Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 21
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One-dimensional experimental modal analysis of an unvarnished trapezoidal violin built after the description of F. Savart and an anonymous trapezoidal violin on display in the Music Instrument Museum of Brussels is described. The analysis has revealed ten prominent modes. A mode that may potentially play a role of the “tonal barometer” of the instrument is pointed out. The mode shapes are symmetric and of high amplitude, due to the construction of the instrument. Subjective evaluation of the sound quality demonstrated no pronounced difference between the trapezoidal violin and normal violin.
Go to article

Authors and Affiliations

Ewa Skrodzka
Tim Duerinck
Bogumił B.J. Linde
Download PDF Download RIS Download Bibtex

Abstract

The application of modern scientific methods and measuring techniques can extend the empirical knowledge used for centuries by violinmakers for making and adjusting the sound of violins, violas, and cellos.

Accessories such as strings and tailpieces have been studied recently with respect to style and historical coherence, after having been somehow neglected by researchers in the past. These fittings have played an important part in the history of these instruments, but have largely disappeared as they have been modernised. However, the mechanics of these accessories contribute significantly to sound production in ways that have changed over time with different musical aesthetics and in different technical contexts. There is a need to further elucidate the function and musical contribution of strings and tailpieces.

With this research we are trying to understand the modifications of the cello's sound as a consequence of tailpiece characteristics (shape of the tailpiece and types of attachments). Modal analysis was used to first investigate the vibration modes of the tailpiece when mounted on a non-reactive rig and then when mounted on a real cello where it can interact with the modes of the instrument's corpus. A preliminary study of the effect of the tailpiece cord length will be presented.

Go to article

Authors and Affiliations

Eric Fouilhe
Giacomo Goli
Anne Houssay
George Stoppani
Download PDF Download RIS Download Bibtex

Abstract

Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).

Go to article

Authors and Affiliations

Ewa B. Skrodzka
Bogumił B.J. Linde
Antoni Krupa
Download PDF Download RIS Download Bibtex

Abstract

A gyroscopic rotor exposed to unbalance is studied and controlled with an active piezoelectrical bearing. A model is required in order to design a suited controller. Due to the lack of related publications utilizing piezoelectrical bearings and obtaining a modal model purely exploiting experimental modal analysis, this paper reveals a method to receive a modal model of a gyroscopic rotor system with an active piezoelectrical bearing. The properties of the retrieved model are then incorporated into the design of an originally model-free control approach for unbalance vibration elimination, which consists of a simple feedback control and an adaptive feedforward control. After the discussion on the limitations of the model-free control, a modified controller using the priorly identified modal model is implemented on an elementary rotor test-rig comparing its performance to the original model-free controller.
Go to article

Bibliography

  1.  A.B. Palazzolo, R.R. Lin, R.M. Alexander, A.F. Kascak, and J. Montague, “Test and theory for piezoelectric actuator-active vibration control of rotating machinery,” J. Vib. Acoust., vol.  113, no. 2, 1991. doi: 10.1115/1.2930165.
  2.  R. Köhler, C. Kaletsch, M. Marszolek, and S. Rinderknecht, “Active vibration damping of engine rotor considering piezo electric self heating effects,” in International Symposium on Air Breathing Engines 2011 (ISABE 2011), Gothenburg, Sep. 2011.
  3.  M. Borsdorf, R.S. Schittenhelm, and S. Rinderknecht, “Vibration reduction of a turbofan engine high pressure rotor with piezoelectric stack actuators,” in Proceedings of the International Symposium on Air Breathing Engines 2013 (ISABE 2013), Busan, 2013.
  4.  R.C. Simões, V. Steffen, J. Der Hagopian, and J. Mahfoud, “Modal active vibration control of a rotor using piezoelectric stack actuators,” Vib. Control, vol. 13, no. 1, pp. 45–64, Jan. 2007. doi: 10.1177/1077546306070227.
  5.  B. Riemann, M.A. Sehr, R.S. Schittenhelm, and S. Rinderknecht, “Robust control of flexible high-speed rotors via mixed uncertainties,” in 2013 European Control Conference (ECC). Zürich: IEEE, Jul. 2013, pp. 2343–2350. doi: 10.23919/ ECC.2013.6669786.
  6.  F.B. Becker, M.A. Sehr, and S. Rinderknecht, “Vibration isolation for parameter-varying rotor systems using piezoelectric actuators and gain-scheduled control,” J. Intell. Mater. Syst. Struct., vol. 28, no. 16, pp. 2286–2297, Sep. 2017. doi: 10.1177/1045389X17689933.
  7.  M. Li, T.C. Lim, and W.S. Shepard, “Modeling active vibration control of a geared rotor system,” Smart Mater. Struct., vol.  13, no. 3, pp. 449–458, Jun. 2004. doi: 10.1088/0964- 1726/13/3/001.
  8.  Y. Suzuki and Y. Kagawa, “Vibration control and sinusoidal external force estimation of a flexible shaft using piezoelectric actuators,” Smart Mater. Struct., vol. 21, no. 12, Dec. 2012. doi: 10.1088/0964-1726/21/12/125006.
  9.  O. Lindenborn, B. Hasch, D. Peters, and R. Nordmann, “Vibration reduction and isolation of a rotor in an actively supported bearing using piezoelectric actuators and the FXLMS algorithm,” in 9th International Conference on Vibrations in Rotating Machinery, Exeter, Sep. 2008.
  10.  R.S. Schittenhelm, S. Bevern, and B. Riemann, “Aktive Schwingungsminderung an einem gyroskopiebehafteten Rotorsystem mittels des FxLMS-Algorithmus,” in SIRM 2013 – 10. Internationale Tagung Schwingungen in rotierenden Maschinen, Berlin, Deutschland, Feb. 2013.
  11.  S. Heindel, P.C. Müller, and S. Rinderknecht, “Unbalance and resonance elimination with active bearings on general rotors,” J. Sound Vib., vol. 431, pp. 422–440, Sep. 2018. doi: 10.1016/j.jsv.2017.07.048.
  12.  B. Vervisch, K. Stockman, and M. Loccufier, “A modal model for the experimental prediction of the stability threshold speed,” Appl. Math. Modell., vol. 60, pp. 320–332, Aug. 2018. doi: 10.1016/j.apm.2018.03.020.
  13.  S. Kuo and D. Morgan, “Active noise control: a tutorial review,” Proc. IEEE, vol. 87, no. 6, pp. 943–975, Jun. 1999. doi: 10.1109/5.763310.
  14.  J. Jiang and Y. Li, “Review of active noise control techniques with emphasis on sound quality enhancement,” Appl. Acoust., vol. 136, pp. 139–148, Jul. 2018. doi: 10.1016/j.apacoust. 2018.02.021.
  15.  L.P. de Oliveira, B. Stallaert, K. Janssens, H. Van der Auweraer, P. Sas, and W. Desmet, “NEX-LMS: A novel adaptive control scheme for harmonic sound quality control,” Mech. Syst. Signal Process., vol. 24, no. 6, pp. 1727–1738, Aug. 2010. doi: 10.1016/j.ymssp.2010.01.004.
  16.  S.S. Narayan, A.M. Peterson, and M.J. Narasimha, “Transform domain LMS algorithm,” IEEE Trans. Acoust. Speech Signal Process., vol. 31, no. 3, pp. 609–615, Jun. 1983.
  17.  J. Jungblut, D.F. Plöger, P. Zech, and S. Rinderknecht, “Order tracking based least mean squares algorithm,” in Proceedings of 8th IFAC Symposium on Mechatronic Systems MECHATRONICS 2019, Vienna, Sep. 2019, pp. 465–470.
  18.  J. Jungblut, C. Fischer, and S. Rinderknecht, “Supplementary data: Active vibration control of a gyroscopic rotor using experimental modal analysis,” 2020. [Online]. doi: 10.48328/tudatalib-572.
Go to article

