Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The issue of air pollution, resulting to a large extent from the use of fossil fuels for energy purposes, is one of the most serious environmental threats in several Polish cities, but also outside of them. The amount of pollutants emitted into the atmosphere translates into the living conditions of the inhabitants. The utilization of geothermal energy, which is a renewable and ecological source of energy, brings noticeable improvement in the quality of atmospheric air, as evidenced by significant ecological effects achieved by working geothermal district heating plants. The paper presents results of comprehensive considerations focused on assessing the effects of utilization of geothermal water and energy in Poland. Issues related to the implementation of exploration works aimed at acquiring geothermal water resources, as well as environmental aspects of the use of geothermal waters and energy were discussed. The undertaken considerations have been directed at assessing whether the use of such a kind of renewable energy resources could have an impact on improving the living conditions of the local community.

Go to article

Authors and Affiliations

Anna Sowiżdżał
Anna Chmielowska
Barbara Tomaszewska
Agnieszka Operacz
Józef Chowaniec
Download PDF Download RIS Download Bibtex

Abstract

Poland belongs to the countries with limited waters intended for drinking resources. To meet this problem, the Management Board of Geotermia Mazowiecka SA carries out activities to determine the possibilities of using exploited geothermal waters other than energy purposes. In addition to energy, the geothermal water is used for recreation and balneotherapy in “Termy Mszczonów” and for the production of drinking water for the local water supply system. Some water needs to be discharged into surface watercourses due to a lack of coherence of heating and water supply needs. For recognizing this problem innovative research project entitled: “The development of a method for injecting after energy-used geothermal waters into selected geological structures” was prepared and implemented as part of the Regional Operational Program of the Mazowieckie Voivodship for 2014–2020 (Priority Axis: Research and development activities of enterprises). This project has resulted in the launch of the installation pumping excess water to the quaternary sandy leyer. Based on the results from the first year of operation of the project, it can be assumed that it is possible to achieve nearly 100% reduction of water discharge and, consequently, the full use of producted geothermal waters. In summary, it can be stated that the geothermal plant in Mszczonów is a unique installation not only on the Polish but also international scale. The proof of this is not only the scale of rational use of water for energy purposes (cooling from 41°C to about 17°C), but also their development in other areas, for example in “Termy Mszczonów” and for the production of waters intended for drinking. The article presents the results of the first year (2019) of operation of the water injection system. During this period, in cooled water discharged into surface watercourse nearly 50% reduction was achieved.

Go to article

Authors and Affiliations

Wiesław Bujakowski
ORCID: ORCID
Bogusław Bielec
ORCID: ORCID
Marek Balcer
Download PDF Download RIS Download Bibtex

Abstract

The insurance funds belong to efficient measures mitigating risks in geothermal projects, including resource risk. They already exist in some European countries, e.g., France, the Netherlands, Turkey. Recently, the proposals of establishing such funds were elaborated for three countries: Greece, Hungary, and Poland within the framework of the EU-funded project “Developing geothermal and renewable energy projects by mitigating their risks”, GEORISK (www.georisk-project.eu).
A 10 year operational and financial simulation of the proposed public insurance funds was conducted to prove their sustainability in each of three listed states. It started with the determination of the country-specific premises. The numbers of projects in the next 10 years possible to be covered by funds were assumed by the authors on the bases of realistic estimations.
The initial capital, the fixed costs, the costs of the project evaluation, the premium fees paid by the investors, the payment for the unsuccessful projects altogether were taken into account. The first draft simulation was done with the exact Hungarian assumptions and inputs of fixed costs and also with average project data, thus making it appropriate to perform sensitivity analyses on: insurance premiums, success rates and the risk coverages. Then, complete simulations were made for three listed countries.
The results of the simulation show that a resource risk insurance fund can be a sustainable and an effective measure to support geothermal energy sector development. During the planning of a new fund, it is important to make use of long experiences both of the former and existing funds.
Go to article

Bibliography

Boissavy, C. 2017. The successful geothermal risk mitigation system in France from 1980 to 2015. European Geologist Magazine. Geothermal – The Energy of the Future. Science & Technology. [Online] https://titra24.com/old/8/science-technology-special-edition-of-european-geologist-magazine-on-geothermal-energy [Accessed: 2021-07-04].

Boissavy, C. and Grière, O. 2017. The history and detailed results for the short and long term guarantee system for geothermal heating operations using deep aquifers set up in France in the early 1980’s. Report ADEME, March 2017. AFGP Archive.

