Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 28
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Pepper yellow leaf curl Thailand virus (PepYLCTHV) causes leaf curl disease in chili production regions of the tropics and subtropics. Information on PepYLCTHV disease severity and resistance in chili pepper is still limited in Thailand. This study reports PepYLCTHV disease severity through graft inoculation and selection of single resistant plants for use in a chili breeding program. Twenty-one chili genotypes consisting of the local cultivar (5) collected from Thailand, breeding lines (9) developed at Khon Kaen University (KKU), Thailand and improved lines (7) obtained from the World Vegetable Center, Taiwan were used in this study. Forty-five-day-old seedlings of all the genotypes were graft inoculated with PepYLCTHV in a randomized complete block design (RCBD) with three replications and 10 plants per replication and kept in a plastic net house. Disease symptoms were scored at 20, 27, 34, 41 48, and 55 days after graft/inoculation (DAI). Disease severity was visually recorded using 0−5 scores. Results showed that the disease severity of 21 chili genotypes significantly differed at 48 days after grafting. High resistance and stability were shown by 9853-123 genotypes. Two genotypes, PSP11-7 and PSP11-10-1, showed resistant reaction with disease severity scores of 1.9 and 1.8, respectively. However, among 21 chili genotypes or 630 grafted plants, 302 plants were successfully grafted inoculated plants. Therefore, from the results of this work, highly resistant plants (69 single plants) can be selected, selfed and advanced for breeding.
Go to article

Bibliography


Anaya-López J.L., Torres-Pacheco I., González-Chavira M., Garzon-Tiznado J.A., Pons-Hernandez J.L. 2003. Resistance to geminivirus mixed infections in mexican wild peppers. Journal American Society Horticultural Science 38 (2): 251–255. DOI: https://doi.org/10.21273/HORTSCI.38.2.251
Barchenger D.W., Jeeatid N., Lin S.W., Wang Y.W., Lin T.H., Chan Y.L., Kenyon L. 2019. A novel source of resistance to Pepper yellow leaf curl Thailand virus (PepYLCThV) (Begomovirus) in chile pepper. Journal American Society Horticultural Science 54 (12): 2146−2149. DOI: https://doi.org/10.21273/HORTSCI14484-19
Chiemsombat P., Srikamphung B., Yule S., Srinivasan R. 2018. Begomoviruses associated to pepper yellow Leaf curl disease in Thialand. Journal of Agricultural Research 3 (7): 000183. Food and Agriculture Organization. 2017. Agricultural Production: Primary crops. Available on: http://apps.fao.org. [Accessed: 25 January 2020]
Kumar R., Rai N., Kakpale N. 1999. Field reaction of some chilli genotypes for leaf curl virus in Chhattisgarh region of India. The Orissa Journal of Horticulture 27: 100−102. DOI: https://doi.org/10.18782/2320-7051.5471
Kumar S., Kumar S., Singh M., Singh A.K., Rai M. 2006. Identification of host plant resistant to pepper leaf curl virus in chilli (Capsicum species). Scientia Horticulturae 110: 359−361. DOI: https://doi.org/10.1016/j.scienta.2006.07.030
Kumar S., Kumar R., Kumar S., Singh A.K., Singh M., Rai A.B., Rai A.B. 2011. Incidence of leaf curl disease on capsicum germplasm under field conditions. Indian Journal of Agricultural Sciences 81: 187−189.
Mishra M.D., Raychaudhuri S.P., Jha A. 1963. Virus causing leaf curl of chilli (Capsicum annuum L.). International Journal of Microbiology 3: 73–76.
Rai V.P.R., Kumar S., Singh P., Kumar S., Singh M., Rai M. 2014. Monogenic recessive resistant to pepper by leaf curl virus in an interspecific cross of Capsicum. Scientia Horticulturae 172: 34−38. DOI: https://doi.org/10.1016/j.scienta.2014.03.039
Sakata J.J., Shibuya Y., Sharma P., Ikegami M. 2008. Strains of a new bipartite begomovirus, Pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-veindiseased ageratum in Indonesia. Archives of Virology 153 (12): 2307−2313. DOI: https://doi.org/10.1007/s00705-008-0254-z
Sangsotkaew Y., Jeeartid N., Siri N., Thummabenjapone P., Chatchawankanphanich O., Phuangrat B., Techawongstien S. 2018. Phenotypic responses of putative resistance chili cultivars infected by PepLCV with viruliferous whitefly transmission. Acta Horticulturae 67. DOI: https://doi.org/10.18690/978-961-286-045-5.54.
Shih S.L., Tsai W. S., Lee L.M., Wang J.T., Green S.K., Kenyon L. 2010. First report of tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Disease 94 (5): 637. DOI: https://doi.org/10.1094/PDIS-94-5-0637B
Srivastava A., Mangal M., Saritha R.K., Kalia P. 2017. Screening of chilli pepper (Capsicum spp.) lines for resistance to the Begomovirus causing chili leaf curl disease in India. Journal of Crop Protection 100: 177–185. DOI: https://doi.org/10.1016/j.cropro.2017.06.015
Tsai W., Shih S., Green S., Rauf A., Hidayat S., Jan F.J. 2006. Molecular characterization of Pepper yellow leaf curl Indonesia virus in leaf curl and yellowing diseased tomato and pepper in Indonesia. Plant Disease 90 (2): 247−247. DOI: https://doi.org/10.1094/PD-90-0247B
Tsai W.S., Shih S.L., Kenyon L., Green S.K., Jan F.J. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathology 60: 787−799. DOI: https://doi.org/10.1111/j.1365-3059.2011.02424.x
Verlaan M.G., Hutton S.F., Ibrahem R.M., Kormelink R., Visser R.G.F., Scott J.W., Edwards J.D., Bai Y. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA–Dependent RNA polymerases. PLoS Genetics 9 (3): e1003399. DOI: https://doi.org/10.1371/journal.pgen.1003399
Zehra S.B., Ahmad A., Sharma A., Sofi S., Lateef A., Bashir Z., Husain M., Rathore J.P. 2017. Chilli leaf curl virus an emerging threat to chilli in India. Indian Journal of Pure and Applied Biosciences 5 (5): 404−414.
Go to article

