Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was initial modification of the construction of a commercially produced heat exchanger – recuperator with CFD (computational fluid dynamics) methods, based on designs and process parameters which were provided. Uniformity of gas distribution in the space between the tubes of the apparatus as well as the pressure drop in it were taken as modification criteria. Uniformity of the gas velocity field between the tubes of the heat exchanger should cause equalization of the local individual heat transfer coefficient values and temperature value. Changes of the apparatus construction which do not worsen work conditions of the equipment, but cause savings of constructional materials (elimination or shortening some parts of the apparatus) were taken into consideration.

Go to article

Authors and Affiliations

Wojciech Ludwig
Daniel Zając
Download PDF Download RIS Download Bibtex

Abstract

Electrostatic prccipitators (ESP) arc the most commonly used devices for gas cleaning in the power industry. From the beginning of ESP usage on a commercial scale, it has been said that all swirls and turbulences should be eliminated from the gas flow, approaching uniform gas distribution in an ESP chamber. Application of CFO (Computer Fluid Dynamics) methods in electrostatic precipitation caused radical changes in views on the role of the gas flow. Series of non-uniform gas flows was then indicated, causing an increase in ESP efficiency. This paper is a review of the gas flow distributions used in ESP and their influence on ESP efficiency. The results of computer analysis presented in this paper show that diversification of gas velocity in the ESP chamber leads to efficiency improvement for shorter zones; however, for longer zones it causes an efficiency drop. The efficiency raise owing to diversification of gas flow profile is a consequence of exponential gas velocity - efficiency dependence.
Go to article

Authors and Affiliations

Beata Sładkowska-Rybka
Marian Sarna
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses thermodynamic phenomena accompanying the flow of gas in a slotted seal. The analysis of the gas flow has been described based on an irreversible adiabatic transformation. A model based on the equation of total enthalpy balance has been proposed. The iterative process of the model aims at obtaining such a gas temperature distribution that will fulfill the continuity equation. The model allows for dissipation of the kinetic energy into friction heat by making use of the Blasius equation to determine the friction coefficient. Within the works, experimental research has been performed of the gas flow in a slotted seal of slot height 2 mm. Based on the experimental data, the equation of local friction coefficient was modified with a correction parameter. This parameter was described with the function of pressure ratio to obtain a mass flow of the value from the experiment. The reason for taking up of this problem is the absence of high accuracy models for calculating the gas flow in slotted seals. The proposed model allows an accurate determination of the mass flow in a slotted seal based on the geometry and gas initial and final parameters.

Go to article

Authors and Affiliations

Damian Joachimiak
Piotr Krzyślak
Download PDF Download RIS Download Bibtex

Abstract

An optical tomograph in which a tested object is illuminated from five directions has been presented in the paper. The measurements of luminous intensity after changing into discrete signals (0 or 1) in the detectors equipped with 64 optical sensors were subjected to reconstruction by means of the matrix algorithm. Detailed description of the measuring sensor, as well as the principles of operation of the electronic system, has been given in the paper. Optical phenomena occurring at the phase boundary while transmitted through the sensor wall and phenomena inside the measuring space have also been taken into account. The method of the sensor calibration has been analysed and a way of technical solution of the problem under consideration has been discussed. The elaborated method has been tested using objects of the known shape and dimensions. It was found that reconstruction of the shapes of moving bubbles and determination of their main parameters is also possible with a reasonable accuracy.

Go to article

Authors and Affiliations

Mariusz R. Rząsa
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a soft sensing method of least squares support vector machine (LS-SVM) using temperature time series for gas flow measurements. A heater unit has been installed on the external wall of a pipeline to generate heat pulses. Dynamic temperature signals have been collected upstream of the heater unit. The temperature time series are the main secondary variables of soft sensing technique for estimating the flow rate. A LS-SVM model is proposed to construct a non-linear relation between the flow rate and temperature time series. To select its inputs, parameters of the measurement system are divided into three categories: blind, invalid and secondary variables. Then the kernel function parameters are optimized to improve estimation accuracy. The experiments have been conducted both in the single-pulse and multiple-pulse heating modes. The results show that estimations are acceptable.
Go to article

Authors and Affiliations

Weiqing Xu
Zichuan Fan
Maolin Cai
Yan Shi
Xiaomeng Tong
Junpeng Sun

This page uses 'cookies'. Learn more