Authors and Affiliations

Jens Jungblut
1
ORCID: ORCID
Christian Fischer
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Download PDF Download RIS Download Bibtex

Abstract

In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented. With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity through the study of the radiated acoustic field and their temporal evolution in the frequency range selected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case was applied to two beam-type structures made of a sandstone material called Bateig. The experimental results of the modal response and the bending propagation velocity are compared with well-established analytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method – FEM, showing a good agreement.
Go to article

Authors and Affiliations

Jeniffer Torres-Romero
William Cardenas
Jesus Carbajo
Segovia Eulogio Enrique G.
Ramis-Soriano Jaime
Download PDF Download RIS Download Bibtex

Abstract

Two violins were investigated. The only intentionally introduced difference between them was the type of varnish. One of the instruments was covered with a spirit varnish, the other was oil varnished. Experimental modal analysis was done for unvarnished/varnished violins and a questionnaire inquiry on the instrument’s sound quality was performed. The aim of both examinations was to find differences and similarities between the two instruments in the objective (modal parameters) and subjective domain (subjective evaluation of sound quality). In the modal analysis, three strongly radiating signature modes were taken into account. Varnishing did not change the sequence of mode shapes. Modal frequencies A0 and B(1+) were not changed by oil varnishing compared to the unvarnished condition. For the oil varnished instrument, the frequency of mode B(1+) was lower than that of the same mode of the spirit varnished instrument. Our two violins were not excellent instruments, but before varnishing they were practically identical. However, after varnishing it appeared that the oil-varnished violin was better than the spirit-varnished instrument. Therefore, it can be assumed with a fairly high probability that also in general, the oil-varnished violins sound somewhat better than initially identical spirit-varnished ones.
Go to article

Authors and Affiliations

Ewa B. Skrodzka
Bogumił B.J. Linde
Antoni Krupa
Download PDF Download RIS Download Bibtex

Abstract

In this paper a comparison of numerically determined and measured electromagnetically exited noise of an induction motor is presented. The calculations are accomplished using FEM for an example motor, which is a 290 kW inverter-fed asynchronous machine. The approach starts with the electromagnetic and mechanical consideration. The focus is set on acoustic considerations, which contain the 3D-FE-model and measurement setup in the sound chamber.

Go to article

Authors and Affiliations

Masen Al Nahlaoui
Hendrik Steins
Stefan Kulig
Sven Exnowski
Download PDF Download RIS Download Bibtex

Abstract

This paper is concerned with the 1st stage of HP rotor blade assembly steam turbine TK 120. The methodology was focused on the selection of mechanical properties and the way of the rotor disc modeling and estimating the degree of damage caused by creep. Then the dynamic interference between the frequencies of excitation and the natural frequencies was assessed. Static calculations were performed for the cyclic sectors consisting of the disc, disc blades, spacers and shrouding, including loads as temperature, mass forces from the angular velocity and the pressure on the blades. Then, the creep analysis using a Norton’s model and the modal analysis were performed. Static analysis gave information concerning the distributions of displacements, stress and strain components. In the creep analysis, the creep displacements and stress relaxation versus time were determined and the estimated degree of damage caused by creep was evaluated at each part of the rotor disc. In the modal analysis, the natural frequencies and modes of vibrations corresponding to the nodal diameters were found. The results of modal analysis were shown in the SAFE graph. Numerical calculations have shown that the rotor disc was a well-designed structure and did not reveal any dynamic interference.

