mill). International Journal of Current Microbiology and Applied Sciences 3: 854–858. https://www.researchgatenet/publication/265793287_Original_Research_Article_Study_of_wilt_producing_Fusarium_sp_from_tomato_Lycopersicon_esculentum_Mill
Harish S., Kavino M., Kumar N., Saravanakumar D., Soorianathasundaram K., Samiyappan R. 2008. Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Applied Soil Ecology 39 (2): 187–200. DOI: https://doi.org/10.1016/j.apsoil.2007.12.006
Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190–194. DOI: https://doi.org/10.1094/phyto-96-0190
Harman G.E., Herrera-Estrella A.H., Horwitz B.A., Lorito M. 2012. Special issue: Trichoderma – from basic biology to biotechnology. Microbiology 158 (1): 1–2. DOI: https://doi.org/10.1099/mic.0.056424-0
Hasan Z.A.E., Mohd Zainudin N.A.I., Aris A., Ibrahim M.H., Yusof M.T. 2020. Biocontrol efficacy of Trichoderma asperellum‐enriched coconut fibre against Fusarium wilts of cherry tomato. Journal of Applied Microbiology 129 (4): 991–1003. DOI: https://doi.org/10.1111/jam.14674
Hashem A., Abd_Allah E.F., Alqarawi A.A., Al-Huqail A.A., Wirth S., Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology 7: 1089. DOI: https://doi.org/10.3389/fmicb.2016.01089
Hiscox J.D., Israelstam G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57 (12): 1332–1334. DOI: https://doi.org/10.1139/b80-044
Hsu S.C., Lockwood J.L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied and Environmental Microbiology 29 (3): 422–426. DOI: https://doi.org/10.1128/aem.29.3.422-426.1975
Huang C.H., Roberts P.D., Datnoff L.E. 2012. Fusarium diseases of tomato. p. 145–158. In: “Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops. APS Press, St. Paul, USA.
Jamil A., Ashraf S. 2020. Utilization of chemical fungicides in managing the wilt disease of chickpea caused by Fusarium oxysporum f. sp. ciceri. Archives of Phytopathology and Plant Protection 53 (17–18): 876–898. DOI: https://doi.org/10.1080/03235408.2020.1803705
Jamil A., Musheer N., Ashraf S. 2020. Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporum f. sp. capsici for the management of chilli wilt. Journal of Plant Diseases and Protection. (In press) DOI: https://doi.org/10.1007/s41348-020-00383-1
Jangir M., Sharma S., Sharma S. 2019. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control 138: 104069. DOI: https://doi.org/10.1016/j.biocontrol.2019.104069
Jogaiah S., Abdelrahman M., Tran L.S.P., Shin-ichi I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany 64 (12): 3829–3842. DOI: https://doi.org/10.1093/jxb/ert212
Kapur A., Hasković A., Čopra-Janićijević A., Klepo L., Topčagić A., Tahirović I., Sofić E. 2012. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 38 (4): 39–42.
Kausar H., Sariah M., Saud H.M., Alam M.Z., Ismail M.R. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22 (2): 367–375. DOI: https://doi.org/10.1007/s10532-010-9407-3
Khare E., Kumar S., Kim K. 2018. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusraium oxysporum and chickpea wilt. Environmental Sustainability 1 (1): 39–47. DOI: https://doi.org/10.1007/s42398-018-0022-2
Khoshmanzar E., Aliasgharzad N., Neyshabouri M.R., Khoshru B., Arzanlou M., Lajayer B.A. 2019. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. International Journal of Environmental Science and Technology 17 (2): 869–878. DOI: https://doi.org/10.1007/s13762-019-02405-4
Komada H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research 8: 114–124.
Kotasthane A., Agrawal T., Kushwah R., Rahatkar O.V. 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology 141 (3): 523–543. DOI: https://doi.org/10.1007/s10658-014-0560-0
Lacava P.T., Silva-Stenico M.E., Araújo W.L., Simionato A.V.C., Carrilho E., Tsai S.M., Azevedo J.L. 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesquisa Agropecuária Brasileira 43 (4): 521–528. DOI: https://doi.org/10.1590/s0100-204x2008000400011
Li R., Chen W., Cai F., Zhao Z., Gao R., Long X. 2017. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality. Journal of Nanjing Agricultural University 40 (3): 464–472.
Li Y.T., Hwang S.G., Huang Y.M., Huang C.H. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 110: 275–282. DOI: https://doi.org/10.1016/j.cropro.2017.03.021
López-Bucio J., Pelagio-Flores R., Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196: 109–123. DOI: https://doi.org/10.1016/j.scienta.2015.08.043
Lopez-Mondejar R., Bernal-Vicente A., Ros M., Tittarelli F., Canali S., Intrigiolo F., Pascual J.A. 2010. Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresource Technology 101 (10): 3718–3723. DOI: https://doi.org/10.1016/j.biortech.2009.12.102
Luo Y., Teng Y., Luo X.Q., Li Z.H.G. 2016. Development of wettable powder of Trichoderma reesei FS10-C and its plant growth-promoting effects. Biotechnology Bulletin 32: 194–199.
Macías-Rodríguez L., Guzmán-Gómez A., García-Juárez P., Contreras-Cornejo H.A. 2018. Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology 94 (9): 137. DOI: https://doi.org/10.1093/femsec/fiy137
Madhavan S., Paranidharan V., Velazhahan R. 2011. Foliar application of Burkholderia spp. strain TNAU-1 leads to activation of defense responses in chilli (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23 (4): 261–266. DOI: https://doi.org/10.1590/s1677-04202011000400003
Marzano M., Gallo A., Altomare C. 2013. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control 67 (3): 397–408. DOI: https://doi.org/10.1016/j.biocontrol.2013.09.008
McGovern R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73: 78–92. DOI: https://doi.org/10.1016/j.cropro.2015.02.021
Mei L.I., Hua L.I.A.N., Su X.L., Ying T.I.A.N., Huang W.K., Jie M.E.I., Jiang X.L. 2019. The effects of Trichoderma on preventing cucumber Fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture 18 (3): 607–617. DOI: https://doi.org/10.1016/s2095-3119(18)62057-x
Mishra A., Singh S.P., Mahfooz S., Singh S.P., Bhattacharya A., Mishra N., Nautiyal C.S. 2018. Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Applied Environmental Microbiology 84 (8): e0284517. DOI: https://doi.org/10.1128/aem.02845-17
Molla A.H., Haque M.M., Haque M.A., Ilias G.N.M. 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research 1 (3): 265–272. DOI: https://doi.org/10.1007/s40003-012-0025-7
Mona S.A., Hashem A., Abd_Allah E.F., Alqarawi A.A., Soliman D.W.K., Wirth S., Egamberdieva D. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture 16 (8): 1751–1757. DOI: https://doi.org/10.1016/s2095-3119(17)61695-2
Ng L.C., Ngadin A., Azhari M., Zahari N.A. 2015. Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in rice. Asian Journal of Plant Pathology 9 (2): 46–58. DOI: https://doi.org/10.3923/ajppaj.2015.46.58
Nicolás C., Hermosa R., Rubio B., Mukherjee P.K., Monte E. 2014. Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science 228: 71–78. DOI: https://doi.org/10.1016/j.plantsci.2014.03.005
Nielsen P., Sørensen J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology 22 (3): 183–192. DOI: https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
Noori M.S., Saud H.M. 2012. Potential plant growth-promoting activity of Pseudomonas spp. isolated from paddy soil in Malaysia as biocontrol agent. Journal of Plant Pathology and Microbiology 3 (2): 1–4. DOI: https://doi.org/10.4172/2157-7471.1000120
Otieno N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6: 745. DOI: https://doi.org/10.3389/fmicb.2015.00745
Paramanandham P., Rajkumari J., Pattnaik S., Busi S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science 23 (4): 294–303. DOI: https://doi.org/10.1080/19315260.2016.1271850
Pérez-Miranda S., Cabirol N., George-Téllez R., Zamudio-Rivera L.S., Fernández F.J. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods 70 (1): 127–131. DOI: https://doi.org/10.1016/j.mimet.2007.03.023
Qi W., Zhao L. 2013. Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology 53 (4): 355–364. DOI: https://doi.org/10.1002/jobm.201200031
Ramaiah A.K., Garampalli R.K.H. 2015. In vitro antifungal activity of some plant extracts against Fusarium oxysporum f. sp. lycopersici. Asian Journal of Plant Science & Research 5 (1): 22–27.
Rao W.V.B.S., Sinha M.K. 1963. Phosphate dissolving organisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences 33: 272–278.
Riker A.J., Riker R.S. 1936. Introduction to Research on Plant Diseases. John S Swift, St. Louis, USA.
Rudresh D.L., Shivaprakash M.K., Prasad R.D. 2005. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology 51 (3): 217–222. DOI: https://doi.org/10.1139/w04-127
Saba H., Vibhash D., Manisha M., Prashant K.S., Farhan H., Tauseef A. 2012. Trichoderma–a promising plant growth stimulator and biocontrol agent. Mycosphere 3 (4): 524–531. DOI: https://doi.org/10.5943/mycosphere /3/4/14
Sallam N.M., Eraky A.M., Sallam A. 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Molecular Biology Reports 46 (4): 4463–4470. DOI: https://doi.org/10.1007/s11033-019-04901-9
Sanoubar R., Barbanti L. 2017. Fungal diseases on tomato plant under greenhouse condition. European Journal of Biological Research 7 (4): 299–308.
Sawant S.D., Sawant I.S. 2010. Improving the shelf life of grapes by pre-harvest treatment with Trichoderma harzianum 5R. Journal of Eco-Friendly Agriculture 5 (2): 179–182.
Schoffelmeer E.A., Klis F.M., Sietsma J.H., Cornelissen B.J. 1999. The cell wall of Fusarium oxysporum. Fungal Genetics and Biology 27 (2–3): 275–282.
Schwyn R., Neilands J.B. 1987. Universal chemical assay for detection and estimation of siderophores. Analytical Biochemistry 160: 47–56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Sharma J.P., Kumar S., Bikash D. 2012. Soil application of Trichoderma harzianum and T. viride on biochemical constituents in bacterial wilt resistant and susceptible cultivars of tomato. Indian Phytopathology 65 (3): 264–267.
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Soesanto L., Utami D.S., Rahayuniati R.F. 2011. Morphological characteristics of four Trichoderma isolates and two endophytic Fusarium isolates. Canadian Journal of Science and Industrial Research 2: 294–306.
Srivastava R., Khalid A., Singh U.S., Sharma A.K. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 53: 24–31. DOI: https://doi.org/10.1016/j.biocontrol.2009.11.012
Surekha C.H., Neelapu N.R.R., Prasad B.S., Ganesh P.S. 2014. Induction of defense enzymes and phenolic content by Trichoderma viride in Vigna mungo infested with Fusarium oxysporum and Alternaria alternata. International Journal of Agricultural Science Research 4 (4): 31–40.
Verma P., Yadav, A.N., Kumar V., Singh D.P., Saxena A.K, 2017. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. p. 543–580. In: “Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, Switzerland. DOI: https://doi.org/10.1007/978-981-10-6593-4_22
Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R., Lombardi N., Pascale A., Ruocco M., Lanzuise S., Manganiello G. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8 (1): 127–39. DOI: https://doi.org/10.2174/1874437001408010127
Wightwick A.M., Reichman S.M., Menzies N.W., Allinson G. 2013. The effects of copper hydroxide, captan and trifloxystrobin fungicides on soil phosphomonoesterase and urease activity. Water, Air, & Soil Pollution 224 (12): 1–9. DOI: https://doi.org/10.1007/s11270-013-1703-1
Woo S.L., Ruocco M., Vinale F., Nigro M., Marra R., Lombardi N., Pascale A., Lanzuise S., Manganiello G., Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8 (1): 71–126. DOI: https://doi.org/10.2174/1874437001408010071
Yadav A.N., Kumar V., Dhaliwal H.S., Prasad R., Saxena A.K. 2018. Microbiome in crops: diversity, distribution, and potential role in crop improvement. p. 305–332. In: “Crop Improvement Through Microbial Biotechnology” (A.A. Rastegari, N. Yadav, A.N. Yadav, eds.). Elsevier. DOI: https://doi. org/10.1016/B978-0-444-63987-5.00015-3
Zaim S., Bekkar A.A., Belabid L. 2018. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Archives of Phytopathology and Plant Protection 51 (3–4): 217–226. DOI: https://doi.org/10.1080/03235408.2018.1447896
Zehra A., Meena M., Dubey M.K., Aamir M., Upadhyay R.S. 2017. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Brazilian Journal of Botany 40 (3): 651–664. DOI: https://doi.org/10.1007/s40415-017-0382-3
Zhang F., Ge H., Zhang F., Guo N., Wang Y., Chen L., Ji X., Li C. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry 100: 64–74. DOI: https://doi.org/10.1016/j.plaphy.2015.12.017
Zieslin N., Ben Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology Biochemistry 31 (3): 333–339.
Go to article