Dumas et al. 2019 – Dumas, P., Garabetian, T., Le Guénan, T., Kępińska, B., Kasztelewicz, A., Karytsas, S., Siddiqi, G., Lupi, N., Seyidov, F., Nador, A., Kaufhold, J., Boissavy, C., Yildirim, C., Bozkurt, C., Kujbus, A., Spyridonos, E., Oztekin, R. and Link, K. 2019. Risk mitigation and insurance schemes adapted to geothermal market maturity: the right cheme for my market. Proceedings, European Geothermal Congress 2019. The Hague, The Netherlands. [Online] https://www.researchgate.net/publication/333977809_Risk_Mitigation_ and_Insurance_Schemes_Adapted_to_Geothermal_Market_Maturity_The_Right_Scheme_for_my_Market [Accessed: 2021-07-04].

Dziadzio et al. 2020 – Dziadzio, P., Maj, J., Jerzak, M., Ofiara K., Bąk, D. and Kuś, B. 2020. Geothermal energy in Poland : development stimulated by the geological subfund of the National Fund for Environmental Protection and Water Management (Geotermia w Polsce: rozwój stymulowany przez środki subfunduszu geologicznego Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej). Przegląd Geologiczny 68(3), pp. 151–155 (in Polish).

Heijnen et al. 2015 – Heijnen, L., Rijkers, R. and Gussinklo, O.R. 2015. Management of geological and drilling risks of geothermal projects in the Netherlands. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015.

Karytsas et al. 2019 – Karytsas, S., Polyzou, O. and Karytsas, C. 2019. Social aspects of geothermal energy in Greece. Geothermal Energy and Society, pp. 123–144. Springer, Cham.

Kępińska et al. 2021 – Kępińska, B., Kasztelewicz, A. and Miecznik, M. 2021. Updated version mounted. Activities for geothermal risk insurance fund projects in Poland (Zaktualizowana propozycja końcowa. Działania dla ustanowienia w Polsce funduszu ubezpieczenia od ryzyka w projektach geotermalnych). Materiały na Warsztaty krajowe w Polsce. Runda 3. 24.02.2021. WP4.2. Projekt GEORISK (in Polish). Arch. GEORISK project.

Mendrinos et al. 2010 – Mendrinos, D., Choropanitis, I., Polyzou, O. and Karytsas, C. 2010. Exploring for geothermal resources in Greece. Geothermics 39(1), pp. 124–137.

2020 EGEC Geothermal Market Report. Key findings. [Online] www.egec.org [Accessed: 2021-07-04].

2020 EGEC Geothermal Market Report. 2021. [Online] www.egec.org [Accessed: 2021-07-04].

[Online] www.egec.org [Accessed: 2021-07-04].

[Online] www.egec.org/policy-documents/joint-letter-for-an-eu-wide-renewable-risk-mitigation-scheme

[Online] www.georisk-project.eu [Accessed: 2021-07-04].

[Online] www.nfosigw.gov.pl [Accessed: 2021-07-04].
Go to article

Authors and Affiliations

Beata Kępińska
1
ORCID: ORCID
Attila Kujbus
2
Spirydon Karytsas
3
Christian Boissavy
4
Dimitrios Mendrinos
3
Constantine Karytsas
3
Aleksandra Kasztelewicz
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
  2. Geothermal Express Ltd., Budapest, Hungary
  3. Center for Renewable Energy Sources and Saving, Pikermi, Greece
  4. GEODEEP, Paris, France
Download PDF Download RIS Download Bibtex

Abstract

Geothermal waters are a source of clean energy. They should be used in a rational manner especially in energyand economic terms.

Key factors that determine the conditions in which geothermal waters are used, the amount of energy obtainedand the manner in which cooled water is utilised include water salinity. Elevated salinity levels and the presence oftoxic microelements may often lead to difficulties related to the utilisation of spent waters. Only a few Polishgeothermal facilities operate in a closed system, where the water is injected back into the formation after havingbeen used. Open (with water dumped into surface waterways or sewerage systems) or mixed (only part of the wateris re-injected into the formation via absorption wells while the rest is dumped into rivers) arrangements are morefrequently used. In certain circumstances, the use of desalinated geothermal water may constitute an alternativeenabling local needs for fresh water to be met (e.g. drinking water).