Go to article

Authors and Affiliations

Paweł Borkowski
Dominik Głowacki
Janisław Zwoliński
Agnieszka Nowakowska
Jakub Pawlicki
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the results of investigations on the location of generating units most affecting the angular stability of a large power system (PS) are presented. For their location, the eigenvalues of the PS model state matrix associated with electromechanical phenomena (electromechanical eigenvalues) were used. The eigenvalues were calculated on the basis of the analysis of the disturbance waveforms of instantaneous power of the generating units operating in the PS. The used method of calculating eigenvalues consists in approximation of the disturbance waveforms of generating units by the waveforms being the superposition of modal components. The parameters of these components depend on the sought eigenvalues and their participation factors. The objective function was defined as the mean square error between the approximated and approximating waveforms. To minimize it, a hybrid algorithm, being a combination of genetic and gradient algorithms, was used. In the instantaneous power waveforms of generating units most affecting the PS angular stability, the least damped or undamped modal components dominate. They are related to eigenvalues with the largest values of real parts. The impact of individual modal components on the disturbance waveforms of subsequent generating units was determined with the use of participation factors and correlation coefficients of electromechanical eigenvalues.

Go to article

Authors and Affiliations

Piotr Pruski
ORCID: ORCID
Stefan Paszek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Acoustic barriers which are positioned along traffic lanes are designed to protect the surroundings from excessive noise. Such structures are to reverberate, diffract and damp the propagating acoustic waves. However, this method of shielding has some disadvantages which include constraint visibility and structure-born noise. The interaction between traffic-caused movement of air mass and acoustic barriers may generate infra noise waves. That is undesirable and should be estimated. The authors undertook the research to diagnose the plausible side effect of structure-born noise of such barriers because it may influence human body (Kasprzak, 2014). As a mechanical structure, the acoustic barrier is characterized by mechanical parameters which, in the field of modal analysis, are made up of natural frequencies, damping factors and mode shapes. In this paper the authors investigated the acoustic pressure distribution in the neighborhood of a real acoustic barrier in the scope of infra noise propagation. The methods of modal analysis were used to identify natural frequencies of the barrier and dominating frequencies of propagating waves in the far field. The correlation between observed vibration and acoustic signals is presented.

Go to article

Authors and Affiliations

Andrzej Staniek
Cezary Bartmański
Download PDF Download RIS Download Bibtex

Abstract

The article presents the process of identifying discrete-continuous models with the use of heuristic algorithms. A stepped cantilever beam was used as an example of a discrete-continuous model. The theoretical model was developed based on the formalism of Lagrange multipliers and the Timoshenko theory. Based on experimental research, the theoretical model was validated and the optimization problem was formulated. Optimizations were made for two algorithms: genetic (GA) and particle swarm (PSO). The minimization of the relative error of the obtained experimental and numerical results was used as the objective function. The performed process of identifying the theoretical model can be used to determine the eigenfrequencies of models without the need to conduct experimental tests. The presented methodology regarding the parameter identification of the beams with the variable cross-sectional area (according to the Timosheno theory) with additional discrete components allows us to solve similar problems without the need to exit complex patterns.
Go to article