Authors and Affiliations

Patcharaporn Suwor
1
ORCID: ORCID
Tawatchai Masirayanan
1
Hathairat Khingkumpungk
1
Wen Shi Tsai
2
Kanjana Saetiew
1
Suchila Techawongstien
3
Sanjeet Kumar
4
Somsak Kramchote
1

  1. Plant Production of Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
  2. Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi, Taiwan
  3. Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
  4. Pepper Breeding Section, Plant Geneticist and Breeder (Independent), India
Download PDF Download RIS Download Bibtex

Abstract

For quality grey cast iron production, the challenging issues are to avoid cementite structure and obtain the desired graphite morphology with proper matrix as well as hardness. The objective of the present research is to find out the right combination of preconditioner and inoculant that may help to overcome the challenges. In this work, sulphur content is kept low (0.01%). Two preconditioners namely metallurgical SiC and zirconium bearing FeSi with two types of inoculant are individually used to make four combinations of sample and for each case metal is poured into the green sand mould. Finally Brinell hardness and graphite morphology is observed in the thickest and thinnest portions of the castings. Metallurgical SiC with barium bearing inoculant gives better graphite morphology and hardness than strontium bearing inoculant, on the other hand zirconium bearing FeSi gives more satisfying result than SiC with every type of inoculant. Among all of the combinations Zr bearing preconditioner with Ba bearing inoculant gives good graphite morphology with best mechanical properties in both thickest and thinnest portions of the casting.

Go to article

Authors and Affiliations

Md. Sojib S. Hossain
A.K.M. Bazlur B. Rashid
Download PDF Download RIS Download Bibtex

Abstract

Though normal air cooling and green sand mold-casted gray iron convey an essentially pearlitic matrix, ferritic gray iron is used in some electro-mechanical applications to have better magnetic properties, ductility, and low hardness. Conventionally, to produce ferritic gray iron, foundryman initially produces pearlitic gray iron, then it is carried through a long annealing cycle process for ferritic transformation. This experiment is conducted to eliminate the long annealing cycle from the conventional process. A process is developed to produce as-cast ferritic gray cast iron by air cooling in the green sand mold. In this experiment, Si content is kept high, but Mn content is kept low based on sulfur content; a unique thermodynamic process is established for decreasing the Mn content from the melt. After a successful preconditioning and optimum foundry return charging, the melt is specially inoculated, and metal is poured into the green sand mold. An extra feeder is added for slowing down the cooling rate where casting thickness is around 15mm. Finally, hardness and metallographic images are observed for final confirmation of the ferritic matrix.
Go to article