Authors and Affiliations

Arshi Jamil
1

  1. Department of Plant Protection, Aligarh Muslim University, Aligarh, India
Download PDF Download RIS Download Bibtex

Abstract

The natural environment is being drastically affected by climate change. Under these severe environmental conditions, the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the mor-phological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging will facilitate the development of techniques and methods to improve tolerance in crops.
Go to article

Authors and Affiliations

Shubhangani Sharma
1
ORCID: ORCID
Jyotshana Sharma
1
ORCID: ORCID
Vineet Soni
1
ORCID: ORCID
Hazem M. Kalaji
2
ORCID: ORCID
Nabil I. Elsheery
3
ORCID: ORCID

  1. Mohanlal Sukhadia University, Department of Botany, Udaipur, India
  2. Institute of Technology and Life Sciences, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  3. Tanta University, Faculty of Agriculture, Agricultural Botany Department, Tanta, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Polygonum orientale with beautiful red flowers can be found as one dominant species in the vicinity of most water bodies and wetlands in China. However, its phytoremediation potential has not been sufficiently explored because little is known about its resistance to inorganic or organic pollutants. We investigated P. orientale response to low and moderate levels of phenol stress (≤ 80 mg L-1). Endpoints included phenol tolerance of P. orientale and the removal of the pollutant, antioxidant enzyme activities, damage to the cell membrane, osmotic regulators and photosynthetic pigments. In plant leaves, phenol stress significantly increased the activities of peroxidase (POD) and catalase (CAT), as well as the contents of proline, soluble sugars and carotenoids, whereas superoxide dismutase (SOD), H2O2 and electrolyte leakage (EL) levels remained unaltered. On the other hand, there were significant decreases of soluble protein and chlorophyll contents. We demonstrated that, in combination with phenol tolerance and its removal, P. orientale has efficient protection mechanisms against phenol-induced oxidative damage (≤ 80 mg L-1). We propose that P. orientale could be used as an alternative and interesting material in the phytoremediation of phenol.

Go to article

Authors and Affiliations

Kai Wang
Jin Cai
Shulian Xie
Jia Feng
Ting Wang
Download PDF Download RIS Download Bibtex

Abstract

Toxicity and physiological alterations were determined in Pseudococcus viburni nymphs treated with Artemisia annua methanolic extract. The leaf dipping bioassay showed LC50 values of 0.287% and 0.194% 24 and 48 hours post-exposure. Activities of general esterases were significantly higher in the control nymphs than in those which had been treated except for the 48 h time interval using α-naphtyl acetate. The activity of glutathione S-transferase using CDNB (1-chloro-2,4-dinitrobenzene) in the control nymphs, was significantly higher than in the control at both time intervals while no significant difference was observed after 24 h in addition to the higher enzymatic activity in the treated nymphs after 48 h. All three aminotransferases were significantly more active in the control nymphs except for time intervals of 24 h for γ-glutamyl transferase and 48 h for alanine aminotransferase. Higher activities of lactate dehydrogenase, acid- and alkaline phosphatase were found in the control nymphs than in treated nymphs for all time intervals. Activities of the enzymes involved in the antioxidant system including catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and glucose-6-phosphate dehydrogenase was increased in the treated nymphs compared to the control. Results of the current study demonstrated toxic effects of A. annua methanolic extract on P. viburni nymphs causing mortality and physiological turbulences.

Go to article

Authors and Affiliations

Samar Ramzi
Ali Seraji
Reza Azadi Gonbad
Kimia Mirhaghparast
Zahra Mojib-Haghghadam
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition and bioactivity of a water/methanol extract prepared from aerial parts of Circaea lutetiana were determined. HPLC-DAD-MS3 analysis revealed the presence of 14 different compounds comprising phenolic acids, ellagitannins and flavonoids. Antioxidant assays showed the extract's strong scavenging activity towards DPPH (SC50 33.1±3.1 μg/ml), O2 - (SC50 4.0±2.3 μg/ml) and H2O2 (SC50 below 2 μg/ml). Enzyme-based studies revealed that Circaea lutetiana extract inhibits the activity of hyaluronidase (IC50 13.3±2.4 μg/ml) and lipoxygenase (IC50 44.7±1.4 μg/ml). These results support some traditional uses of Circaea lutetiana.