Bibliography

  1.  D. Cekus, B. Posiadała, and P. Warys, “Integration of modeling in SolidWorks and Matlab/Simulink environments,” Arch. Mech. Eng., vol. 61, no. 1, pp. 57–74, 2014, doi: 10.2478/meceng-2014-0003.
  2.  K. Kuliński and J. Przybylski, “Stability and vibrations control of a stepped beam using piezoelectric actuation,” MATEC Web Conf., vol. 157, p. 08004, 2018, doi: 10.1051/matecconf/201815708004.
  3.  S.A. Moezi, E. Zakeri, A. Zare, and M. Nedaei, “On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler–Bernoulli beam,” Comput. Struct., vol. 157, pp. 42–50, 2015, doi: 10.1016/j.compstruc.2015.05.008.
  4.  P.K. Jena and D.R. Parhi, “A modified particle swarm optimization technique for crack detection in cantilever beams,” Arabian J. Sci Eng., vol. 40, no. 11, pp. 3263–3272, 2015, doi: 10.1007/s13369-015-1661-6.
  5.  X.-L. Li, R. Serra, and O. Julien, “Effects of the Particle Swarm Optimization parameters for structural dynamic monitoring of cantilever beam,” in Surveillance, Vishno and AVE conferences. Lyon, France: INSA-Lyon, Université de Lyon, 2019. Available: https://hal.archives-ouvertes. fr/hal-02188562.
  6.  S. Das, S. Mondal, and S. Guchhait, “Particle swarm optimization-based characterization technique of nonproportional viscous damping parameter of a cantilever beam,” J. Vib. Control, p. 107754632110105, 2021, doi: 10.1177/10775463211010526.
  7.  J. Zolfaghari, “Optimization of dynamic response of cantilever beam by genetic algorithm,” in Nonlinear Approaches in Engineering Applications. Springer International Publishing, 2019, pp. 403–448, doi: 10.1007/978-3-030-18963-1_10.
  8.  M.A. Wahab, I. Belaidi, T. Khatir, A. Hamrani, Y.-L. Zhou, and M.A. Wahab, “Multiple damage detection in composite beams using particle swarm optimization and genetic algorithm,” Mechanics, vol. 23, no. 4, 2017, doi: 10.5755/j01.mech.23.4.15254.
  9.  Z. Xia, K. Mao, S. Wei, X. Wang, Y. Fang, and S. Yang, “Application of genetic algorithm-support vector regression model to predict damping of cantilever beam with particle damper,” J. Low Freq. Noise Vibr. Act. Control, vol. 36, no. 2, pp. 138–147, 2017, doi: 10.1177/0263092317711987.
  10.  M. Friswell and J. Mottershead, Finite Element Model Updating in Structural Dynamics, Springer, Dordrecht, 1995.
  11.  S. Garus and W. Sochacki, “Structure optimization of quasi one-dimensional acoustic filters with the use of a genetic algorithm,” Wave Motion, vol. 98, p. 102645, 2020, doi: 10.1016/j.wavemoti.2020.102645.
  12.  S. Mirjalili, “Genetic algorithm,” in Studies in Computational Intelligence. Springer, Cham, 2018, pp. 43–55, doi: 10.1007/978-3-319-93025-1_4.
  13.  W. Sochacki, J. Garus, J. Szmidla, M. Nabiałek, K. Błoch, P. Kwiatoń, B. Jeż, K. Jeż, and S. Garus, “Designing two-band mechanical wave filters using genetic algorithm,” Acta Phys. Pol. A, vol. 139, no. 5, pp. 479–482, May 2021, doi: 10.12693/aphyspola.139.479.
  14.  J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 – International Conference on Neural Networks. IEEE, 1995, doi: 10.1109/icnn.1995.488968.
  15.  D. Skrobek and D. Cekus, “Optimization of the operation of the anthropomorphic manipulator in a three-dimensional working space,” Eng. Optim., vol. 51, no. 11, pp. 1997–2010, 2019, doi: 10.1080/0305215x.2018.1564919.
  16.  P. Dziwiński, Ł. Bartczuk, and J. Paszkowski, “A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm,” J. Artif. Intell. Soft Comput. Res., vol. 10, no. 2, pp. 95– 111, Mar. 2020, doi: 10.2478/jaiscr-2020-0007.
  17.  S. Timoshenko, “On the transverse vibrations of bars of uniform cross section,” Philos. Mag., vol. 43, no. 253, pp. 125–131, Jan. 1922, doi: 10.1080/14786442208633855.
  18.  W. Sochacki, “The dynamic stability of a stepped cantilever beam with attachments,” J. Vibroeng., vol. 15, no. 1, pp. 280– 290, 2013.
  19.  M.H. Korayem and A. Nahavandi, “Analyzing the effect of the forces exerted on cantilever probe tip of atomic force microscope with tapering- shaped geometry and double piezoelectric extended layers in the air and liquid environments,” J. Sound Vib., vol. 386, pp. 251–264, 2017, doi: 10.1016/j.jsv.2016. 08.031.
  20.  B. Posiadała, “Use of lagrange multiplier formalism to analyze free vibrations of combined dynamical systems,” J. Sound Vib., vol. 176, no. 4, pp. 563–572, Sep. 1994, doi: 10.1006/jsvi.1994.1396.
  21.  R. Pytlarz, “Experimental modal analysis of the beam with the help of non-contact vibration measurement method,” Master’s thesis, Czestochowa University of Technology, Częstochowa, 2008.
  22.  Z. Abo-Hammour, O.A. Arqub, O. Alsmadi, S. Momani, and A. Alsaedi, “An optimization algorithm for solving systems of singular boundary value problems,” Appl. Math. Inf. Sci., vol. 8, no. 6, pp. 2809–2821, 2014, doi: 10.12785/amis/080617.
  23.  I. Rejer, “Classic genetic algorithm vs. genetic algorithm with aggressive mutation for feature selection for a brain-computer interface,” Przegląd Elektrotechniczny, vol. 1, no. 2, pp. 100–104, 2015, doi: 10.15199/48.2015.02.24.
  24.  M. Nikoo, M. Hadzima-Nyarko, E.K. Nyarko, and M. Nikoo, “Determining the natural frequency of cantilever beams using ANN and heuristic search,” Appl. Artif. Intell, vol. 32, no. 3, pp. 309–334, Mar. 2018, doi: 10.1080/08839514.2018.1448003.
  25.  A. Mayer, “A genetic algorithm with randomly shifted gray codes and local optimizations based on quadratic approximations of the fitness,” in Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, 2017, doi: 10.1145/3067695.3075968.
  26.  B. Ufnalski and L. Grzesiak, “Particle swarm optimization of artificial-neural-network-based on-line trained speed controller for battery electric vehicle,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 661–667, 2012, doi: 10.2478/v10175-0120059-9.
  27.  M. Szczepanik and T. Burczyński, “Swarm optimization of stiffeners locations in 2-d structures,” Bull. Pol. Acad. Sci. Tech. Sci.,, vol. 60, no. 2, pp. 241–246, 2012, doi: 10.2478/v10175012-0032-7.
  28.  J.C. Bansal, “Particle swarm optimization,” in Studies in Computational Intelligence. Springer, Cham, 2018, pp. 11–23, doi: 10.1007/978-3- 319-91341-4_2.
  29.  D. Cekus and P. Warys, “Identification of parameters of discretecontinuous models,” in AIP Conference Proceedings. AIP Publishing LLC, 2015, doi: 10.1063/1.4913110.
  30.  D. Cekus and D. Skrobek, “The influence of inertia weight on the particle swarm optimization algorithm,” J. Appl. Math. Comput. Mech., vol. 17, no. 4, pp. 5–11, Dec. 2018, doi: 10.17512/jamcm.2018.4.01.
  31.  A.R. Jordehi and J. Jasni, “Parameter selection in particle swarm optimisation: a survey,” J. Exp. Theor. Artif. Intell., vol. 25, no. 4, pp. 527–542, Dec. 2013, doi: 10.1080/0952813x.2013.782348.
Go to article