Bibliography

[1] Callister, W.D. Jr. (2007). Applications and processing of metal alloys. Materials Science and Engineering, An introduction. John Wiley & Sons, Inc. 367-370.
[2] All Sister Concern of WALTON Group (2021). Component of GVM38AA model Compressor. Retrieved June 6, 2021, from https://waltonbd.com/compressor/walpha-series r134a /gvm38aa.
[3] Fox, M.A.O. & Adams, R.D. (1973). Correlation of the damping capacity of cast iron with its mechanical properties and microstructure. Journal of Mechanical Engineering Science. 15(2), 81-94.
[4] Buschow K.H.J., de Boer F.R. (2003) Soft-Magnetic Materials. Physics of Magnetism and Magnetic Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48408-0_14.
[5] Mozetic, H., Fonseca, E., Schneider, E. L., Kindlein Jr, W., & Schaeffer, L. (2011). The use of magnetic field annealing on nodular cast iron for speaker cores. International Journal of Applied Electromagnetics and Mechanics. 37(1), 51-65.
[6] Dura-Bur, Metal Service (2021). G1A gray iron. Retrieved June 8, 2021 from https://www.dura-barms.com/products/dura-bar/gray-iron/g1a.
[7] Wensheng, L. (1995). Production of as-cast ferritic nodular cast iron. Journal of Zhengzhou Textile Institute. 3, 50-52.
[8] Guzik, E., Kopyciński, D., & Wierzchowski, D. (2014). Manufacturing of ferritic low-silicon and molybdenum ductile cast iron with the innovative 2PE-9 technique. Archives of Metallurgy and Materials. 59(2), 687-691.
[9] Stefanescu, D.M. (1981). Production of as-cast ferritic and ferritic-pearlitic ductile iron in green sand molds. AFS International Cast Metals Journal. June 1981, 23-32.
[10] Fraś, E. & Górny, M. (2012). An inoculation phenomenon in cast iron. Archives of Metallurgy and Materials. 57(3), 767- 777. DOI: https://doi.org/10.2478/v10172-012-0084-6.
[11] Riposan, I., Chisamera, M., Stan, S. & White, D. (2009). Complex (Mn, X) S compounds-major sites for graphite nucleation in grey cast iron. China Foundry. 6(4), 352-358.
[12] Ghosh, S. (1995), Micro-structural characteristics of cast irons. Retrieved July 10, 2019, from http://eprints.nmlindia.org/4334/1/E1-18.pdf.
[13] Lacaze, J. & Sertucha, J. (2016). Effect of Cu, Mn, and Sn on pearlite growth kinetics in as-cast ductile irons. International Journal of Cast Metals Research. 29(1-2), 74-78. DOI: 10.1080/13640461.2016.1142238.
[14] Stefanescu, D. M., Alonso, G., & Suarez, R. (2020). Recent developments in understanding nucleation and crystallization of spheroidal graphite in iron-carbon-silicon alloys. Metals. 10(2), 221. DOI: 10.3390/met10020221.
[15] Ghosh, S. (1994). Heat Treatment of Cast Irons. In: Workshop on Heat Treatment & Surface Engineering of Iron & Steels (HTIS-94), May 11-13, 1994, NML, Jamshedpur.
[16] Electro-Nite. Thermal analysis of cast iron. Retrieved June 8, 2021 from https://www.heraeus.com/media/media/hen/media_hen/products_hen/iron/thermal_analysis_of_cast_iron.pdf.
[17] Koriyama, S., Kanno, T., Iwami, Y., & Kang, I. (2020). Investigation of the difference between carbon equivalent from carbon saturation degree and that from liquidus. International Journal of Metalcasting, 1-8.
[18] Sekowski, K., Piaskowski, J., Wojtowicz, Z. (1972). Atlas of the standard microstructures of foundry alloys. Warszawa: WNT, Poland.
[19] Mampaey, F. (1981). The manganese: sulfur ratio in gray irons. Fonderie Belge – De Belgische Gieterej. 51(1), 11-25 (March 1981).
[20] Gundlach, R., Meyer, M. & Winardi, L. (2015). Influence of Mn and S on the properties of cast iron part III—testing and analysis. International Journal of Metalcasting. 9(2), 69-82.
[21] Behnam, M. J., Davami, P. & Varahram, N. (2010). Effect of cooling rate on microstructure and mechanical properties of gray cast iron. Materials Science and Engineering: A. 528(2), 583-588. DOI: 10.1016/j.msea.2010.09.087.
Go to article

Authors and Affiliations

Md Sojib Hossain
1

  1. Bangladesh University of Engineering and Technology, Shahbagh, Dhaka – 1000, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

Low manganese and sulfur gray irons were produced by adding inoculant base Fe-Si with small amounts of Al and Ca in the ladle. The effect of the cast thickness, inoculant amount and shakeout time of the green sand molds were studied on the graphite flake formation by microscopically techniques. A thermodynamic analysis was carried out for the cast iron produced with the FactSage 7.2 software. Stability phase diagrams were obtained for both gray cast irons to different manganese (0.1 to 0.9 wt.%) and sulfur (0.01 to 0.12 wt.%) amounts to 1150°C. It was shown that lower amounts of manganese and sulfur allow forming the 3Al2O3·2SiO2, Al2O3, and ZrO2 solid compounds. The thermodynamic results match with those obtained by SEM-EDS. It is possible to form MnS particles in the liquid phase when the solubility product (%Mn) × (%S) equals 0.042 and 0.039 for heats A and B, respectively.