Go to article

Authors and Affiliations

Sebastian Granica
Jakub P. Piwowarski
Anna K. Kiss
Download PDF Download RIS Download Bibtex

Abstract

We examined the effects of feeding by the polyphagous insect Coccus hesperidum on its host plant Nephrolepis biserrata under different intensities of infestation. As an effect of scale insect feeding there were significant changes in the values of parameters reflecting the state of cell membranes. N. biserrata plants reacted to the biotic stress by increasing guaiacol peroxidase activity and decreasing catalase activity. Our data show that these processes play key roles in plant tolerance mechanisms, here the fern’s response to insect feeding. The observed complex reaction of N. biserrata testifies to actively proceeding, complex and very often contrasting mechanisms triggered with the aim of neutralizing the effects of biotic stress and enabling normal cell functioning in plants attacked by scale insects

Go to article

Authors and Affiliations

Katarzyna Golan
Katarzyna Rubinowska
Edyta Górska-Drabik
Download PDF Download RIS Download Bibtex

Abstract

I n t r o d u c t i o n: Interactions between oral microbiota and systemic diseases have been suggested. We aimed to examine the composition of oral microbiota with reference to antioxidative defense and its correlation with clinical state in Crohn’s disease (CD) in comparison to ulcerative colitis (UC).

Ma t e r i a l s a n d Me t h o d s: Smears were taken from the buccal and tongue mucosa of patients with CD, UC and controls, and cultured with classical microbiology methods. Bacterial colonies were identified using matrix-assisted laser desorption/ionization (MALDI) with a time-of-flight analyzer (TOF). Blood morphology and C-reactive protein (CRP) were analyzed in the hospital laboratory. Antioxidative defense potential (FRAP) was determined using spectrophotometry in saliva and serum.

R e s u l t s: Oral microbiota in CD patients were characterized by lower diversity in terms of the isolated bacteria species compared to UC and this correlated with reduced FRAP in the oral cavity and intensified systemic infl ammation. Oral microbiota composition in CD did not depend on the applied treatment. In CD patients, a negative correlation was observed between the FRAP value in saliva and serum and the CRP value in serum. Individual differences in the composition of oral microbiota suggest that different bacteria species may be involved in the induction of oxidative stress associated with a weakening of antioxidative defense in the oral cavity, manifested by ongoing systemic inflammation.

C o n c l u s i o n s: Analysis of both the state of the microbiota and antioxidative defense of the oral cavity, as well as their referencing to systemic inflammation may potentially prove helpful in routine diagnostic applications and in aiding a better understanding of CD and UC pathogenesis associated with oral microbiota.

Go to article

Authors and Affiliations

Katarzyna Szczeklik
Danuta Owczarek
Dorota Cibor
Marta Cześnikiewicz-Guzik
Paweł Krzyściak
Agnieszka Krawczyk
Tomasz Mach
Elżbieta Karczewska
Wirginia Krzyściak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the antioxidant effect of selenium in Pisum sativum L. plants pre-treated with sodium selenite or sodium selenate at a concentration of 10 and 20 μM, and then colonized by pea aphid Acyrthosiphon pisum (Harris). It has been hypothesized that selenium at low concentrations alleviates oxidative stress caused by aphid feeding on pea leaves. The study focused on the generation of reactive oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical), the activities of the antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) scavenging the reactive oxygen species levels, as well as on total antioxidant activity in pea leaves. Selenium in pea leaves exposed to aphid feeding affected changes in the levels of reactive oxygen species, the activity of studied antioxidant enzymes, and the total antioxidant capacity. Effects depended on the form and concentration of selenium, as well as on the time after the colonization of pea plants by aphids. Obtained results showed beneficial effects of selenium in alleviating oxidative stress in pea leaves caused by aphid feeding.
Go to article