Authors and Affiliations

Dawid Cekus
1
ORCID: ORCID
Paweł Kwiatoń
1
ORCID: ORCID
Michal Šofer
2
ORCID: ORCID
Pavel Šofer
3
ORCID: ORCID

  1. Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-201 Częstochowa, Poland
  2. Department of Applied Mechanics, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
  3. Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper presents arch structures modeled by finite elements in which the nodes can be flexibly connected. Two-node curved elements with three degrees of freedom at each node were used. Exact shape functions were adopted to obtain stiffness and consistent mass matrices but they were modified by introducing rotational flexibility in the boundary nodes. Calculations of statics and dynamics of arches with different positions of flexible joints and different values of rotational stiffness of the joints were carried out.
Go to article

Authors and Affiliations

Magdalena Łasecka-Plura
1
ORCID: ORCID
Zdzisław Pawlak
1
ORCID: ORCID
Martyna Żak-Sawiak
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Structural Analysis, ul. Piotrowo 5, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Although the study of oscillatory motion has a long history, going back four centuries, it is still an active subject of scientificr esearch. In this review paper prospective research directions in the field of mechanical vibrations were pointed out. Four groups of important issues in which advanced research is conducted were discussed. The first are energy harvester devices, thanks to which we can obtain or save significant amounts of energy, and thus reduce the amount of greenhouse gases. The next discussed issue helps in the design of structures using vibrations and describes the algorithms that allow to identify and search for optimal parameters for the devices being developed. The next section describes vibration in multi-body systems and modal analysis, which are key to understanding the phenomena in vibrating machines. The last part describes the properties of granulated materials from which modern, intelligent vacuum-packed particles are made. They are used, for example, as intelligent vibration damping devices.
Go to article