Go to article

Authors and Affiliations

G. Reyes-Castellanos
A. Cruz-Ramírez
E. Colin-García
V.H. Gutiérrez-Pérez
Download PDF Download RIS Download Bibtex

Abstract

The technology of producing castings of high-quality inoculated cast iron with flake graphite particles in the structure is a combination of the melting and inoculation process. Maintaining the stability of the strength and microstructure parameters of this cast iron is the goal of a series of studies on the control of graphitization and austenitic inoculation (increasing the number of primary austenite dendrites), and which affects the type of metal matrix in the structure. The ability to graphitize the molten alloy decreases with its holding in the melting furnace more than an hour. The tendency to crystallize large dendritic austenite grains and segregation of elements such as Si, Ni and Cu reduce the ductility properties of this cast iron. The austenite inoculation process may introduce a larger number of primary austenite grains into the structure, affecting the even distribution of graphite and metal matrix precipitation in the structure. Known inoculation effects the interaction (in low mass) of additives: Sr, Ca, Ba, Ce, La, produces MC2 carbide). Addition of Fe in the inoculant influences the number and shape of austenite dendrites. Hybrid modification combines the effects of these two factors. The introduction of nucleation sites for the graphite eutectics and primary austenite grains result in the stabilization of the cast iron microstructure and an increase in mechanical properties. The obtained test results set the direction for further research in this area in relation to the production of heavy plate castings in vertical and horizontal pouring.
Go to article

Authors and Affiliations

Edward Guzik
ORCID: ORCID
D. Kopyciński
1
ORCID: ORCID
A. Ziółko
2
A. Szczęsny
1
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Engineering of Cast Alloys and Composites, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Krakodlew S.A., 1 Ujastek St., 30-969 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Phytophthora root and stem rot of soybean is a destructive disease of soybean in Iran. During 1998–2005, 142 isolates from soil and diseased soybean plants were collected and tested. Race identification was made possible by inoculating Rps differential soybean cultivars and lines. Of the 142 isolates tested, 110 isolates belonged to race 1 and 32 isolates belonged to race 3. Race 1 was domi nant in soil and diseased plant samples. There was no variability in virulence of Phytophthora sojae between the areas surveyed.

Go to article

Authors and Affiliations

Abbas Mohammadi
Azizollah Alizadeh
Mansore Mirabolfathi
Naser Safaie
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research results of horizontal continuous casting of ingots of aluminium alloy containing 2% wt. silicon (AlSi2).

Together with the casting velocity (velocity of ingot movement) we considered the influence of electromagnetic stirring in the area of the

continuous casting mould on refinement of the ingot’s primary structure and their selected mechanical properties, i.e. tensile strength, yield

strength, hardness and elongation. The effect of primary structure refinement and mechanical properties obtained by electromagnetic

stirring was compared with refinement obtained by using traditional inoculation, which consists in introducing additives, i.e. Ti, B and Sr,

to the metal bath. On the basis of the obtained results we confirmed that inoculation done by electromagnetic stirring in the range of the

continuous casting mould guarantees improved mechanical properties and also decreases the negative influence of casting velocity, thus

increasing the structure of AlSi2 continuous ingots.

Go to article

Authors and Affiliations

J. Szajnar
M. Stawarz
D. Bartocha
T. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

The results of examinations of the influence of titanium-boron inoculant on the solidification, the microstructure, and the mechanical

properties of AlZn20 alloy are presented. The examinations were carried out for specimens cast both of the non-modified and the

inoculated alloy. There were assessed changes in the alloy overcooling during the first stage of solidification due to the nuclei-forming

influence of the inoculant. The results of quantitative metallographic measurements concerning the refinement of the grain structure of

casting produced in sand moulds are presented. The cooling rate sensitivity of the alloy was proved by revealing changes in morphology of

the α-phase primary crystals. Differences in mechanical properties resulting from the applied casting method and optional inoculation were

evaluated.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

In paper is presented results of studies concerning ingot of Al with a purity of 99.5% cast with use of stand of horizontal continuous

casting. Mainly together with casting velocity was considered influence of electromagnetic stirrer, which was placed in continuous casting

mould on refinement of ingots structure and theirs usability to plastic deformation. Effect of structure refinement and usability to plastic

deformation obtained by influence of electromagnetic stirring was compared with refinement obtained by use of traditional inoculation,

which consists in introducing of additives i.e. Ti and B to metal bath. On the basis of obtained results was affirmed that inoculation

realized by electromagnetic stirring in range of continuous casting mould guarantees improvement in structure refinement and usability to

rolling of pure Al continuous ingots.