The assessment of the feasibility of implementing the water desalination process on an industrial scale islargely dependent on the method and possibility of disposing of, or utilising, the concentrate. Due to environmentalconsiderations, injecting the concentrate back into the formation is the preferable solution. The energy efficiency and economic analysis conducted demonstrated that the cost effectiveness of implementing the desalinationprocess in a geothermal system on an industrial scale largely depends on the factors related to its operation,including without limitation the amount of geothermal water extracted, water salinity, the absorption parameters ofthe wells used to inject water back into the formation, the scale of problems related to the disposal of cooled water,local demand for drinking and household water, etc. The decrease in the pressure required to inject water into theformation as well as the reduction in the stream of the water injected are among the key cost-effectiveness factors.Ensuring favourable desalinated water sale terms (price/quantity) is also a very important consideration owing tothe electrical power required to conduct the desalination process

Go to article

Authors and Affiliations

Barbara Tomaszewska
ORCID: ORCID
Leszek Pająk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the thermodynamic investigation on the use of geothermal water (130°C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.
Go to article

Authors and Affiliations

Yan-Na Liu
Song Xiao
Download PDF Download RIS Download Bibtex

Abstract

When identifying the conditions required for the sustainable and long-term exploitation of geothermal resources it is very important to assess the dynamics of processes linked to the formation, migration and deposition of particles in geothermal systems. Such particles often cause clogging and damage to the boreholes and source reservoirs. Solid particles: products of corrosion processes, secondary precipitation from geothermal water or particles from the rock formations holding the source reservoir, may settle in the surface installations and lead to clogging of the injection wells. The paper proposes a mathematical model for changes in the absorbance index and the water injection pressure required over time. This was determined from the operating conditions for a model system consisting of a doublet of geothermal wells (extraction and injection well) and using the water occurring in Liassic sandstone structures in the Polish Lowland. Calculations were based on real data and conditions found in the Skierniewice GT-2 source reservoir intake. The main product of secondary mineral precipitation is calcium carbonate in the form of aragonite and calcite. It has been demonstrated that clogging of the active zone causes a particularly high surge in injection pressure during the fi rst 24 hours of pumping. In subsequent hours, pressure increases are close to linear and gradually grow to a level of ~2.2 MPa after 120 hours. The absorbance index decreases at a particularly fast rate during the fi rst six hours (Figure 4). Over the period of time analysed, its value decreases from over 42 to approximately 18 m3/h/MPa after 120 hours from initiation of the injection. These estimated results have been confi rmed in practice by real-life investigation of an injection well. The absorbance index recorded during the hydrodynamic tests decreased to approximately 20 m3/h/MPa after 120 hours.
Go to article

Authors and Affiliations

Barbara Tomaszewska
Leszek Pająk
Download PDF Download RIS Download Bibtex

Abstract

Compared to other European countries, Poland has scarce drinking water resources and exhibits

significant variation in annual runoff. On the other hand, the geothermal water resources present in sedimentary/structural basins, mostly in the Polish Lowlands and the Podhale geothermal system, not only provide a

valuable source of renewable energy, which is utilized, although only to a limited extent, but can also be used

for many other purposes. The paper presents the results of studies related to the desalination of low dissolved

mineral content geothermal waters from the Bańska IG-1 well using a dual hybrid system based on ultrafiltration and reverse osmosis. The desalination of geothermal waters may be considered a possible solution leading

to the decentralization of drinking water supply. In many cases, using cooled waters for drinking purposes may

be considered an alternative method of disposing of them, in particular for open drain arrangements, i.e. where

cooled water is dumped into surface waters.

Go to article

Authors and Affiliations

B. Tomaszewska
Download PDF Download RIS Download Bibtex

Abstract

Direct applications in agriculture are among the most prospective development lines of geothermal water and energy. In many countries such uses have already been ongoing. Poland also has suitable natural conditions and geothermal waters’ potential for agricultural development as well as for applications related to agriculture. Moreover, such applications in agriculture – if taking place after earlier use of geothermal waters e.g. for energetic or other purposes – would be the realization of the idea of the closed cycle economy. The first research and development works on geothermal waters and energy applications in agriculture in Poland were carried out in the early 1990s. In recent years this subject has once again sparked a growing interest. The paper presents geothermal water resources potential as well as circumstances, rationale, selected relevant estimations and proposed zones in the country for their uses (as raw material and heat source) in the agricultural sector of the country. The use of geothermal waters in agriculture would be an important element in the chain of agricultural production and agri-food processing, contributing to the increase in the use of locally available natural resources, as well as reducing emissions when using these resources for energetic purposes. The topic is presented against the background of a brief review of the state of geothermal water applications in agriculture in the world and in Europe, which convinces the legitimacy and need for the development of such use of geothermal water as a raw material for agriculture also in Poland.