Bibliography

1. Andrade F.R., da Silva G.N., Guimarães K.C., Barreto H.B.F., de Souza K.R.D., Guilherme L.R.G., Faquin V. Reis A.R. 2018. Selenium protects rice plants from water deficit stress. Ecotoxicology and Environmental Safety 164: 562–570. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.022
2. Apel K., Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373–399. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701
3. Bartosz G. 2013. Druga twarz tlenu. Wolne rodniki w przyrodzie. [Second Face of Oxygen. Free Radicals in Nature]. Wydawnictwo Naukowe PWN, Warszawa, Poland, 447 pp. (in Polish)
4. Beauchamp C., Fridovich I. 1971. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44 (1): 276–287. DOI: https://doi.org/10.1016/0003-2697(71)90370-8
5. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2): 248–254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
6. Cartes P., Jara A., Pinilla L., Rosas A., Mora M. 2010. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annales of Applied Biology 156: 297–307. DOI: https://doi.org/10.1111/j.1744-7348.2010.00387.x
7. Coppola V., Coppola M., Rocco M., Digilio M.C., D’Ambrosio C., Renzone G., Renzone G., Martinelli R., Scaloni A., Pennacchio F., Rao R., Corrado G. 2013. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomocs 14: 515–532. DOI: https://doi.org/10.1186/1471-2164-14-515
8. Czerniewicz P., Sytykiewicz H., Durak R., Borowiak-Sobkowiak B., Chrzanowski G. 2017. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiology and Biochemistry 118: 529–540. DOI: https://doi.org/10.1016/j.plaphy.2017.07.024
9. Dampc J., Kula-Maximenko M., Molon M., Durak R. 2020. Enzymatic defense response of apple aphid Aphis pomi to increased temperature. Insects 11 (7): 436. DOI: https://doi.org/10.3390/insects11070436
10. Das K., Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2: 53. DOI: https://doi.org/10.3389/ fenvs.2014.00053
11. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57: 779–795. DOI: https://doi: 10.1007/s000180050041
12. del Pino A.M., Guiducci M., D’Amato R., Di Michele A., Tosti G., Datti A., Palmerini C.A. 2019. Selenium maintains cytosolic Ca2+ homeostasis and preserves germination rates of maize pollen under H2O2-induced oxidative stress. Scientific Reports 9 (1): 1–9. DOI: https://doi.org/1038/s41598-019-49760-3
13. del Río L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53: 1255–1272. DOI: https://doi.org/10.1093/jexbot/53.372.1255
14. Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological Plant Pathology 23 (3): 345–357. DOI: https://doi.org/10.1016/0048-4059(83)90019-X
15. Feng R., Wei C., Tu S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany 87: 58–68. DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002
16. Foyer C.H., Rasool B., Davey J.W., Hancock R.D. 2016. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. Journal of Experimental Botany 67 (7): 2025–2037. DOI: https://doi.org/10.1093/jxb/erw079.
17. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12): 909–930. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
18. Gouveia G.C.C., Galindo F.S., Lanza M.G.D.B., Silva A.C.R., Mateus M.P.B, Silva M.S., Tavanti R.F.R., Tavanti T.R., Lavres J., Reis A.R. 2020. Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicology and Environmental Safety 202: e110916. DOI: https://doi.org/10.1016/j.ecoenv.2020.110916
19. Guardado-Félixa D., Serna-Saldivarb S.O., Cuevas-Rodrígueza E.O., Jacobo-Velázquezb D.A., Gutiérrez-Uribeb J.A. 2017. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea ( Cicer arietinum L.) sprouts. Food Chemistry 226: 69–74. DOI: https://doi.org/10.1016/j.foodchem.2017.01.046
20. Gupta M., Gupta S. 2017. An overview of plant selenium uptake, metabolism and toxicity in plants. Frontiers in Plant Science 7: e2074. DOI: https://doi.org/10.3389/fpls.2016.02074
21. Habibi G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101: 31–39. DOI: https://doi.org/10.2478/acas-2013-0004
22. Hartikainen H., Xue H., Piironen V. 2000. Selenium as an antioxidant. Plant and Soil 225: 193–200. DOI: https://doi.org/10.1023/A:1026512921026
23. He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Guan Z., He C. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defence enzyme activity in response to aphid infestation. Journal of Plant Physiology 168 (7): 687–693. DOI: https://doi.org/10.1016/j.jplph.2010.10.009
24. Holman J. 2009. Host Plant Catalog for Aphids. Palearctic Region. Springer Science + Business Media B.V., Berlin/Heidelberg, Germany, 1216 pp.
25. Hossain M.A., Bhattacharjee S., Armin S.M., Qian P., Xin W., Li H.Y., Burritt D.J., Fujita M, Tran L.-S.P. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science 6: e420. DOI: https://doi.org/10.3389/ fpls.2015.00420
26. Kasote D.M., Katyare S.S., Hegde M.V., Bae H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences 11 (8): 982–991. DOI: https://doi:10.7150/ijbs.12096
27. Kuśnierczyk A., Winge P., Jorstad T.S., Troczyńska J., Rossiter J.T., Bunes A.M. 2008. Towards global understanding of plant defence against aphids timing and dynamics of early Arabidopsis defence responses to cabbage aphid ( Brevicoryne brassicae) attack. Plant, Cell and Environment 31 (8): 1097–1115. DOI: https://doi.org/10.1111/j.1365-3040.2008.01823.x
28. Lehmann S., Serrano M., L’Haridon F., Tjamos S.E., Metraux J P. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112: 54–62. DOI: https://doi.org/10.1016/j.phytochem.2014.08.027
29. Łukasik I., Goławska S., Wójcicka A. 2012. Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies 21 (6): 1937–1941.
30. Łukasik I., Goławska S. 2013. Effect of host plant on levels of reactive oxygen species andantioxidants in the cereal aphids Sitobion avenae and Rhopalosiphum padi. Biochemical Systematic and Ecology 51: 232–239. DOI: https://doi.org/10.1016/j.bse.2013.09.001
31. Łukaszewicz S., Politycka B., Smoleń S. 2018. Effect of selenium on the content of essential micronutrients and their translocation in garden pea. Journal of Elementology 23 (4): 1307–1317. DOI: https://doi.org/10.5601/jelem.2017.22.4.1577.
32. Maffei M.E., Mithöfer A., Boland W. 2007. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68 (22–24): 2946–2959. DOI: https://doi.org/10.1016/j.phytochem.2007.07.016
33. Mai V.C., Bednarski W., Borowiak-Sobkowiak B., Wilkaniec B., Samardakiewicz S., Morkunas I. 2013. Oxidative stress in pea seedling leaves in response to Acirthosiphon pisum infestation. Phytochemistry 93: 49–62. DOI: https://doi.org/10.1016/j.phytochem.2013.02.011
34. Mai V.C., Tran N.T., Nguyen D.S. 2016. The involvement of peroxidases in soybean seedlings’ defence against infestation of cowpea aphid. Arthropod-Plant Interactions 10: 283–292. DOI: https://doi.org/10.1007/s11829-016-9424-1
35. Marchi-Werle L., Heng-Moss T.M., Hunt T.E., Baldin E.L.L., Baird L.M. 2014. Characterization of peroxidase changes in tolerant and susceptible soybeans challenged by soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 107 (5): 1985–1991. DOI: https://doi.org/10.1603/EC14220
36. Mechora Š., Ugrinović K. 2015. Can plant-herbivore interaction be affected by selenium? Austin Journal of Environmental Toxicology 1(1): e5.
37. Messner B., Boll M. 1994. Cell suspension of spruce ( Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide. Plant Cell Tissue Organ and Culture 39: 69–78. DOI: https://doi.org/10.1007/BF00037594
38. Moloi M.J., van der Westhuizen A.J. 2008. Antioxidative enzymes and the Russian wheat aphid ( Diuraphis noxia) resistance response in wheat ( Triticum aestivum). Plant Biology 10 (3): 403–407. DOI: https://doi.org/10.1111/j.1438-8677.2008.00042.x
39. Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22 (5): 867–880. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
40. Ni X., Quinsberry S.S. 2003. Possible roles of esterase, glutathione S-transferase, and superoxide dismutase activities in understanding aphid–cereal interactions. Entomologia Experimentalis et Applicata 108: 187–195. DOI: https://doi.org/10.1046/j.1570-7458.2003.00082.x
41. Ni X., Quisenberry S.S., Heng-Moss T.M., Markwell J., Sarath G., Klucas R., Baxendale F. 2001. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology 94: 743–751. DOI: https://doi.org/10.1603/0022-0493-94.3.743
42. Pereira A.S., Dorneles A.O.S., Bernardy K., Sasso V.M., Bernardy D., Possebom G., Rossato L.V., Dressler V.L., Tabaldi L.A. 2018. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environmental Science and Pollution Research 25: 18548–18558. DOI: https://doi.org/10.1007/s11356-018-2005-3
43. Pierson L.M., Heng-Moss T.M., Hunt T.E., Reese J. 2011. Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid ( Aphis glycines Matsumura) feeding. Arthropod-Plant Interactions 5: 49–58. DOI: https://doi.org/10.1007/s11829-010-9115-2
44. Prochaska T.J. 2011. Characterization of the Tolerance Response in the Soybean KS4202 to Aphis glycines Matsumura. M.Sc. Thesis, University of Nebraska, Lincoln, USA.
45. Prochaska T.J., Pierson L.M., Baldin E.L.L., Hunt T.E., Heng-Moss T.M., Reese J.C. 2013. Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 106 (2): 1036–1044. DOI: https://doi.org/10.1603/EC12320
46. Quan L.J., Zhang B., Shi W.W., Li H.Y. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal od Integrative Plant Biology 50: 2–18. DOI: https://doi.org/10.1111/j.1744-7909.2007.00599.x
47. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. 1999. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231–1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3
48. Ríos J.J., Blasco B., Cervilla L.M., Rosales M.A., Sanchez-Rodriguez E., Romero L., Ruiz J.M. 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology 154: 107–116. DOI: https://doi.org/10.1111/j.1744-7348.2008.00276.x
49. Saxena I., Srikanth S., Chen Z. 2016. Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science 7: e570. DOI: https://doi.org/10.3389/fpls.2016.00570
50. Shalaby T., Bayoumi Y., Alshaal T., Elhawat N., Sztrik A., El-Ramady H. 2017. Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant Soil 421: 245–258. DOI: https://doi.org/10.1007/s11104-017-3458-8
51. Shao Y., Guo M., He X., Fan Q., Wang Z., Jia J., Guo J. 2019. Constitutive H2O2 is involved in sorghum defense against aphids. Brazilian Journal of Botany 42 (2): 271–281. DOI: https://doi.org/10.1007/s40415-019-00525-2
52. Sieprawska A., Kornaś A., Filek M. 2015. Involvement of selenium in protective mechanisms of plants under environmental stress conditions – review. Acta Biologica Cracoviensia. Series Botanica 57 (1): 9–20. DOI: http://dx.doi.org/10.1515/abcsb-2015-0014
53. van Breusegem F., Vranová E., Dat J.F., Inzé D. 2001. The role of active oxygen species in plant signal transduction. Plant Science 161 (3): 405–416. DOI: https://doi.org/10.1016/S0168-9452(01)00452-6
54. von Tiedemann A.V. 1997. Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology 50 (3): 151–166. DOI: https://doi.org/10.1006/pmpp.1996.0076
55. Walz C., Juenger M., Schad M., Kehr J. 2002. Evidence for the presence and activity of a complete defence system in mature sieve tubes. The Plant Journal 31 (2): 189–197. DOI: https://doi.org/10.1046/j.1365-313X.2002.01348.x
56. Wu J., Baldwin I.T. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44: 1–24. DOI: https://doi.org/10.1146/annurev-genet-102209-163500
57. Yang T., Poovaiah B. W. 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America 99 (6): 4097–4102. DOI: https://doi.org/10.1073/pnas.052564899
Go to article

Authors and Affiliations

Sabina Łukaszewicz
1
Barbara Politycka
1
Beata Borowiak-Sobkowiak
2

  1. Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
  2. Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is known that the basic variable in the cellular environment is temperature and low temperature decreases cellular metabolism rate. Also, low cellular metabolic activity reduces oxidative stress, resulting in low ROS production. The aim of this study was therefore to investigate the effect of 36.5°C (low) and 38.5°C (conventional) incubation temperatures during IVM on glutathione peroxidase activity of oocytes and blastocysts following fertilization. Bovine oocytes were matured in medium-199 for 22 hours at either 36.5°C or 38.5°C and they were subjected to in vitro fertilization (IVF). Putative zygotes were then transferred randomly into SOFaa embryo culture media with or without antioxidant (a mixture of GSH and SOD) until development to the blastocyst stage. Glutathione peroxidase enzyme (GSH-Px) activity was lower (p<0.05) in oocytes matured at low temperature than those of conventional temperature. Similarly, GSH-Px activity was lower (p<0.05) in blastocysts, which were obtained from oocytes matured at low temperature and cultured in antioxidants-supplemented embryo media. The GSH-Px activity of blastocysts, obtained from oocytes matured in low temperature, cultured in antioxidants-free embryo media was similar to blastocysts obtained from oocytes matured in conventional temperature, cultured in antioxidants-supplemented embryo media. The results of the present study show that decreasing the in vitro maturation temperature decreases antioxidant enzyme activity in both oocyte and blastocyst. Additionally, maturation of bovine oocytes at 36.5°C incubation temperature may provide an optimal thermal condition for the enzymatic antioxidant system of both oocytes and blastocyst.
Go to article

Authors and Affiliations

U. Şen
1

  1. Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Biotechnology, 55139, Samsun, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Orientating investigations were carried out in order to test the influence of oil extracts of lycopene (20, 40 and 60 mg/kg feed) and astaxanthin (10, 20 and 30 mg/kg feed) as feed additives on the metabolic parameters (glucose, creatinine, cholesterol) and enzyme activities (alanine aminotransferase, ALT; aspartate transaminase, AST) of laying hens. Eggs from these hens were stored at refrigerator temperatures of 4°C and 12°C for up to 30 days and analyzed for vitamin A, carotenoid and yolk color. 45 laying hens (Hy-Line W36 cross, 23 weeks of age) were divided in three groups of 15 birds each (control, lycopene fed group, astaxanthin fed group). Blood samples were taken from the hens and laid eggs were collected on days 31, 61, and 91 of the study. The eggs were stored for 30 days in refrigerators. Both lycopene and astaxanthin increased the content of glucose in serum (Р<0.05). The content of creatinine and cholesterol, and the activity of ALT, AST and alkaline phosphatase varied dose-dependently. With the exception of cholesterol, metabolite concentrations in the serum of laying hens fed different lycopene and astaxanthin doses did not exceed clinically accepted physiological levels. The carotenoid content and color of the egg yolks from laying hens fed astaxanthin was significantly higher (Р<0.05) compared to lycopene fed birds. Refrigerator storage of the eggs did not affect carotenoid content and egg yolk color compared to freshly laid eggs. Both feed additives showed a favorable effect on the metabolism of laying hens and the enrichment of egg yolks with carotenoids, astaxanthin significantly more (Р<0.05) than lycopene.
Go to article

Bibliography


Amaya DB (2004) Harvestplus handbook for carotenoids analysis. International Food Policy Research Institute and International Center for Tropical Agriculture, USA.

