Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The MEMS inclinometer integrates a tri-axis accelerometer and a tri-axis gyroscope to solve the perceived dynamic inclinations through a complex data fusion algorithm, which has been widely used in the fields of industrial, aerospace, and monitoring. In order to ensure the validity of the measurement results of MEMS inclinometers, it is necessary to determine their dynamic performance parameters. This study proposes a conical motion-based MEMS inclinometer dynamic testing method, and the motion includes the classical conical motion, the attitude conical motion, and the dual-frequency conical motion. Both the frequency response and drift angle of MEMS inclinometers can be determined. Experimental results show that the conical motions can accelerate the angle drift of MEMS inclinometers, which makes them suitable for dynamic testing ofMEMSinclinometers. Additionally, the tilt sensitivity deviation of theMEMS inclinometer by the proposed method and the turntable-based method is less than 0.26 dB.We further provide the research for angle drift and provide discussion.
Go to article

Authors and Affiliations

Qihang Yang
1
Chenguang Cai
2
Ming Yang
3
Ming Kong
1
Zhihua Liu
2
Feng Liang
4

  1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  2. National Institute of Metrology of China, Beijing 100013, China
  3. College of Electrical Engineering, Guizhou University, Guiyang 550025, China
  4. Shenyang Aircraft Corporation, Shenyang 110031, China
Download PDF Download RIS Download Bibtex

Abstract

In order to study the change in performance of the Suifenhe cable-stayed bridge in China over 12 years, cable force, elevation, static and dynamic load tests were conducted in 2006 and 2018, respectively. In this paper, theoretical data, obtained through finite element model analysis, were compared with the measured load test data for changes in static and dynamic performances. A comparison between 2006 and 2018 shows that additional dead load deflection exists in the main span after 12 years of operation. And that the cable force due to dead load of the full-scale cable-stayed bridge decreases and redistributes, which have adverse effects on the safety of bridge structure after long-term operations. Therefore, on-site inspection, static and dynamic load tests are reco mmended for cable-stayed bridges over 10-years old to test their static and dynamic performance. Moreover, cable force adjustments are to be conducted whenever necessary for the cable-stayed bridge used swivel construction.
Go to article

Authors and Affiliations

Meng Liu
1
ORCID: ORCID
Quansheng Sun
1
ORCID: ORCID
Haitao Yu
1
ORCID: ORCID
Jianxi Yang
1
ORCID: ORCID
Tongzhou Zhang
1
ORCID: ORCID

  1. School of Civil Engineering, Northeast Forestry University, 150040 Harbin, China
Download PDF Download RIS Download Bibtex

Abstract

The paper includes experimental research using the Split Hopkinson Pressure Bar to determine dynamic compression curves and strength dynamic parameters to depend on the strain rate and moisture for silty sand soil samples. Those experiments are oedometric type based in a rigid confining cylinder. Samples of silty sand with fine a fraction content were taken for the study. To ensure sufficiently uniaxial strain of the tested material, the soil samples were placed in properly prepared casings made of duralumin for the needs of the tests. Thanks to the use of measuring strain gauges on the initiating and transmitting bars, as well as the casing, the nature of the loading pulse was obtained, which was then subjected to the process of filtration and data processing to obtain the nature of the incident, reflected and transmitted wave. During the above dynamic experiments with the representative of silty sand soils, it was observed that its dynamic compaction at a high strain rate is different than in the case of the Proctor test. This is due to higher compaction energy, which additionally changes the grain size by destroying the grains in the structure. The paper presents the results of particle size distribution analysis for two different types of soil samples - this type of analysis is unique. Hence experiments should be further continued for such soils with different granulations and various moisture using, for example, Hopkinson measuring bar technique to confirm for other silty sand soils that are often subgrade of various engineering objects.
Go to article

Authors and Affiliations

Ryszard Chmielewski
1
ORCID: ORCID
Leopold Kruszka
1
ORCID: ORCID
Ryszard Rekucki
1
Kamil Sobczyk
1

  1. Military University of Technology, Dept. of Military Engineering and Military Infrastructure, 2 Gen. Sylwester Kaliski Str., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more