Go to article

Authors and Affiliations

Robert Skrzypczak
Beata Kępińska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5°C with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40°C, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

Go to article

Authors and Affiliations

Robert Sekret
Anna Nitkiewicz
Download PDF Download RIS Download Bibtex

Abstract

M embrane-based water desalination processes and hybrid technologies are often considered as a technologically and economically viable alternative for desalination of geothermal waters. This has been confirmed by the results of pilot studies concerning the UF-RO desalination of geothermal waters extracted from various geological structures in Poland. The assessment of the feasibility of implementing the water desalination process analysed on an industrial scale is largely dependent on the method and possibility of disposing or utilising the concentrate. The analyses conducted in this respect have demonstrated that it is possible to use the solution obtained as a balneological product owing to its elevated metasilicic acid, fluorides and iodides ions content. Due to environmental considerations, injecting the concentrate back into the formation is the preferable solution. The energy efficiency and economic analysis conducted demonstrated that the cost effectiveness of implementing the UF-RO process in a geothermal system on an industrial scale largely depends on the factors related to its operation, including without limitation the amount of geothermal water extracted, water salinity, the absorption parameters of the wells used to inject water back into the formation, the scale of problems related to the disposal of cooled water, local demand for drinking and household water, etc. The decrease in the pressure required to inject water into the formation as well as the reduction in the stream of the water injected are among the key cost-effectiveness factors. Ensuring favourable desalinated water sale terms (price/quantity) is also a very important consideration owing to the electrical power required to conduct the UF-RO process.
Go to article

Authors and Affiliations

Michał Bodzek
Barbara Tomaszewska
Leszek Pająk
Download PDF Download RIS Download Bibtex

Abstract

Geothermal energy is renewable and clean. Moreover, new geothermal technology offers the added environmental benefit of geological storage of CO2.
Go to article

Authors and Affiliations

Anna Sowiżdżał
1

  1. AGH University of Science and Technology in Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to indicate the variability range of parameter values describing the geomechanical properties of Carboniferous rocks depending on the moisture content of the laboratory sample. We assumed that the moisture content in the tested rock samples corresponds to various water saturation states in the rock mass. The states could be caused by complete and long-term drainage, water inflow, or the position of the rock sample to the ventilation ducts or the water table in flooded mine workings. In line with this assumption, measurements were made on samples of accompanying rock using two water saturation states of rock pores – moisture of samples, i.e., air-dried and capillary saturation states. Laboratory surveys were also made for the state of moisture of the coals obtained in the process of immersion of the sample in water. The air-dried state of rocks as standard in geomechanical tests in laboratories was compared with the surroundings of mining excavations, mostly ventilated ones, located within a long-term preserved depression cone, especially in hydrogeological covered areas. We used the capillary saturation state to demonstrate significant changes in the values of basic geomechanical parameters under the influence of the water from the surface and higher aquifers, circulating in the rock mass near groundwater reservoirs. Capillary saturation was the closest to natural moisture in the rock mass drained from free water. The coefficient of changes in the geomechanical properties of rocks associated with the change in moisture content and the transition of rocks from the air-dried state to the capillary saturation state was determined. The parameter was suitable for simulating probable changes in the values of geomechanical parameters of rocks and approximating the laboratory moisture content to the conditions occurring in the rock mass. Linear relationships were also developed with very good or good, and sometimes satisfactory coefficient determinations.
Go to article

Authors and Affiliations

Mirosława Bukowska
1
ORCID: ORCID
Przemysław Bukowski
1
ORCID: ORCID

  1. GIG Research Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented work was an attempt to verify the geothermal conditions in the Polish Lowlands (Lower Jurassic and Lower Cretaceous reservoir) based on new geological information. The paper presents geothermal conditions in the Polish Lowlands according to the state of recognition at the end of 2022 in order to update the hydrogeothermal conditions in selected regions. Based on the scientific and research works published so far as well as numerous geothermal investments, and geological information from twenty-three new exploratory drilling events performed in the years 2000–2022 (nineteen of which were performed/documented after 2006), the authors undertook to update forecasts of the top surface of Lower Jurassic and Lower Cretaceous formations, the total thickness of these formations and the potential discharge of wells. The analysis was performed using the QGIS Desktop 3.24.1 software, a cross-platform and free open-source geoinformation software application (GIS ) that enables the viewing, editing and analyzing of spatial data and the creation of maps. The correction covered the course of the isolines on all six analyzed maps. The presented analysis made it possible to make a spot correction of the forecasted course of the isoline in relation to the maps published earlier in the Atlas of geothermal resources in the Polish Lowlands. Mesozoic formations developed in 2006, edited by Wojciech Górecki. Information obtained from newly drilled geothermal boreholes enabled the local correction of the forecasted values of individual parameters while maintaining the general trend.
Go to article