An BK, Choo WD, Kang CW, Lee J, Lee KW (2019) Effects of dietary lycopene or tomato paste on laying performance and serum lipids in laying hens and on malondialdehyde content in egg yolk upon storage. J Poult Sci 56: 52-57.

Barbosa VC, Gaspar A, Calixto L, Agostinho TS (2011) Stability of the pigmentation of egg yolks enriched with omega-3 and carophyll stored at room temperature and under refrigeration. Rev Bras Zootec 40: 1540-1544.

Basmacioglu H, Ergul M (2005) Research on the factor affecting cholesterol content and some other characteristics of eggs in laying hens. Turk J Vet Anim Sci 29: 157-164.

Camera E, Mastrofrancesco A, Fabbri C, Daubrawa F, Picardo M, Sies H, Stahl W (2009) Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp Dermatol 18: 222-231.

Damaziak K, Marzec A, Riedel J, Szeliga J, Koczywas E, Cisneros F, Michalczuk M, Lukasiewicz M, Gozdowski D, Siennicka A, Kowalska H, Niemiec J, Lenart A (2018) Effect of dietary canthaxanthin and iodine on the production performance and egg quality of laying hens. Poult Sci 97: 4008-4019.

Gawecki K, Potkanmski A, Lipinska H (1977) Effect of carophyll yellow and carophyll red added to comercial feeds for laying hens on yolk colour and its stability during short-term refrigeration. Rocz Akad Rol w Pozn 94: 85-93.

Gervasi T, Pellizzeri V, Benameur Q, Gervasi C, Santini A, Cicero N, Dugo G (2017) Valorization of raw materials from agricultural industry for astaxanthin and beta-carotene production by Xanthophyllomyces dendrorhous. Nat Prod Res 32: 1554-1561.

Harada F, Morikawa T, Lennikov A, Mukwaya A, Schaupper M, Uehara O, Takai R, Yoshida K, Sato J, Horie Y, Sakaguchi H, Wu CZ, Abiko Y, Lagali N, Kitaichi N (2017) Protective effects of oral astaxanthin nanopowder against ultraviolet-induced photokeratitis in mice. Oxid Med Cell Longev 2017: 1956104.

Heflin LE, Malheiros R, Anderson KE, Johnson LK, Raatz SK (2018) Mineral content of eggs differs with hen strain, age, and rearing envi-ronment. Poult Sci 97: 1605-1613.

Honda M, Kawashima Y, Hirasawa K, Uemura T, Jinkun S, Hayashi Y (2020) Possibility of using astaxanthin-rich dried cell powder from Paracoccus carotinifaciens to improve egg yolk pigmentation of laying hens. Symmetry 12: 923.

Hrabčáková P, Voslářová E, Bedáňová I, Pištěková V, Chloupek J, Večerek V (2014) Haematological and biochemical parameters during the laying period in common pheasant hens housed in enhanced cages Sci World J 2014: 364602.

Hwang Y, Kim KJ, Kim SJ, Mun SK, Hong SG, Son YJ, Yee ST (2018) Suppression effect of astaxanthin on osteoclast formation in vitro and bone loss in vivo. Int J Mol Sci 19: 912.

Inoue Y, Shimazawa M, Nagano R, Kuse Y, Takahashi K, Tsuruma K, Hayashi M, Ishibashi T, Maoka T, Hara H (2017) Astaxanthin ana-logs, adonixanthin and lycopene, activate Nrf2 to prevent light-induced photoreceptor degeneration. J Pharmacol Sci 134: 147-157.
Jiang H, Wang Z, Ma Y, Qu Y, Lu X, Luo H (2015) Effects of dietary lycopene supplementation on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot Bamei lamb. Asian-Australas J Anim Sci 28: 958-965.

Kobori M, Takahashi Y, Sakurai M, Ni Y, Chen G, Nagashimada M, Kaneko S, Ota T (2017) Hepatic transcriptome profiles of mice with diet-induced nonalcoholic steatohepatitis treated with astaxanthin and vitamin E. Int J Mol Sci 18: 593.

Komatsu T, Sasaki S, Manabe Y, Hirata T, Sugawara T (2017) Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One 12: e0171178.

Koppel K, Suwonsichon S, Chitra U, Lee J, Chambers IV E (2014) Eggs and poultry purchase, storage, and preparation practices of consum-ers in selected Asian countries. Foods 3: 110-127.

Koppel K, Timberg L, Shalimov R, Vazquez-Araujo L, Carbonell-Barrachina AA, Donfrancesco BD, Chambers E (2015) Purchase, storage, and preparation of eggs and poultry in selected European countries: a preliminary study. Br Food J 117: 749-765.
Lu Y, Wang X, Feng J, Xie T, Si P, Wang W (2019) Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures. Brain Res Bull 148: 63-69.

Mapelli-Brahm P, Corte-Real J, Melendez-Martinez AJ, Bohn T (2017) Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chem 229: 304-311.

Marounek M, Pebriansyah A (2018) Use of carotenoids in feed mixtures for poultry: a review. Agri Trop Subtrop 51: 107-111.

Mashhadi NS, Zakerkish M, Mohammadiasl J, Zarei M, Mohammadshahi M, Haghighizadeh MH (2018) Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pac J Clin Nutr 27: 341-346.

Mezbani A, Kavan BP, Kiani A, Masouri B (2020) Effect of dietary lycopene supplementation on growth performance, blood parameters and antioxidant enzymes status in broiler chickens. Livest Res Rural Dev 31: 12.

Miranda JM, Anton X, Redondo-Valbuena C, Roca-Saavedra P, Rodriguez JA, Lamas A, Franco CM, Cepeda A (2015) Egg and egg-derived foods: effects on human health and use as functional foods. Nutrients 7: 706-729.

Nimalaratne C, Schieber A, Wu J (2016) Effects of storage and cooking on the antioxidant capacity of laying hen eggs. Food Chem 194: 111-116.

Nishigaki I, Rajendran P, Venugopal R, Ekambaram G, Sakthisekaran D, Nishigaki Y (2010) Cytoprotective role of astaxanthin against gly-cated protein/iron chelate-induced toxicity in human umbilical vein endothelial cells. Phytother Res 24: 54-59.

Nolan JM, Meagher KA, Howard AN, Moran R, Thurnham DI, Beatty S (2016) Lutein, zeaxanthin and meso-zeaxanthin content of eggs laid by hens supplemented with free and esterified xanthophylls. J Nutr Sci 5: e1.

Nys Y (2000) Dietary carotenoids and egg yolk coloration – a review. Arch Geflügelkd 64: 45-54.

Olson JB, Ward NE, Koutsos EA (2008) Lycopene incorporation into egg yolk and effects on laying hen immune function. Poult Sci 87: 2573-2580.

Omri B, Alloui N, Durazzo A, Lucarini M, Aiello A, Romano R, Santini A, Abdouli H (2019) Egg yolk antioxidants profiles: effect of diet supplementation with linseeds and tomato-red pepper mixture before and after storage. Foods (Basel, Switzerland) 8: 320.

Reboul E (2013) Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients. 5: 3563-3581.

Reboul E, Richelle M, Perrot E, Desmoulins-Malezet C, Pirisi V, Borel P (2006) Bioaccessibility of carotenoids and vitamin e from their main dietary sources. J Agric Food Chem 54: 8749-8755.

Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT (2002) Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (May-wood) 227: 900-907.

Ruhl R (2013) Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development. Int Arch Allergy Immunol 161: 99-115.

Sahin K, Onderci M, Sahin N, Gursu MF, Khachik F, Kucuk O (2006) Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. J Therm Biol 31: 307-312.

Sahin N, Sahin K, Onderci M, Karatepe M, Smith MO, Kucuk O (2006) Effects of dietary lycopene and vitamin E on egg production, antiox-idant status and cholesterol levels in Japanese quail. Asian Australas J Anim Sci 19: 224-230.