Bibliography

  1.  K. Di et al., “Dielectric elastomer generator for electromechanical energy conversion: A mini review,” Sustainability, vol. 13, p. 9881, 2021, doi: 10.3390/su13179881.
  2.  D. Wang, J. Mo, X. Wang, H. Ouyang, and Z. Zhou, “Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration,” Energy Convers. Manage., vol. 171, pp. 1134–1149, 2018, doi: 10.1016/ j.enconman.2018.06.052.
  3.  A. Anand, S. Naval, P.K. Sinha, N.K. Das, and S. Kundu, “Effects of coupling in piezoelectric multi-beam structure,” Microsyst. Technol., vol. 26, no. 4, pp. 1235–1252, 2019, doi: 10.1007/s00542-019-04653-3.
  4.  A. Anand and S. Kundu, “Design of a spiral-shaped piezoelectric energy harvester for powering pacemakers,” Nanomater. Energy, vol. 8, no. 2, pp. 139–150, 2019, doi: 10.1680/jnaen.19.00016.
  5.  S.B. Ayed, A. Abdelkefi, F. Najar, and M.R. Hajj, “Design and performance of variable-shaped piezoelectric energy harvesters,” J. Intell. Mater. Syst. Struct., vol. 25, no. 2, pp. 174– 186, 2013, doi: 10.1177/1045389x13489365.
  6.  S. Kundu and H.B. Nemade, “Piezoelectric vibration energy harvester with tapered substrate thickness for uniform stress,” Microsyst. Technol., vol. 27, no. 1, pp. 105–113, 2020, doi: 10.1007/s00542-020-04922-6.
  7.  S. Paquin and Y. St-Amant, “Improving the performance of a piezoelectric energy harvester using a variable thickness beam,” Smart Mater. Struct., vol. 19, no. 10, p. 105020, 2010, doi: 10.1088/0964-1726/19/10/105020.
  8.  J. Zhang, X. Xie, G. Song, G. Du, and D. Liu, “A study on a near-shore cantilevered sea wave energy harvester with a variable cross section,” Energy Sci. Eng., vol. 7, no. 6, pp. 3174– 3185, 2019, doi: 10.1002/ese3.489.
  9.  R. Hosseini and M. Nouri, “Shape design optimization of unimorph piezoelectric cantilever energy harvester,” J. Comput. Appl. Mech., vol. 47, no. 2, 2016, doi: 10.22059/jcamech.2017. 224975.126.
  10.  A. Anand, S. Pal, and S. Kundu, “Bandwidth and power enhancement in the MEMS based piezoelectric energy harvester using magnetic tip mass,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e137509, 2022, doi: 10.24425/bpasts.2021.137509.
  11.  X. Li et al., “Investigation to the influence of additional magnets positions on four magnet bi-stable piezoelectric energy harvester,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140151, 2022, doi: 10.24425/bpasts.2022.140151.
  12.  P. Yingyong, P. Thainiramit, S. Jayasvasti, N. ThanachIssarasak, and D. Isarakorn, “Evaluation of harvesting energy from pedestrians using piezoelectric floor tile energy harvester,” Sens. Actuators A, vol. 331, p. 113035, 2021, doi: 10.1016/j.sna. 2021.113035.
  13.  P. Firoozy, S.E. Khadem, and S.M. Pourkiaee, “Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam,” Int. J. Eng. Sci., vol. 111, pp. 113–133, 2017, doi: 10.1016/j.ijengsci.2016.11.006.
  14.  Y. Wu, J. Qiu, S. Zhou, H. Ji, Y. Chen, and S. Li, “A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting,” Appl. Energy, vol. 231, pp. 600–614, 2018, doi: 10.1016/j.apenergy.2018. 09.082.
  15.  J. He et al., “Triboelectric piezoelectric electromagnetic hybrid nanogenerator for high efficient vibration energy harvesting and self powered wireless monitoring system,” Nano Energy, vol. 43, pp. 326–339, 2018, doi: 10.1016/j.nanoen.2017.11.039.
  16.  D. Zhu, S. Roberts, M.J. Tudor, and S.P. Beeby, “Design and experimental characterization of a tunable vibration-based electromagnetic micro- generator,” Sens. Actuators A, vol. 158, no. 2, pp. 284–293, Mar. 2010, doi: 10.1016/j.sna.2010.01.002.
  17.  W.-J. Su, J. Zu, and Y. Zhu, “Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester,” J. Intell. Mater. Syst. Struct., vol. 25, no. 4, pp. 430–442, Aug. 2013, doi: 10.1177/1045389x13498315.
  18.  D. Guo, X.F. Zhang, H. Y. Li, and H. Li, “Piezoelectric energy harvester array with magnetic tip mass,” in Volume 4B: Dynamics, Vibration, and Control. American Society of Mechanical Engineers, Nov. 2015, doi: 10.1115/imece2015-51044.
  19.  M. Ostrowski, B. Błachowski, M. Bocheński, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/BPASTS.2020.135384.
  20.  S.-C. Kim, J.-G. Kim, Y.-C. Kim, S.-J. Yang, and H. Lee, “A study of electromagnetic vibration energy harvesters: Design optimization and experimental validation,” Int. J. Precis. Eng. Manuf. Green Technol., vol. 6, no. 4, pp. 779–788, Jul. 2019, doi: 10.1007/s40684-019- 00130-4.
  21.  X. Wang et al., “Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters,” Mech. Syst. Sig. Process., vol. 52-53, pp. 672–684, Feb. 2015, doi: 10.1016/j.ymssp.2014.07.007.
  22.  K. Kecik, A. Mitura, S. Lenci, and J. Warminski, “Energy harvesting from a magnetic levitation system,” Int. J. Non Linear Mech., vol. 94, pp. 200–206, Sep. 2017, doi: 10.1016/j.ijnon linmec.2017.03.021.
  23.  A. Preumont, Mechatronics – Dynamics of Electromechanical and Piezoelectric Systems. Springer Netherlands, 2006, doi: 10.1007/1-4020- 4696-0.
  24.  I. Shahosseini and K. Najafi, “Mechanical amplifier for translational kinetic energy harvesters,” J. Phys. Conf. Ser., vol. 557, p. 012135, Nov. 2014, doi: 10.1088/1742-6596/557/1/012135.
  25.  H. Fu, S. Theodossiades, B. Gunn, I. Abdallah, and E. Chatzi, “Ultra-low frequency energy harvesting using bi-stability and rotary-translational motion in a magnet-tethered oscillator,” Nonlinear Dyn., vol. 101, no. 4, pp. 2131–2143, Sep. 2020, doi: 10.1007/s11071-020-05889-9.
  26.  H. Zhang, L. R. Corr, and T. Ma, “Issues in vibration energy harvesting,” J. Sound Vib., vol. 421, pp. 79–90, May 2018, doi: 10.1016/j. jsv.2018.01.057.
  27.  M. Mösch, G. Fischerauer, and D. Hoffmann, “A self-adaptive and self-sufficient energy harvesting system,” Sensors, vol. 20, no. 9, p. 2519, Apr. 2020, doi: 10.3390/s20092519.