Go to article

Authors and Affiliations

J. Szajnar
D. Bartocha
T. Wróbel
M. Stawarz
Download PDF Download RIS Download Bibtex

Abstract

This article deal with non-conventional methods to affect the crystallization of Al-alloys by the application of electromagnetic field. The application of electromagnetic field is not technically complicated, it does not require mechanical contact with the melt, and the scale of the crystallization influence is not dependent on the thickness of the casting. Two experimental materials were used: AlSi10MgMn and AlSi8Cu2Mn and two values of electromagnetic induction: B = 0.1 T a B = 0.2 T. The best results for alloy AlSi10MgMn were achieved by application of electromagnetic field with induction B = 0.2 T; during this experiment the best mechanical properties were achieved - the biggest increase of mechanical properties was recorded. The best results for alloy AlSi8Cu2Mn were achieved by combination of electromagnetic field with induction B = 0.1 T and modification by 0.05 wt. % Sr. In this case we don´t recommend to use electromagnetic field with induction B = 0.2 T; because of deposition of coarse grains and decreasing of mechanical properties.
Go to article

Authors and Affiliations

D. Bolibruchová
M. Brůna
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns the processes connected with the formation of chromium white cast iron microstructure. The influence of titanium and strontium on the alloy crystallization has been described using TDA method and EDS analysis. Conducted experiments allowed the determination of the selected additions influence on the microstructure of examined alloys. TDA analysis enabled indication of the characteristic temperatures of thermal effects for samples with strontium and titanium and the comparison of results for the reference sample without additions. The results of TDA test also included the analysis of the temperature first derivative values, which presented interesting differences as well. The scanning microscopy observation clearly indicated the difference between the effect of strontium and titanium on the alloy microstructure. The EDS analysis helped to identify the chemical composition of the evolving phases and confirmed the strontium presence in the eutectic. Experimental results allowed to draw reliable conclusions about the effect of applied additions on the crystallization and microstructure of chromium cast iron.
Go to article

Authors and Affiliations

R. Dojka
M. Dojka
M. Kondracki
A. Studnicki
Download PDF Download RIS Download Bibtex

Abstract

In paper is presented idea of construction and influence of selected parts of stand of horizontal continuous casting on quality of pure Al and AlSi2

alloy ingots. The main parts of the made stand belong to induction furnace, which is also tundish, water cooled continuous casting mould, system

of recooling, system of continuous ingot drawing and cutting. Mainly was considered influence of electromagnetic stirrer, which was placed

in continuous casting mould on refinement of ingots structure. Effect of structure refinement obtained by influence of electromagnetic stirring was

compared with refinement obtained by use of traditional inoculation, which consists in introducing of additives i.e. Ti and B to metal bath. The

results of studies show possibility of effective refinement of Al and AlSi2 alloy primary structure, only with use of horizontal electromagnetic field

and without necessity of application of inoculants. This method of inoculation is important, because inoculants decrease the degree of purity

and electrical conductivity of pure aluminum and moreover are reason of point cracks formation during rolling of ingots.

Go to article

Authors and Affiliations

J. Szajnar
D. Bartocha
T. Wróbel
M. Stawarz
Download PDF Download RIS Download Bibtex

Abstract

An initial assessment of the effectiveness of cast iron inoculation, performed by the method of impulse introducing the master alloy into

cast iron, is presented. The experiment was concerned with the hypoeutectic gray cast iron inoculated with either the Alinoc or the Barinoc

master alloy by means of an experimental device for pneumatic transportation. Examinations involved pneumatic injection of the

powdered inoculant carried in a stream of gaseous medium (argon) into the metal bath held in the crucible of an induction furnace. It was

found that the examined process is characterised by both high effectiveness and stability.

Go to article

Authors and Affiliations

M.S. Soiński
A. Derda-Ślęzak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.
Go to article

Authors and Affiliations

M. Górny
E. Fraś
Download PDF Download RIS Download Bibtex

Abstract

Material suppliers typically recommend different additive amounts and applications for foundry practices. Therefore, even in the production of the same standard materials, different results may be obtained from various production processes on different foundry floors. In this study, the liquid metal prepared with the addition of different proportions of a FeSi-based inoculation, which is most commonly used in foundries in the production of a cast iron material with EN-GJL-250 lamellar graphite cast iron, was cast into sand molds prepared with a model designed to provide different solidification times. In this way, the optimization of the inoculation amounts on the casting structure for different solidification times was investigated. In addition, hardness values were determined depending on solidification time in varying amounts of inoculation additions. SolidCast casting simulation software was used to determine the casting model geometry and solidification time. In the scope of the study, sand casting, modeling, microstructure analysis, image analysis, microstructure analysis, and hardness tests techniques were used. When the results are examined, the required amount of inoculation for the optimal structure is optimized for the application procedure depending on the casting module and the solidification time.
Go to article

Authors and Affiliations

M. Çolak
1
ORCID: ORCID
E. Uslu
1
ORCID: ORCID
Ç. Teke
1
ORCID: ORCID
F. Şafak
2
Ö. Erol
2
Y. Erol
2
Y. Çoban
2 3
M. Yavuz

  1. Bayburt University, Turkey
  2. Konya Technical University, Turkey
  3. Yavuzsan A.Ş., Turkey
Download PDF Download RIS Download Bibtex