Sila A, Ghlissi Z, Kamoun Z, Makni M, Nasri M, Bougatef A, Sahnoun Z (2015) Astaxanthin from shrimp by-products ameliorates nephrop-athy in diabetic rats. Eur J Nutr 54: 301-307.

Skibsted LH (2012) Carotenoids in antioxidant networks. Colorants or radical scavengers. J Agric Food Chem 60: 2409-2417.

Story EN, Kopec RE, Schwartz SJ, Harris GK (2010) An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol 1: 189-210.

Sun B, Ma J, Zhang J, Su L, Xie Q, Bi Y (2014) Lycopene regulates production performance, antioxidant capacity, and biochemical parame-ters in breeding hens. Czech J Anim Sci 59: 471-479.

Sun B, Ma J, Zhang J, Su L, Xie Q, Gao Y, Zhu J, Shu D, Bi Y (2014) Lycopene reduces the negative effects induced by lipopolysaccharide in breeding hens. Br Poult Sci 55: 628-634.

Sztretye M, Dienes B, Gönczi M, Czirják T, Csernoch L, Dux L, Szentesi P, Keller-Pintér A (2019) Astaxanthin: a potential mitochondri-al-targeted antioxidant treatment in diseases and with aging. Oxid Med Cell Longev 2019: 3849692.

Vuilleumier JP (1969) The Roche Yolk Colour Fan: an instrument for measuring yolk colour. Poult Sci 48:767-779.

Yang YX, Kim YJ, Jin Z, Lohakare JD, Kim CH, Ohh SH, Lee SH, Choi JY, Chae BJ (2006) Effects of dietary supplementation of astaxan-thin on production performance, egg quality in layers and meat quality in finishing pigs. Asian-Aust J Anim Sci 19: 1019-1025.

Yoo H, Bamdad F, Gujral N, Suh JW, Sunwoo H (2017) High hydrostatic pressure-assisted enzymatic treatment improves antioxidant and anti-inflammatory properties of phosvitin. Curr Pharm Biotechnol 18: 158-167.

Zdrojewicz Z, Herman M, Starostecka E (2016) Hen’s egg as a source of valuable biologically active substances. Postępy Hig Med Doświ-adczalnej 70: 751-759.
Go to article

Authors and Affiliations

L.V. Shevchenko
1
O.M. Iakubchak
1
V.A. Davydovych
1
V.V. Honchar
1
M. Ciorga
2
J. Hartung
3
R. Kołacz
2

  1. Department of Veterinary Hygiene, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony St, 15, Kiev, Ukraine
  2. Department of Public Health Protection and Animal Welfare, Institute for Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina 7, Toruń, Poland
  3. University of Veterinary Medicine Hannover, Bünteweg 9, Hannover, Germany
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the antioxidative/oxidative status of spermatozoa and prostatic fluid in dogs with benign prostatic hyperplasia (BPH) by the determination of total antioxidant capacity and protein peroxidation markers. Study was conducted on 40 intact dogs of various breeds. The dogs were assigned to two groups: BPH group (n=20) and non-affected group (n=20). The second and third fractions of the ejaculate were collected separately by digital manipulation. Total antioxidant capacity (TAC) and the concentrations of SH-groups in sperm and prostatic fluid were determined spectrophotometrically, the concentrations of bityrosine and formylkynurenine were determined using spectrofluorimetric methods. The mean values of TAC in spermatozoa and prostatic fluid were significantly lower (p<0.05), whereas the mean contents of biotyrosine and formylkinurenine were significantly higher (p<0.05) in BPH dogs compared to control dogs. There was no statistically significant difference in the content of SH group between dogs with BPH and control dogs (p>0.05). In conclusion, the results indicate that BPH in dogs is associated with reduced total antioxidant capacity and increased protein oxidation in the prostatic fluid and spermatozoa, and suggest the importance of oxidative stress in the pathogenesis of this condition. The potential role of antioxidants in the prevention and therapy of canine BPH requires further studies.
Go to article

Bibliography

1. Al Smadi MA, Hammadeh ME, Batiha O, Al Sharu E, Altalib MM, Jahmani MY, Mahdy A, Amor H (2021) Elevated seminal protein carbonyl concentration is correlated with asthenozoospermia and affects adversely the laboratory intracytoplasmic sperm injection (ICSI) outcomes. Andrologia 53: e14232.
2. Angrimani DS, Brito MM, Rui BR, Nichi M, Vannucchi CI (2020) Reproductive and endocrinological effects of Benign Prostatic Hy-perplasia and finasteride therapy in dogs. Sci Rep 10: 14834.
3. Aquino-Cortez A, Pinheiro BQ, Lima DB, Silva HV, Mota-Filho AC, Martins JA, Rodriguez-Villamil P, Moura AA, Silva LD (2017) Proteomic characterization of canine seminal plasma. Theriogenology 95: 178-186.
4. Aydin A, Arsova-Sarafinovska Z, Sayal A, Eken A, Erdem O, Erten K, Ozgok Y, Dimovski A (2006) Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. Clin Biochem 39: 176-179.
5. Barsanti JA, Finco DR (1986) Canine prostatic diseases. Vet Clin North Am Small Anim Pract 16: 587-599.
6. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant power”: The FRAP assay. Anal Biochem 239: 70-76.
7. Bergsma AT, Li HT, Eliveld J, Bulthuis ML, Hoek A, van Goor H, Bourgonje AR, Cantineau AE (2022) Local and systemic oxidative stress biomarkers for male infertility: The ORION study. Antioxidants (Basel) 11: 1045.
8. Berry SJ, Strandberg JD, Saunders WJ, Coffey DS (1986) Development of canine benign prostatic hyperplasia with age. Prostate 9: 363-373.
9. Castleton PE, Deluao JC, Sharkey DJ, McPherson NO (2022) Measuring reactive oxygen species in semen for male preconception care: A scientist perspective. Antioxidants (Basel) 11: 264.
10. Cunto M, Ballotta G, Zambelli D (2022) Benign prostatic hyperplasia in the dog. Anim Reprod Sci 247: 107096.
11. Da Rocha AA, da Cunha ICN, Ederli BB, Albernaz AP, Quirino CR (2009) Effect of daily food supplementation with essential fatty ac-ids on canine semen quality. Reprod Dom Anim 44, (Suppl 2): 313-315.
12. Dearakhshandeh N, Mogheiseh A, Nazifi S, Ahrari Khafi MS, Abbaszadeh Hasiri M, Golchin-Rad K (2019) Changes in the oxidative stress factors and inflammatory proteins following the treatment of BPH-induced dogs with an anti-proliferative agent called tadalafil. J Vet Pharmacol Ther 42: 665-672.
13. De Souza FF, Barreto CS, Lopes MD (2007) Characteristics of seminal plasma proteins and their correlation with canine semen analysis. Theriogenology 68: 100-106.
14. Domosławska A, Zdunczyk S (2020) Clinical and spermatological findings in male dogs with acquired infertility: A retrospective analy-sis. Andrologia 52: e13802.
15. Domoslawska A, Zdunczyk S, Franczyk M, Kankofer M, Janowski T (2018) Selenium and vitamin E supplementation enhances the an-tioxidant status of spermatozoa and improves semen quality in male dogs with lowered fertility. Andrologia 50: e13023
16. Domosławska A, Zdunczyk S, Franczyk M, Kankofer M, Janowski T (2019) Total antioxidant capacity and protein peroxidation inten-sity in seminal plasma of infertile and fertile dogs. Reprod Domest Anim 54: 252-257.
17. Domosławska A, Zduńczyk S, Kankofer M, Bielecka A (2022) Oxidative stress biomarkers in dogs with benign prostatic hyperplasia. Ir Vet J 75: 21.
18. Ferré-Dolcet L, Frigotto L, Contiero B, Bedin S, Romagnoli S (2022) Prostatic fluid composition and semen quality in dogs with benign prostatic hyperplasia undergoing treatment with osaterone acetate. Reprod Domest Anim 57: 72-79.
19. Fontbonne A (2011) Infertility in male dogs: recent advances. Rev Bras Reprod Anim 35: 266-273.
20. Gandaglia G, Briganti A, Gontero P, Mondaini N, Novara G, Salonia A, Sciarra A, Montorsi F (2013) The role of chronic prostatic in-flammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH). BJU Int 112: 432-441.
21. Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experi-mental data. Free Radic Biol Med 29: 1106-1114.
22. Gobello C, Corrada Y (2002) Noninfectious prostatic diseases in dogs. Compend Contin Educ Pract Vet 24: 99-107.
23. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142: 231-255.
24. Kankofer M (2001) Protein peroxidation processes in bovine retained and not-retained placenta. J Vet Med A Physiol Pathol Clin Med 48: 207-2212.
25. Kawakami E, Kobayashi M, Hori T, Kaneda T (2015) Therapeutic effects of vitamin E in 4 dogs with poor semen quality and low su-peroxide dismutase activity in seminal plasma. J Vet Med Sci 77: 1711-1714.
26. Lévy X, Niżański W, von Heimendahl A, Mimouni P (2014) Diagnosis of common prostatic conditions in dogs: an update. Reprod Domest Anim 49 (Suppl 2): 50-57.
27. Linde-Forsberg C (1991) Achieving canine pregnancy by using frozen or chilled extended semen. Vet Clin North Am Small Anim Pract 21: 467-485.
28. Meikle AW, Collier ES, Stringham JD, Fang SM, Taylor GN (1981) Elevated intranuclear dihydrotestosterone in prostatic hyperplasia of aging dogs. J Steroid Biochem 14: 331-335.
29. Memon MA (2007) Common causes of male dog infertility. Theriogenology 68: 322-328.
30. Minciullo PL, Inferrera A, Navarra M, Calapai G, Magno C, Gangemi S (2015) Oxidative stress in benign prostatic hyperplasia: a sys-tematic review. Urol Int 94: 249-254.
31. Mitsunari K, Miyata Y, Matsuo T, Mukae Y, Otsubo A, Harada J, Kondo T, Matsuda T, Ohba K, Sakai H (2021) Pharmacological Ef-fects and Potential Clinical Usefulness of Polyphenols in Benign Prostatic Hyperplasia. Molecules 26: 450.
32. Morielli T, O’Flaherty C (2015) Oxidative stress impairs function and increases redox protein modifications in human spermatozoa. Re-production 149: 113-23.
33. Nowicka-Bauer K, Lepczynski A, Ozgo M, Kamieniczna M, Fraczek M, Stanski L, Olszewska M, Malcher A, Skrzypczak W, Kurpisz MK (2018) Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia. J Physiol Phar-macol 69.
34. Pace G, Di Massimo C, De Amicis D, Corbacelli C, Di Renzo L, Vicentini C, Miano L, Tozzi Ciancarelli MG (2010) Oxidative stress in benign prostatic hyperplasia and prostate cancer. Urol Int 85: 328-333.
35. Rice- Evans CA, Diplock AT, Symons MCR (1991) Techniques in Free Radical Research, 1st ed., Elsevier, Amsterdam.
36. Roumeguère T, Sfeir J, El Rassy E, Albisinni S, Van Antwerpen P, Boudjeltia KZ, Farès N, Kattan J, Aoun F (2017) Oxidative stress and prostatic diseases. Mol Clin Oncol 7: 723-728.
37. Schäfer-Somi S (2023) Diseases of the Canine Prostate Gland. IntechOpen. Doi: 10.5772/intechopen.105835.
38. Smith J (2008) Canine prostatic disease: a review of anatomy, pathology, diagnosis, and treatment. Theriogenology 70: 375-383.
39. Srivastava DS, Mittal RD (2005) Free radical injury and antioxidant status in patients with benign prostate hyperplasia and prostate can-cer. Indian J Clin Biochem 20: 162-165.
40. Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899: 191-208.
41. Stewart KL, Lephart ED (2023) Overview of BPH: Symptom Relief with Dietary Polyphenols, Vitamins and Phytochemicals by Nutraceutical Supplements with Implications to the Prostate Microbiome. Int J Mol Sci 24: 5486.
42. Strzeżek R, Koziorowska-Gilun M, Kowalówka M, Strzeżek J (2009) Characteristics of antioxidant system in dog semen. Pol J Vet Sci 12: 55-60.
43. Tong Y, Zhou RY (2020) Review of the roles and interaction of androgen and inflammation in benign prostatic hyperplasia. Mediators Inflamm 2020: 7958316.
44. Tunn S, Hochstrate H, Habenicht UF, Krieg M (1988) 5 alpha-reductase activity in epithelium and stroma of prostates from intact and castrated dogs treated with androstenedione, the aromatase inhibitor 1-methyl-1,4androstadiene-3,17-dione, and cyproterone acetate. Prostate 12: 243-253.
45. Vital P, Castro P, Ittmann M (2016) Oxidative stress promotes benign prostatic hyperplasia. Prostate 76: 58-67.
46. Worobiej E, Klepacka M (2003) Degradation changes induced by hydroxyl radicals in bean (Phaseolus vulgaris) and pea (Pisum sa-tivum) proteins. Pol J Food Nutr Sci 53: 13-17.
Go to article