Authors and Affiliations

Wiesław Bujakowski
1
ORCID: ORCID
Piotr Zacharski
2
Bogusław Bielec
1
ORCID: ORCID
Magdalena Tyszer
1
ORCID: ORCID
Karol Pierzchała
1
Barbara Tomaszewska
3 1
ORCID: ORCID
Leszek Pająk
3 1
ORCID: ORCID
Beata Kępińska
1
ORCID: ORCID
Krystian Szczepański
2

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
  2. Institute of Environmental Protection – National Research Institute, Warszawa, Poland
  3. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The current task explores automatic generation control knowledge under old-style circumstances for a triple-arena scheme. Sources in area-1 are thermal-solar thermal (ST); thermalgeothermal power plant (GPP) in area-2 and thermal-hydro in area-3. An original endeavour has been set out to execute a new performance index named hybrid peak area integral squared error (HPA-ISE) and two-stage controller with amalgamation of proportional-integral and fractional order proportional-derivative, hence named as PI(FOPD). The performance of PI(FOPD) has been compared with varied controllers like proportional-integral (PI), proportional-integralderivative (PID). Various investigation express excellency of PI(FOPD) controller over other controller from outlook regarding lessened level of peak anomalies and time duration for settling. Thus, PI(FOPD) controller’s excellent performance is stated when comparison is undergone for a three-area basic thermal system. The above said controller’s gains and related parameters are developed by the aid of Artificial Rabbit Optimization (ARO). Also, studies with HPA-ISE enhances system dynamics over ISE. Moreover, a study on various area capacity ratios (ACR) suggests that high ACR shows better dynamics. The basic thermal system is united with renewable sources ST in area-1 also GPP in area-2. Also, hydro unit is installed in area-3. The performance of this new combination of system is compared with the basic thermal system using PI(FOPD) controller. It is detected that dynamic presentation of new system is improved. Action in existence of redox flow battery is also examined which provides with noteworthy outcome. PI(FOPD) parameters values at nominal condition are appropriate for higher value of disturbance without need for optimization.
Go to article

Authors and Affiliations

Arindita Saha
1
Tirumalasetty Chiranjeevi
2
Ramesh Devarapalli
3
ORCID: ORCID
Naladi Ram Babu
4
Puja Dash
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, RegentEducation & Research Foundation Group of Institutions, Kolkata, West Bengal, India
  2. Department of ElectricalEngineering, Rajkiya Engineering College Sonbhadra, U.P., India
  3. Institute of Chemical Technology, IndianOil Odisha Campus, Bhubaneswar, India
  4. Department of Electrical & Electronics Engineering,Aditya Engineering College, Surampalem, Andhra Pradesh, India
  5. Department of Electrical and Electronics Engineering,Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh,India
  6. Ingenium ResearchGroup, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

The paper presents precipitation results from cold thermal water deposits that are the main cause of clogging in absorbent geothermal wells and borehole areas. As a result of physical and chemical analysis, laboratory tests and observation of the operation of a geothermal installation, a new method was developed to prevent the precipitation of sludge from cooled thermal water. The method being a modification of soft acidising was tentatively named as a super soft acidising method

Go to article

Authors and Affiliations

Bogdan Noga
Jan Marjanowski
Henryk Biernat
Stanisław Kulik
Bogusław Zieliński
Arkadiusz Nalikowski
Download PDF Download RIS Download Bibtex

Abstract

The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger) is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

The paper presents a model of thermal and flow processes in BHE consisting of two analytical models separately-handling processes occurring inside and outside of borehole. A quasi-three-dimensional model formulated by Zeng was used for modelling processes taking place inside the borehole and allowing to determine the temperature of the fluid in the U-tube along the axis of BHE. For modelling processes occurring outside the borehole a model that uses the theory of linear heat source was selected. The coupling parameters for the models are the temperature of the sealing material on the outer wall of the borehole and the average heat flow rate in BHE. Experimental verification of the proposed model was shown in relation to BHE cooperating with a heat pump in real conditions.