Abstract

In many application fields, thin-walled ductile iron castings can compete with castings made from aluminium alloys thanks as their show superior mechanical properties higher stiffness, vibrations damping as well as properties at higher temperatures. As problematic criterion in thin-walled cast-iron castings can be seen the graphitization ability and high sensitivity of the structure and the mechanical properties to the solidification rate.
The tests were curried on plate castings with wall thicknesses of 3, 5, and 8 mm, using inoculants based on FeSi70 with different contents of nucleation-active elements as aluminium, calcium, zirconium and magnesium. The inoculation was made by the in-mould method. In the experiments structures were achieved, differing by the graphite dispersity, structure and mechanical properties. The experiments have proved particularly a high sensitivity of the structure and the mechanical properties to the cooling rate of the sample castings. The influence of the inoculant type is less important than the influence of solidification rate.
Go to article

Bibliography

[1] Caldera, M., Chapetti, M., Massone, J.M. & Sikora J.A. (2007). Influence of nodule count on fatique properties of ferritic thin wall ductile iron. Materials Science and Engineering. 23(8), 1000-1004. DOI: 10.1179/174328407X185910
[2] Stefanescu, D.M., Dix, :.P., Ruxanda, R.E., Corbitt-Coburn, C. & Piwonka, T.S. (2002). Tensile properties of thin wall ductile iron. AFS Transactions. 02-178, 1149-1162 Schaumburg USA: AFS Society.
[3] Soedarsono, J.W., Suharno, B. & Sulamet-Ariobimo, R.D. (2011). Effect of casting design to microstructure and mechanical properties of 3 mm TWDI plate. Advance Material Researchs. 415-417, 831-837. https://doi.org/10.4028/www.scientific.net/AMR.415-417.831
[4] Labresque, C. (2003). Production and properties of thin-wall ductile iron castings. International Journal of Cast Metals Research. 16(1-3), 313- 317. https://doi.org/10.1080/13640461.2003.11819601
[5] Sulamet-Ariobimo, R.D., Soedersono, J.W. & Soemardi,T.P. (2017). Thin wall ductile iro and n castings. IntechOpen 72117. Advanced Casting Technologies. DOI: 10.5772/intechopen.72117
[6] Vijayan, S., Wilson, P. & Prabhakaran, K. (2017). Ultra low-density mullite foams by reaction sintering of thermo-foamed alumina-silica powder dispersion in molten sucrose. Journal of the European Ceramic Society. 37(4), 1657-1664. https://doi.org/10.1016/j.jeurceramsoc.2016.11.025
[7] Stefanescu, D.M., Alonso, G. & Suarez, R. (2020). Recent devepments in understanding nucleation and crystallization of spheroidal grapfite in iron- carbon-silicon alloys. Metals. 1092), 221, 1-39. DOI: 10.3390/met10020221.
[8] Alonso, G., Larrañaga, P., Stefanescu, D.M., De la Fuente, E., Natxiondo, A. & Suarez, R. (2017). Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. International Journal of Metalcasting. 11(1), 14- 26. DOI: 10.1007/s40962-016-0094-7
[9] Alonso, G., Stefanescu, D.M., Fuente, E., Larrana, P. & Suarez, R. (2018). The influence of trace elements on the nature of the nuclei of graphite ductile iron. Materials Science Forum. 925,78-85. ISSN 1662-9752
[10] Skaland, T. (2005). Nucleation mechanisms in ductile iron. Proceedings of AFS Cast Iron Inoculation Conference. 29-30 September 2005. Schaumburg. USA (pp. 13-30).
[11] Skaland, T., Grong, O. & Grong, T. (1993). A model for the graphite formation in ductile cast iron. Metal Transaction. 24A, 2321-2345.
[12] Lekakh, S. (2014). Analysis of heterogeneous nucleation in ductile iron. Shape casting. 5th International Symposium. Materials Science, January. 121-128. DOI: 10.1007/978-3-319-48130-2_15
[13] Alonso, G., Stefanescu, D.M., Suarez. R. (2020). Effect of antimony on nucleation process of spheroidal graphite iron. AFS Proceedings of the 124th Metalcasting congress. Paper 2020-04.
[14] Stefanescu, D.M. (2016). On the crystalization of graphite from liquid iron-carbon-silicon melts. Acta Materialia. 107, 102-126. https://doi.org/10.1016/j.actamat.2016.01.047
[15] Stefanescu, D.M. Ruxanda, R. & Dix, L.P. (2003). The metallurgy and tensile mechanical properties of thin wall spheroidal graphite irons. Int. Journal of Cast Metals Research. 16(1-3), 319-324. https://doi.org/10.1080/13640461.2003.11819602
[16] Javaid, A. (2001). In Proceedings of Cast Iron Division, AFS 105th Casting Congress, Dallas, USA.
Go to article