  28.  M. Ostrowski, B. Blachowski, B. Poplawski, D. Pisarski, G. Mikulowski, and L. Jankowski, “Semi-active modal control of structures with lockable joints: general methodology and applications,” Struct. Control Health Monit., vol. 28, no. 5, p. e2710, Feb. 2021, doi: 10.1002/ stc.2710.
  29.  Y. Zhao, M. Alashmori, F. Bi, and X. Wang, “Parameter identification and robust vibration control of a truck driver’s seat system using multi- objective optimization and genetic algorithm,” Applied Acoustics, vol. 173, p. 107697, 2021, doi: 10.1016/j.apacoust.2020.107697.
  30.  S.S. Kessler, S. Spearing, M.J. Atalla, C.E. Cesnik, and C. Soutis, “Damage detection in composite materials using frequency response methods,” Composites Part B, vol. 33, no. 1, pp. 87–95, 2002, doi: 10.1016/S1359-8368(01)00050-6.
  31.  R. Hou and Y. Xia, “Review on the new development of vibration-based damage identification for civil eng. struct.: 2010– 2019,” J. Sound Vib., vol. 491, p. 115741, 2021, doi: 10.1016/ j.jsv.2020.115741.
  32.  K. Dziedziech, P. Czop, W.J. Staszewski, and T. Uhl, “Combined non-parametric and parametric approach for identification of time-variant systems,” Mech. Syst. Sig. Process., vol. 103, pp. 295–311, 2018, doi: 10.1016/j.ymssp.2017.10.020.
  33.  A. Abusoua and M. F. Daqaq, “On using a strong high-frequency excitation for parametric identification of nonlinear systems,” J. Vib. Acoust., vol. 139, no. 5, p. 051012, 2017, doi: 10.1115/ 1.4036504.
  34.  B. Zhu, Y. Dong, and Y. Li, “Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance,” Nonlinear Dyn., vol. 94, no. 4, pp. 2575–2612, 2018, doi: 10.1007/s11071-018-4511-8.
  35.  F. Beltran-Carbajal and G. Silva-Navarro, “Generalized nonlinear stiffness identification on controlled mechanical vibrating systems,” Asian J. Control, vol. 21, no. 3, pp. 1281–1292, 2018, doi: 10.1002/asjc.1807.
  36.  B.S. Razavi, M.R. Mahmoudkelayeh, and S.S. Razavi, “Damage identification under ambient vibration and unpredictable signal nature,” J. Civ. Struct. Health Monit., vol. 11, no. 5, pp. 1253–1273, 2021, doi: 10.1007/s13349-021-00503-x.
  37.  A.C. Altunıs¸ık, F.Y. Okur, and V. Kahya, “Modal parameter identification and vibration based damage detection of a multiple cracked cantilever beam,” Eng. Fail. Anal., vol. 79, pp. 154–170, 2017, doi: 10.1016/j.engfailanal.2017.04.026.
  38.  K. Ciecieląg, A. Skoczylas, J. Matuszak, K. Zaleski, and K. Kęcik, “Defect detection and localization in polymer composites based on drilling force signal by recurrence analysis,” Measurement, vol. 186, p. 110126, 2021, doi: 10.1016/j.measurement.2021.110126.
  39.  M. Bowkett and K. Thanapalan, “Comparative analysis of failure detection methods of composites materials’ systems,” Syst. Sci. Control Eng., vol. 5, no. 1, pp. 168–177, 2017, doi: 10.1080/ 21642583.2017.1311240.
  40.  D. Cekus, P. Kwiatoń, M. Šofer, and P. Šofer, “Application of heuristic methods to identification of the parameters of discretecontinuous models,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140150, 2022, doi: 10.24425/bpasts.2022.140150.
  41.  S. Garus, W. Sochacki, M. Kubanek, and M. Nabiałek, “Minimizing the number of layers of the quasi one-dimensional phononic structures,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e139394, 2022, doi: 10.24425/bpasts.2021.139394.
  42.  A. Cancelli, S. Laflamme, A. Alipour, S. Sritharan, and F. Ubertini, “Vibration-based damage localization and quantification in a pretensioned concrete girder using stochastic subspace identification and particle swarm model updating,” Struct. Health Monit., vol. 19, no. 2, pp. 587–605, 2019, doi: 10.1177/1475 921718820015.
  43.  S. Barman, M. Mishra, D. Maiti, and D. Maity, “Vibration-based damage detection of structures employing bayesian data fusion coupled with TLBO optimization algorithm,” Struct. Multidiscip. Optim., vol. 64, pp. 2243–2266, 2021, doi: 10.1007/s00158021-02980-6.
  44.  S. Das, S. Mondal, and S. Guchhait, “Particle swarm optimization-based characterization technique of nonproportional viscous damping parameter of a cantilever beam,” J. Vib. Control, p. 107754632110105, 2021, doi: 10.1177/1077546321101 0526.
  45.  R. Zenzen, I. Belaidi, S. Khatir, and M. A. Wahab, “A damage identification technique for beam-like and truss structures based on frf and bat algorithm,” Comptes Rendus Mécanique, vol. 346, pp. 1253–1266, 2018, doi: 10.1016/j.crme.2018.09.003.
  46.  M.-S. Huang, M. Gül, and H.-P. Zhu, “Vibration-based structural damage identification under varying temperature effects,” J. Aerosp. Eng., vol. 31, no. 3, p. 04018014, 2018, doi: 10.1061/(asce)as.1943-5525.0000829.
  47.  Y. Zhang, Y. Miyamori, S. Mikami, and T. Saito, “Vibrationbased structural state identification by a 1-dimensional convolutional neural network,” Comput.-Aided Civ. Infrastruct. Eng., vol. 34, no. 9, pp. 822–839, 2019, doi: 10.1111/mice.12447.
  48.  H. Nick and A. Aziminejad, “Vibration-based damage identification in steel girder bridges using artificial neural network under noisy conditions,” J. Nondestr. Eval., vol. 40, no. 1, p. 15, 2021, doi: 10.1007/s10921-020-00744-8.
  49.  Y. Yang, C. Dorn, C. Farrar, and D. Mascareñas, “Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements,” Eng. Struct., vol. 207, p. 110183, 2020, doi: 10.1016/j.engstruct.2020.110183.
  50.  Z. Fu and J. He, Modal analysis, ser. 1st edition. Delhi, Oxford: Butterworth-Heinemann, 2001.
  51.  R. Craig and A. Kurdila, Fundamentals of Struct. Dyn., ser. 2nd edition. Hoboken, New Jersey: Wiley, 2006.
  52.  D. de Klerk, D.J. Rixen, and S.N. Voormeeren, “General framework for dynamic substructuring: History, review and classification of techniques,” AIAA Journal, vol. 46, no. 5, pp. 1169–1181, 2008, doi: 10.2514/1.33274.