Go to article

Authors and Affiliations

Sebastian Pater
Włodzimierz Ciesielczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the experimental investigation of an earthto- air heat exchanger for heating purposes in the Patna region of India, using an experimental test rig. In the view of the author, real field experiments have several limitations such as lack of repeatability and uncontrolled conditions. It also takes more time for the response of parameters that depends on nature and climate. Moreover, earth-to-air heat exchangers may be expensive to fabricate and require more land area. Thus, in this work authors executed their experimental work in indoor controllable environments to investigate the thermal performance of an earth-to-air heat exchanger. The actual soil conditions were created and maintained the temperature at 26˚C throughout the soil in the vicinity of pipes. Three horizontal PVC pipes of equal lengths and diameters of 0.0285 m, 0.038 m and 0.0485 m were installed in the test rig. The experiments were performed for different inlet air velocities at ambient air temperature. This study acknowledges that the maximum rise in outlet temperature occurs at a lower speed for smaller pipes. Also, the maximum effectiveness of 0.83 was observed at 2 m/s for the smallest diameter pipe.
Go to article

Bibliography

[1] Uddin M.S., Ahmed R., Rahman M.: Performance evaluation and life cycle analysis of earth to air heat exchanger in a developing country. Energy Build. 128(2016), 254–261.
[2] Yusof T.M., Anuar S., Ibrahim H.: A review of ground heat exchangers for cooling application in the Malaysian climate. J. Mech. Eng. Sci. 8(2015), 1426–1439.
[3] Bisoniya T.S., Kumar A., Baredar P.: Heating potential evaluation of earth-air heat exchanger system for winter season. J. Build. Phys. 39(2015), 3, 242–260.
[4] Sehli A., Hasni A., Tamali M.: The potential of earth-air heat exchangers for low energy cooling of buildings in South Algeria. Energy Proced. 18(2012), 496–506.
[5] D’Agostino D., Marino C., Minichiello F.: Earth-to-air versus air-to-air heat exchangers: A numerical study on the energetic, economic, and environmental performances for Italian office buildings. Heat Transf. Eng. 41(2020), 12, 1040–1051.
[6] Benrachi N., Ouzzane M., Smaili A., Lamarche L., Badache M., Maref W.: Numerical parametric study of a new earth-air heat exchanger configuration designed for hot and arid climates. Int. J. Green Energy 17(2020), 2, 115–126.
[7] Abbaspour-Fard M.H., Gholami A., Khojastehpour M.: Evaluation of an earth-to-air heat exchanger for the north-east of Iran with semi-arid climate. Int. J. Green Energy 8(2011), 4, 499–510.
[8] Lin J., Nowamooz H., Braymand S.,Wolff P., Fond C.: Impact of soil moisture on the long-term energy performance of an earth-air heat exchanger system. Renew. Energy 147(2018), 2, 2676–2687.
[9] Agrawal K.K., Yadav T., Misra R., Agrawal G.D.: Effect of soil moisture contents on thermal performance of earth-air-pipe heat exchanger for winter heating in arid climate: In situ measurement. Geothermics 77 (2019), 12–23
[10] Abu-Hamdeh N.H.: Thermal properties of soils as affected by density and water content. Biosyst. Eng. 86(2003), 1, 97–102.
[11] Balghouthi M., Kooli S., Farhat A., Daghari H., Belghith A.: Experimental investigation of thermal and moisture behaviors of wet and dry soils with buried capillary heating system. Sol. Energy 79(2005), 6, 669–681.
[12] Mihalakakou G., Santamouris M., Asimakopoulos D.: Use of the ground for heat dissipation. Energy. 19(1994), 17–25.
[13] Gan G.: Simulation of dynamic interactions of the earth–air heat exchanger with soil and atmosphere for preheating of ventilation air. Appl. Energy 158(2015), 118–132.
[14] Abu-Hamdeh N.H., Reederb R.C.: Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 64(2000), 1285–1290.
[15] Mei V.C.: Effect of backfilling material on ground coil performance. In: Proc. Ann. meeting of the ASHRAE, Nashville, 28 Jun, 1987, Oak Ridge Nat. Lab. 1987.
[16] Shojaee S.M.N., Malek K.: Earth-to-air heat exchangers cooling evaluation for different climates of Iran. Sustain. Energy Technol. Assess. 23(2017), 111–120.