Authors and Affiliations

A. Domosławska
1
S. Zduńczyk
1
A. Bielecka
2
M. Kankofer
2

  1. Department of Animal Reproduction with Clinic, University of Warmia and Mazury, 10-719 Olsztyn, Oczapowskiego 14, Poland
  2. Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Akademicka 12, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

In our previous Genome-wise Association Study we found that Cystic Fibrosis Transmem- brane Conductance Regulator gene (CFTR) is a candidate gene for sperm motility in fresh semen of Holstein-Friesian bulls. Since in cows thawed semen is commonly used for the artificial insem- ination (AI) we have decided to find out whether functional polymorphism within CFTR gene coding sequence is associated with selected parameters of thawed sperm, including their motility evaluated by computer-assisted sperm analysis (CASA), the activity of three antioxidant enzymes: glutathione peroxidase (GPx) catalase (CAT), superoxide dismutase (SOD), ATP con- tent and integrity of sperm membranes. One hundred twenty Holstein Friesian bulls kept in uni- form environmental conditions (one AI company) were included in the study. Significant associ- ations between genotypes of missense mutation within exon 11 of the CFTR gene (Met468Leu) and the activity of antioxidant enzymes and sperm mitochondrial function were revealed. No effect of CFTR genotypes on sperm motility was observed. Significant differences in CAT and SOD activity were found between AA and TT homozygous individuals. Bulls with TT genotype had the lowest activity of both antioxidant enzymes. The same bulls also showed the lowest num- ber of sperm with active mitochondria. Our results demonstrate that missense mutation Met468Leu within CFTR gene is associated with antioxidant enzyme activity and mitochondrial function of bovine thawed sperm without affecting their motility.

Go to article

Authors and Affiliations

S. Kaminski
D.M. Hering
W. Kordan
M. Lecewicz
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present study was to determine the concentrations of glutathione (GSH), vitamin C, copper (Cu) and zinc (Zn) in the uterine tissues in diagnosis of canine pyometra. Fourteen samples of uterine tissues from female dogs with pyometra and twelve samples of healthy uteruses (control) were used. The concentrations of GSH and vitamin C were determined in the uterine tissue homogenates using spectrophotometric methods. The concentrations of Cu and Zn were measured using atomic absorption spectrometer. The results obtained showed the significantly lower (p<0.05) concentration of GSH and the trend towards lower concentration of vitamin C in the pyometra samples compared to the control. The concentrations of Cu and Zn were similar in the uterine tissues from female dogs with pyometra and those from healthy female dogs. The lower GSH and vitamin C concentrations in the uterine tissues of female dogs with pyometra indicate that the non-enzymatic antioxidant mechanisms are impaired in the uterus of dogs with pyometra. These findings suggest that the imbalance of oxidative-antioxidative can play an important role in pathogenesis of canine pyometra.

Go to article

Authors and Affiliations

M. Szczubiał
R. Dąbrowski
M. Bochniarz
P. Brodzki
Download PDF Download RIS Download Bibtex

Abstract

In the work, the antioxidant activity of astaxanthin (AST) and the influence of the base formulation on the kinetics of AST release were studied. Three stable O/W AST-loaded emulsions, differing in droplet size (12.7 μm(E1), 3.8 μm(E2), 3.2 μm(E3)) and a nanoemulsion (0.13 μm, NE) were prepared. The results confirmed very strong antioxidant activity of AST. The emulsion internal phase droplet size did not significantly affect the AST release. The amount of released AST was respectively: 13.60% (E1), 11.42% (E2), 9.45% (E3), 9.71% (NE). The best fit to experimental data was obtained using the Higuchi model for emulsions and the Korsmeyer-Peppas model for NE. The results show that the AST release process is limited by the diffusion through carriers and the prepared O/W emulsions can be applied as vehicles for delivery of astaxanthin to the skin, ensuring effective anti-aging action of the cosmetics.
Go to article

Authors and Affiliations

Michał Dymek
1
Elżbieta Sikora
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen sulfide (H2S) regulates many critical processes of plants. The effect of sodium hydrogen sulfide as H2S agent was investigated in basil plants under cadmium stress. A completely randomized design with three different concentrations (0, 50 and 100 μM) of CdCl2 and two levels of NaHS (0 and 100 μM) was used in this study. Cadmium exposure reduced growth parameters and relative water content. Cd also caused a significant increase in ion leakage and higher oxidative stress in terms of lipid peroxidation and H2O2 production. Although exogenous NaHS used in non-stressed control plants negatively affected growth and physiological parameters, it improved the root/shoot length ratio and fresh weight in basil plants under Cd 50 μM exposure. Moreover, NaHS alleviated deleterious effects of cadmium on ion leakage, relative water content and photosynthetic pigments of leaves. The activity of antioxidant enzymes like catalase, peroxidase and ascorbate peroxidase were also enhanced by NaHS in plants under moderate cadmium stress. Our results show that NaHS 50 μM ameliorates growth retardation induced by cadmium 50 μM stress in basil plants, probably through regulating physiological parameters such as photosynthetic pigments content, relative water content and the activity of antioxidant enzymes.