Authors and Affiliations

J. Roučka
1
ORCID: ORCID
V. Kaňa
1
ORCID: ORCID
T. Kryštůfek
1
A. Chýlková
1

  1. Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research carried out during the development of new technology for the production of heavy-weight castings of counterweights. The research concerns the procedure of inoculation gray cast iron with flake graphite and indicates guidelines for the development of new technology for obtaining inoculated cast iron for industrial conditions.
The research was conducted in order to verify the possibility of producing large size or heavy-weight castings of plates in a vertical arrangement. The aim is to evenly distribute graphite in the structure of cast iron and thus reduce the volumetric fraction of type D graphite. The tests were carried out using the ProCast program, which was used to determine the reference chemical composition, and the inoculation procedure was carried out with the use of three different inoculants. The work was carried out in project no. RPMP.01.02.01-12-0055 / 18 under the Regional Operational Program of the Lesser Poland Voivodeship in Krakow (Poland).
Go to article

Bibliography

[1] Benedetti, M., Torresani, E., Fontanari, V. & Lusuardi, D. (2017). Fatigue and fracture resistance of heavy-section ferritic ductile cast iron. Metals. 7(3), 88.
[2] Dorula, J., Kopyciński, D., Guzik, E., Szczęsny, A. & Gurgul, D. (2021). The influence of undercooling ΔT on the structure and tensile strength of grey cast iron. Materials. 14(21), 6682.
[3] Wang, Q., Cheng, G. & Hou, Y. (2020). Effect of titanium addition on as-cast structure and high-temperature tensile property of 20Cr-8Ni stainless steel for heavy castings. Metals. 10(4), 529.
[4] Wang, Q., Chen, S. & Rong, L. (2020). -Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting. Metallurgical and Materials Transactions A. 51, 2998-3008.
[5] Kalandyk, B., Zapała, R., Sobula, S., Górny, M. & Boroń, Ł. (2014) Characteristics of low nickel ferritic-austenitic corrosion resistant cast steel. Metalurgija-Metallurgy. 53(4), 613-616.
[6] Kalandyk, B. & Zapała, R. (2013). Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water. Archives of Foundry Engineering. 13(4), 63-66.
[7] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122.
[8] Tęcza, G. & Garbacz-Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168.
[9] Celis, M., Domengès, B., Hug, E. & Lacaze, J. (2018). Analysis of nuclei in a heavy-section nodular iron casting. Materials Science Forum. 925, 173-180.
[10] Kopyciński, D., Siekaniec, D., Szczęsny, A., Sokolnicki, M. & Nowak, A. (2016). The Althoff-Radtke test adapter for high chromium cast iron. Archives of Foundry Engineering. 16(4), 74-77.
[11] Szczęsny, A., Kopyciński, D., Guzik, E. Soból, G., Piotrowski, K., Bednarczyk, P. & Paul, W. (2020). Shaping of ductile cast iron dedicated for slag ladle. Acta Metallurgica Slovaca. 26, 74-77. https://doi.org/10.36547/ams.26.2.312
[12] Mourad, M.M. & El-Hadad, S. (2015). Effect of processing parameters on the mechanical properties of heavy section ductile iron. Journal of Metallurgy. 2015, 1-11.
[13] Foglio, E., Gelfi, M., Pola, A. & Lusuardi, D. (2017). Effect of shrinkage porosity and degenerated graphite on fatigue crack initiation in ductile cast iron. Key Engineering Materials. 754, 95-98.
[14] Kavicka, F., Sekanina, B., Stetina, J., Stransky, K., Gontarev, V. & Dobrovska, J. (2009). Numerical optimization of the method of cooling of a massive casting of ductile cast-iron. Materials and Technology. 43, 73-78.

Go to article

Authors and Affiliations

A. Szczęsny
1
ORCID: ORCID
D. Kopyciński
1
ORCID: ORCID
Edward Guzik
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Foundry, ul. Reymonta 23, 30-059 Kraków, Polska
Download PDF Download RIS Download Bibtex

Abstract

The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.

Go to article

Authors and Affiliations

D. Siekaniec
D. Kopyciński
A. Szczęsny
E. Guzik
E. Tyrała
A. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The present work, presented the study of effect of different inoculants on impact toughness in High Chromium Cast Iron. The molds were

pouring in industrial conditions and samples were tested in laboratory in Faculty of Foundry Engineering at AGH. Seven samples were tested

- one reference sample, three with different addition of Fe-Ti, and three with different addition of Al. The samples were subjected to impact

toughness on Charpy hammer and the hardness test. The presented investigations indicate that for the each inoculant there is an optimal

addition at which the sample obtained the highest value of impact toughness. For the Fe-Ti it is 0.66% and for Al is 0.17%. Of all the

examined inoculants best results were obtained at a dose of 0.66% Fe-Ti. Titanium is a well-known as a good modifier but very interesting

results gives the aluminum. Comparing the results obtained for the Fe-Ti and Al can be seen that in the case of aluminum hardness is more

stable. The hardness of all samples is around 40-45 HRC, which is not high for this type of cast iron. Therefore, in future studies it is

planned to carry out the heat treatment procedure that may improves hardness.