[17] Mathur A., Srivastava A., Agrawal G.D., Mathur S., Mathur J.: CFD analysis of EATHE system under transient conditions for intermittent operation. Energy Build. 87(2015), 37–44.
[18] Serageldin A.A., Abdelrahman A.K., Ookawara S.: Earth-air heat exchanger thermal performance in Egyptian conditions: experimental results, mathematical model, and computational fluid dynamics simulation. Energy Convers. Manage. 122(2016), 25–38.
[19] Ahmad Sn., Prakash O.: Optimization of earth air tube heat exchanger for cooling application using Taguchi technique. Int. J. Heat Technol. 38(2020), 4, 854–862.
[20] Vargas J.V.C., Ordonez. J.C., Zamfirescu C., Campos M.C., Bejan A.: Optimal ground tube length for cooling of electronics shelters. Heat Transf. Eng. 26(2005), 10, 8–20.
[21] Ahmad S.N., Prakash O.: Optimization of ground heat exchanger of the ground source heat pump system based on exergetic analysis using Taguchi technique. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. 235(2021), 21, 5892–5901.
[22] Gao J., Li A., Xu X., Gang W., Yan T.: Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings. Renew. Energy 128(2018), 337–349.
[23] Ahmad S.N., Prakash O.: A review on pre-installing investigations of earth air tube heat exchanger (EATHE). In Advances in Industrial Automation and Smart Manufacturing (A. Arockiarajan, M. Duraiselvam, Ramesh Raju, Eds.). Springer, Singapore 2020, 225–232.
[24] Yassine B., Ghali K., Ghaddar N., Chehab G., Srour I.: Effectiveness of the earth tube heat exchanger system coupled to a space model in achieving thermal comfort in rural areas. Int. J. Sustain. Energy 33(2014), 3, 567–586.
[25] Qi D., Li S., Zhao C., Xie W., Li A.: Structural optimization of multi-pipe earth to air heat exchanger in greenhouse. Geothermics 98(2022), 102288.
[26] Amanowicz A.: Influence of geometrical parameters on the flow characterictics of multi-pipe earth-to-air heat exchangers- experimental and CFD investigations. Appl. Energy 226(2018), 849–861.
[27] Amanowicz L., Wojtkowiak J.: Comparison of single- and multipipe earth-to-air heat exchangers in terms of energy gains and electricity consumption: A case study for the temperate climate of central europe. Energies 14(2021), 8217, 1–28.
[28] Hasan M.I., Noori S.W., Shkarah A.J.: Parametric study on the performance of the earth to air heat exchanger for cooling and heating applications. Heat Transf. – Asian Res. 48(2019), 4, 1805–1829.
[29] Wu H., Wang S., Zhu D.: Modelling and evaluation of cooling capacity of earthair- pipe systems. Energy Convers. Manage. 48(2007), 1462–1471.
[30] Ghosal M.K., Tiwari G.N.: Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse. Energy Convers. Manage. 47(2006), 1779–1798.
[31] Ahmed S.F., Amanullah M.T.O., Khan M.M.K., Rasul M., Hassan N.M.S.: Parametric study on thermal performance of horizontal earth pipe cooling system in summer. Energy Convers. Manage. 114(2016), 324–337. [32] Singh B., Kumar R., Asati A.K.: Influence of parameters on performance of Earth-to-air heat exchanger in hot-dry climate. J. Mech. Sci. Technol. 32(2018), 5457–5463.
[33] Liu Z., Yu Z., Yang T., Roccamena L., Sun P., Li S., Zhang G., Mankibi M.: Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system. Energy 172(2019), 220–231.
[34] Hasan M.I., Noori S.W.: Study the potential of using Earth to air heat exchanger for cooling and heating of the residential buildings in Iraq. Heat Transf. – Asian Res. 48(2019), 9, 1–26.
[35] Ahmad S.N., Prakash O.: Earth air tube heat exchanger - A parametric study. In: Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems (M. Palanisamy, V. Ramalingam, M. Sivalingam, Eds.), Lecture Notes in Mechanical Engineering. Springer 2021, 53–62.
[36] Amanowicz L., Wojtkowiak J.: Thermal performance of multi-pipe earth-to-air heat exchangers considering the non-uniform distribution of air between parallel pipes. Geothermics 88(2020), 1–11.
[37] Amanowicz L., Wojtkowiak J.: Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions. Renew. Energy 158(2020), 585–597.