Go to article

Authors and Affiliations

Hakimeh Oloumi
Mansooreh Khodashenas
Download PDF Download RIS Download Bibtex

Abstract

The study was carried out to investigate the interactive effects of exogenous melatonin and excess amounts of zinc and copper on the growth and physiological parameters, antioxidant defense system and nutritional balance of cannabis seedlings. Cannabis sativa L. plants, grown under a completely randomized design, were irrigated with complete Hoagland’s nutrient solution. CuSO 4 (0, 50 and 150 µM) and ZnSO 4 (0, 50 and 100 µM) and their combinations were supplied to 21-day-old seedlings for 2 weeks. During the second week, melatonin was added to the nutrient solution at 100 μM. Zn and Cu stress led to reduced growth and physiological parameters, it promoted oxidative stress, changes in antioxidant enzymes activity and imbalance of mineral nutrients in cannabis seedlings. However, melatonin alleviated the growth retardation and physiological disorders of seedlings under normal conditions and heavy metal stress. The content of reduced glutathione and the activity of antioxidant enzymes such as glutathione reductase and ascorbate peroxidase were improved by melatonin. Excess amounts of zinc and copper changed the pattern of nutritional elements distribution in cannabis seedlings. Cu and Zn caused reduced content of Fe, Ca and K ions in shoots and roots. Melatonin treatment was able to adjust the nutrients content in metal-stressed seedlings up to the level of the control. Exogenous melatonin reduced toxic levels of Cu and Zn in seedlings overloaded with copper and zinc. MT also raised K, Ca and Fe concentrations in roots and shoots of seedlings under stress. Our results support the idea that melatonin acts as a powerful antioxidant, it can also be considered as a potent regulator of ion homeostasis in cannabis seedlings under heavy metal toxicity. Further studies still need to investigate the alleviatory effects of melatonin under field conditions.
Go to article

Authors and Affiliations

Hakimeh Oloumi
1
Ali Zamani
1
Hossein Mozaffari
1
Seyyed Mohammad Javad Arvin
2
Hassan Salari
1

  1. Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
  2. Plant Products Division, Shahid Bahonar University, Kerman, Iran
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to study the polyphenolic composition of Deschampsia antarctica È. Desv. plants grown at natural conditions on different locations on the Galindez Island, Argentine Islands, the maritime Antarctic. The plants were collected during the summer season of the 26th Ukrainian Antarctic Expedition (2020–2022). The extracts of 21 plants were obtained and the composition of the extracts was analyzed by means of high-performance liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry. The antioxidant properties of the extracts were characterized using the DPPH (2,2-diphenyl-1-picrylhydrazyl) test. The extracts were found to contain large amount of polyphenolic compounds, with flavonoids and phenolic acids, as well as their derivatives, being the most common classes of the phenols. Using the HPLC data the content of various phenols in the plants was systematic studied. It has been found that in all plants the most abundant phenols are flavonoids/flavonoid derivatives (on average about 75% of total mass of phenols). Among the flavonoids, luteolin derivatives predominate (86–94% of the total mass of flavonoids), and, among luteolin derivatives, the main compounds are orientin, orientin 2"- O-β-arabinopyranoside and isoswertiajaponin 2"- O-β-arabinopyranoside (67–83% of the total mass of luteolin derivatives). It has been also found that all the extracts possess the high activity in inhibition of DPPH radicals and that the antioxidant activity of the extracts correlates with total content of phenols in the samples. Thus, Deschampsia antarctica É. Desv. plants are a valuable source of natural phenolic antioxidants, and the most common antioxidants in the extracts are orientin, orientin 2"- O-β-arabinopyranoside and isoswertiajaponin 2"- O-β-arabinopyranoside.
Go to article

Authors and Affiliations

Roman Ivannikov
1
ORCID: ORCID
Viktor Anishchenko
2
ORCID: ORCID
Pavlo Kuzema
3
ORCID: ORCID
Oksana Stavinskaya
3
ORCID: ORCID
Iryna Laguta
3
ORCID: ORCID
Oksana Poronnik
4 5
ORCID: ORCID
Ivan Parnikoza
4 5
ORCID: ORCID

  1. M.M. Gryshko National Botanic Garden of the National Academy of Sciences of Ukraine, 1 Timiryazevska Str., 01014, Kyiv, Ukraine
  2. L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine, 50 Kharkivs'ke hwy, 02160, Kyiv, Ukraine
  3. Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine
  4. Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Acad. Zabolotnogo Str., 03143, Kyiv, Ukraine
  5. State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, 16 Shevchenko Ave., 01601, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Duringthe evolution organisms are subjected to the continuous impact of environmental factors. In recent years an increasing number of studies have focused on the physicochemical limits of lifeon Earthsuch as temperature, pressure, drought, salt content, pH, heavy metals, etc. Extreme environmental conditions disrupt the most important interactions that support the function and structure of biomolecules.Forthis reason,organisms inhabiting extreme habitats have recently become of particularlygreat interest. Although filamentous fungi are an important partof the polar ecosystem, information about their distribution and diversity, as well as their adaptation mechanisms, is insufficient. In the present study,the fungal strain Penicillium griseofulvum isolated from an Antarctic soil sample was used as a study model. The fungal cellular response against short term exposure to low temperature was observed. Our results clearly showed that short-term low temperature exposure caused oxidative stress in fungal cells and resulted in enhanced level of oxidative damaged proteins, accumulation of reserve carbohydrates and increased activity of the antioxidant enzyme defence. Ultrastructural changes in cell morphology wereanalysed. Different pattern of cell pathology provoked by the application of two stress temperatures was detected. Overall, this study aimed to observe the survival strategy of filamentous fungi in extremely cold habitats, and to acquire new knowledge about the relationship between low temperature and oxidative stress.
Go to article

Authors and Affiliations

Ekaterina Ts. Krumova
1
Ekaterina K. Koeva
1
Stoyanka R. Stoitsova
1
Tsvetelina S. Paunova-Krasteva
1
Galina D. Stoyancheva
1
Maria B. Angelova
1

  1. The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. G. Bonchev str., 1113 Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

We used DPPH scavenging assays to study the antioxidant activity of three native Polish species of blackberry leaves (Rubus kuleszae Ziel., R. fabrimontanus (Sprib.) Sprib. and R. capitulatus Utsch.). All the studied extracts (methanolic, water, methanolic-water) showed high DPPH free radical scavenging activity (IC50 450.0-186.0 μg/ml). The most effective of the studied species was Rubus kuleszae. Total content of phenolic compounds (70.50-136.04 mg GAE/g) and phenolic acids (14.70-38.26 mg CAE/g) was determined spectrophotometrically. Antioxidant activity correlated positively with total content of phenolic compounds and phenolic acids.

Go to article

Authors and Affiliations

Anna Gawron-Gzella
Marlena Dudek-Makuch
Irena Matławska
Download PDF Download RIS Download Bibtex

Abstract

Hylocereus undatus flower is commonly used as food or for medicinal purposes in south China. To study its antioxidant activity and mechanism we used antioxidant and chemical assays to compare two commercial samples from different locations (Shenjing, Qixing). The difference in antioxidant levels corresponded with differences in chemical content (including total phenolics, total flavonoids, kaempferol and quercetin) between Shenjing and Qixing. The antioxidant ability of H. undatus flower seems attributable to total phenolics (mainly total flavonoids). Kaempferol is one of the main bioactive components. H. undatus flower exerts its antioxidant effects through metal chelation and radical scavenging via hydrogen atom (H•) and electron (e) donation.

Go to article

Authors and Affiliations

Xican Li
Yaoxiang Gao
Weijuan Han
Jing Lin
Qiuping Hu
Dongfeng Chen
Download PDF Download RIS Download Bibtex

Abstract

We investigated the antioxidant defense mechanism, metal uptake and lipid peroxidation (LPO) levels at different leaf positions in Mentha piperita L. grown in Mn2+-deficient and control conditions. Under manganese deficiency the activity of superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GuaPOX) and the content of ascorbate, chlorophyll, and carotenoid under Mn2+ deficiency were significantly lower than in the control for all leaf positions. SOD activity correlated positively with Mn2+ uptake. Fe2+ uptake was inhibited by Mn2+ deficiency. During early stages of Mn2+ deficiency, M. piperita leaves showed relatively more antioxidant activity and lower LPO. Towards the final stages of the treatment period, comparatively lower SOD, CAT and GuaPOX activity and higher LPO levels accelerated the senescence process.

Go to article

Authors and Affiliations

Nilgün Candan
Leman Tarhan

This page uses 'cookies'. Learn more