Go to article

Authors and Affiliations

D. Siekaniec
D. Kopyciński
E. Guzik
E. Tyrała
A. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to grain-refinement of the medium-aluminium zinc based alloys (MAl-Zn). The system examined was sand cast Zn10

wt. %. Al binary alloy (Zn-10Al) doped with commercial Al-3 wt. % Ti – 0.15 wt. % C grain refiner (Al-3Ti-0.15C GR). Basing on the

measured attenuation coefficient of ultrasonic wave it was stated that together with significantly increased structure fineness damping

decreases only by about 10 – 20%. The following examinations should establish the influence of the mentioned grain-refinement on

strength and ductility of MAl-Zn cast alloys.

Go to article

Authors and Affiliations

P.K. Krajewski
G. Piwowarski
W.K. Krajewski
J. Buraś
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of studies on primary crystallization and wear resistance of high chromium cast iron inoculated with

ferrotitanium intended for work in abrasive conditions. Primary crystallization was examined with use of TDA method, wear tests of the

samples were conducted using the modified pin-on-disk method.

Go to article

Authors and Affiliations

A. Studnicki
M. Kondracki
R. Dojka
M. Gromczyk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a research results concerning impact of volume modification (ceramic filter containning cobalt aluminate and hafniumpowder) and simultaneous surface and volume modification on solidification and stereological parameters of macrostructure of castingsmade from post-production scrap of nickel superalloy IN-713C. Research included investigation of the influence of chemical compositionon the temperature Tliq i Tsol and evaluation of following macrostructure parameters: the number of grains per mm2, average grain area andshape coefficient. Results indicate high influence of carbon content on Tliq. Macrostructure of sample castings indicate positive effect of surface and volume modification, however impact of surface modification is more pronounced.
Go to article

Authors and Affiliations

P. Gradoń
F. Binczyk
Download PDF Download RIS Download Bibtex

Abstract

The article presents the influence of the percentage share of pig iron and steel scrap on the chemical composition, physicochemical and mechanical properties. Using an induction furnace, 6 melts were carried out with a variable amount of pig iron in the charge from 0 to 50%. For carburizing, a RANCO 9905 carburizer with a carbon content of 99.2% was used. After melting and introducing FeSi75, temperature measurement was carried out and the metal was superheated to 1500°C. The next step was to pour the samples for chemical analysis, DTA (Derivation Thermal Analysis) and strength and hardness from the melting furnace without inoculation. The last step was to carry out the inoculation by introducing 0.3% barium inoculant into the vat and pouring samplers for DTA analysis. The inoculation was carried out solely to determine changes in DTA parameters, mainly Temin, compared to castings without inoculation.
Go to article

Authors and Affiliations

R. Dwulat
1 2
ORCID: ORCID
K. Janerka
2
ORCID: ORCID
K. Grzesiak
1
M. Gałuszka
2

  1. Foundry Lisie Kąty, Lisie Kąty 7, 86-302 Grudziądz
  2. Department of Foundry Engineering, Silesian University of Technology, Towarowa 7, 44-100 Gliwice
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the physicochemical and mechanical properties, microstructure, and the tendency to form shrinkage of nodular cast iron depending on the type of inoculant used for secondary inoculation. Six different inoculants containing different active elements in their chemical composition were used for the research. Step castings and Y2 wedges were made on the vertical forming line using an automatic pouring machine. The inoculation in the amount of 0.2% was made using a pneumatic dispenser equipped with a vision system controlling the effectiveness of the inoculation. The results of the thermal analysis were determined and compared, and the potential of each of the inoculants was assessed.
Go to article

Bibliography

[1] Fraś, E., Podrzucki, C. (1978). Modified cast iron. Kraków: Skrypt AGH, nr. 675. (in Polish).
[2] ITACAX™ – Final iron control. Retrieved November 10, 2021, from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/.
[3] Karsey S.I. (2000). Ductile iron I. Manufacturing. Warszawa: QIT, Fer et Titane Inc. (in Polish).
[4] Janerka, K., Kondracki, M., Jezierski, J., Szajnar, J. & Stawarz, M. (2014). Carburizer effect on cast iron solidification. Journal of Materials Engineering and Performance. 23, 2174-2181.
[5] Seidu, S.O. Thermal analysis of preconditioned ductile cast iron. International Journal of Current Engineering and Technology. 3(3), 813-818
[6] Lampic, M. (2013). Inoculation of cast irons: practice and developments. International Foundry, Research. 65(2).
Go to article

Authors and Affiliations

R. Dwulat
1 2
ORCID: ORCID
K. Janerka
2
ORCID: ORCID
K. Grzesiak
1

  1. Foundry Lisie Kąty, Lisie Kąty 7, 86-302 Grudziądz, Poland
  2. Department of Foundry Engineering, Silesian University of Technology, Towarowa 7, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more