[38] Sakhri N., Menni Y., Chamkha A.J., Lorenzini G., Ameur H., Kaid N., Bensafi M.: Experimental study of an earth-to-air heat exchanger coupled to the solar chimney for heating and cooling applications in arid regions. J. Therm. Anal. Calorim. 145(2020), 3, 1–10.
[39] Chel A., Tiwari G.: Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (eahe) for space heating/cooling of adobe house in New Delhi (India). Energy Convers. Manage. 51(2010), 393–409.
[40] Li H., Yu Y., Niu F., Shafik M., Chen B.: Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney. Renew. Energy 62(2014), 468–77.
[41] Maerefat M., Haghighi A.: Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney. Renew. Energy 35(2010), 2316–24.
[42] Singh B, Asati A., Kumar R.: Evaluation of the cooling potential of earth-to-air heat exchanger using concrete pipes. Int. J. Thermophys. 42(2021), 2, 1–19.
[43] Lee K.H., Strand R.K.: The cooling and heating potential of an earth tube system in buildings. Energy Build. 40(2008), 486–494.
[44] Zhao Y., Li R., Ji C., Huan C., Zhang B., Liu L.: Parametric study and design of an earth-to-air heat exchanger using model experiment for memorial heating and cooling. Appl. Therm. Eng. 148(2019), 838–845.
[45] Rosa N., Soares N., Costa J.J., Santos P., Gervasio H.: Assessment of an earth-air heat exchanger (EAHE) system for residential buildings in warm summer Mediterranean climate. Sustain. Energy Technol. Assess. 38(2020), 1–11.
[46] Misra A.K., Gupta M., Lather M., Garg H.: Design and performance evaluation of low-cost Earth to air heat exchanger model suitable for small buildings in arid and semi-arid regions. KSCE J. Civ. Eng. 19(2015), 4, 853–856.
[47] Yoon S., Lee S.R., Go G.H.: Evaluation of thermal efficiency in different types of horizontal ground heat exchangers. Energy Build. 105(2015), 100–105.
[48] Molcrette V.F.A., Autier V.R.B.: New expression to calculate quantity of recovered heat in the earth-pipe-air heat-exchanger operating in winter heating mode. Arch. Thermodyn. 41(2020), 2, 103–117
[49] Yang W., Lu P., Chen Y.: Laboratory investigations of the thermal performance of an energy pile with spiral coil ground heat exchanger. Energy Build. 128(2016), 491–502.
[50] Elminshawy N.A.S., Siddiqui F.R., Farooq Q.U., Addas M.F.: Experimental investigation on the performance of earth-air pipe heat exchanger for different soil compaction levels. Appl. Therm. Eng. 124(2017), 1319–1327.
[51] Kim M.J., Lee S.R., Yoon S., Jeon J.S.: An applicable design method for horizontal spiral-coil-type ground heat exchangers. Geothermics 72(2018), 338–347.
[52] Yusof T.M., Ibrahim H., Azmi W.H., Rejab M.R.M.: Thermal analysis of earthto- air heat exchanger using laboratory simulator. Appl. Therm. Eng. 134(2018), 130–140.
[53] Agrawal K.K., Misra R., Agrawal G.D.: Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material. Renew. Energy 146(2020), 2008–2023.
[54] Mazarron F.R., Cid-Falceto J., Canas I.: Ground thermal inertia for energy efficient building design: A case study on food industry. Energies 5(2012), 2, 227–242.
[55] Mihalakakou G., Santamouris M., Asimakopoulos D.: Modelling the thermal performance of earth-to-air heat exchangers. Sol. Energy 53(1994), 3, 301–305.
[56] Badescu V.: Simple and accurate model for the ground heat exchanger of a passive house. Renew. Energy 32(2007), 5, 845–855.
[57] Mathur A., Srivastava J., Mathur S., Agrawal G.D.: Transient effect of soil thermal diffusivity on performance of EATHE system. Energy Rep. 1(2015), 17–21.
[58] Zhang N., Wang Z.: Review of soil thermal conductivity and predictive models. Int. J. Therm. Sci. 117(2017), 172–183.
[59] Holman J.P.: Experimental Methods for Engineers (8th Edn.). Tata McGraw-Hill, New York 2007.
[60] Bansal V., Misra R., Agrawal G.D., Mathur J.: Performance analysis of earthpipe- air heat exchanger for winter heating. Energy Build. 41(2009), 11, 1151–1154.
Go to article

Authors and Affiliations

Saif Nawaz Ahmad
1
Om Prakash
1

  1. National Institute of Technology Patna, Bihar 800005, India

This page uses 'cookies'. Learn more