  53.  J. Roy Craig, Coupling of substructures for dynamic analyses – An overview, 2000, doi: 10.2514/6.2000-1573.
  54.  A. Shabana, Dynamics of Multibody Systems, ser. 4th edition. Cambridge, Chicago: Cambridge University Press, 2013.
  55.  B. Rong, X. Rui, L. Tao, and G. Wang, “Theoretical modeling and numerical solution methods for flexible multibody system dynamics,” Nonlinear Dyn., vol. 98, p. 1519–1553, 2019, doi: 10.1007/s11071-019-05191-3.
  56.  V. Sonneville, M. Scapolan, M. Shan, and O. Bauchau, “Modal reduction procedures for flexible multibody dynamics,” Multibody Sys.Dyn., vol. 51, pp. 377–418, 2021, doi: 10.1007/s11044020-09770-w.
  57.  J. Kim, J. Han, H. Lee, and S. Kim, “Flexible multibody dynamics using coordinate reduction improved by dynamic correction,” Multibody Sys.Dyn., vol. 42, pp. 411–429, 2018, doi: 10.1007/s11044-017-9607-2.
  58.  A. Cammarata, “Global modes for the reduction of flexible multibody systems,” Multibody Sys.Dyn., vol. 53, pp. 59–83, 2021, doi: 10.1007/ s11044-021-09790-0.
  59.  Y. Tang, H. Hu, and Q. Tian, “Model order reduction based on successively local linearizations for flexible multibody dynamics,” Int. J. Numer. Methods Eng., vol. 118, no. 3, pp. 159–180, 2019, doi: 10.1002/nme.6011.
  60.  I. Palomba and R. Vidoni, “Flexible-link multibody system eigenvalue analysis parameterized with respect to rigid-body motion,” Applied Sciences, vol. 9, no. 23, p. 5156, 2019, doi: 10.3390/app9235156.
  61.  K. Worden and P. Green, “A machine learning approach to nonlinear modal analysis,” Mech. Syst. Sig. Process., vol. 84, pp. 34–53, 2017, doi: 10.1016/j.ymssp.2016.04.029.
  62.  G. Kerschen, Modal Analysis of Nonlinear Mechanical Systems, ser. CISM International Centre for Mechanical Sciences. Vienna, Udine: Springer, 2014.
  63.  G. Kerschen, M. Peeters, J. C. Golinval, and C. Stéphan, “Nonlinear modal analysis of a full-scale aircraft,” Journal of Aircraft, vol. 50, no. 5, pp. 1409–1419, 2013, doi: 10.2514/1.C031918.
  64.  A. Albu-Schäffer and C. Della Santina, “A review on nonlinear modes in conservative mechanical systems,” Annu. Rev. Control, vol. 50, pp. 49–71, 2020, doi: 10.1016/j.arcontrol.2020.10.002.
  65.  W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing, ser. 1st edition. Heverlee, Belgium: Katholieke Universiteit Leuven, 2007.
  66.  E. Orlowitz and A. Brandt, “Comparison of experimental and operational modal analysis on a laboratory test plate,” Measurement, vol. 102, pp. 121–130, 2017, doi: 10.1016/j.measurement. 2017.02.001.
  67.  F. Zahid, Z. Ong, and S. Khoo, “A review of operational modal analysis techniques for in-service modal identification,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, p. 398, 2020, doi: 10.1007/s40430020-02470-8.
  68.  D. Montanari, A. Agostini, M. Bonini, G. Corti, and C. Ventisette, “The use of empirical methods for testing granular materials in analogue modelling,” Materials, vol. 10, no. 6, p. 635, Jun. 2017, doi: 10.3390/ma10060635.
  69.  B. Kou et al., “Granular materials flow like complex fluids,” Nature, vol. 551, no. 7680, pp. 360–363, Nov. 2017, doi: 10.1038/ nature24062.
  70.  C. Sandeep and K. Senetakis, “Effect of young’s modulus and surface roughness on the inter-particle friction of granu lar materials,” Materials, vol. 11, no. 2, p. 217, Jan. 2018, doi: 10.3390/ma11020217.
  71.  A. Wautier et al., “Multiscale modelling of granular materials in boundary value problems accounting for mesoscale mechanisms,” Comput. Geotech., vol. 134, p. 104143, 2021, doi: 10.1016/j.compgeo.2021.104143.
  72.  G. Recchia, H. Cheng, V. Magnanimo, and L. La Ragione, “Failure in granular materials based on acoustic tensor: a numerical analysis,” EPJ Web Conf. Powders and Grains, vol. 249, p. 10005, 2021.
  73.  J. Irazábal, F. Salazar, and E. Oñate, “Numerical modelling of granular materials with spherical discrete particles and the bounded rolling friction model. Application to railway ballast,” Comput. Geotech., vol. 85, pp. 220–229, 2017, doi: 10.1016/ j.compgeo.2016.12.034.
  74.  S. Zhao, T.M. Evans, and X. Zhou, “Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects,” Int. J. Solids Struct., vol. 150, pp. 268–281, 2018, doi: 10.1016/j.ijsolstr.2018.06.024.
  75.  Z. Nie, C. Fang, J. Gong, and Z. Liang, “Dem study on the effect of roundness on the shear behaviour of granular materials,” Comput. Geotech., vol. 121, p. 103457, 2020, doi: 10.1016/ j.compgeo.2020.103457.
  76.  J. Huang, S. Hu, S. Xu, and S. Luo, “Fractal crushing of granular materials under confined compression at different strain rates,” Int. J. Impact Eng., vol. 106, pp. 259–265, 2017, doi: 10.1016/ j.ijimpeng.2017.04.021.
  77.  S. Larsson, J.M.R. Prieto, G. Gustafsson, H.-Å. Häggblad, and P. Jonsén, “The particle finite element method for transient granular material flow: modelling and validation,” Comput. Part. Mech., vol. 8, no. 1, pp. 135–155, Feb. 2020, doi: 10.1007/ s40571-020-00317-6.
  78.  C. Zhai, E. Herbold, S. Hall, and R. Hnourley, “Particle rotations and energy dissipation during mechanical compression of granular materials,” J. Mech. Phys. Solids, vol. 129, pp. 19–38, 2019, doi: 10.1016/j.jmps.2019.04.018.
  79.  S. Liu, Z. Nie, W. Hu, J. Gong, and P. Lei, “Effect of parti cle type on the shear behaviour of granular materials,” Particuology, vol. 56, pp. 124–131, 2021, doi: 10.1016/j.partic.2020. 11.001.
  80.  W. Fei, G.A. Narsilio, J.H. van der Linden, and M.M. Disfani, “Quantifying the impact of rigid interparticle structures on heat transfer in granular materials using networks,” Int. J. Heat Mass Transfer, vol. 143, p. 118514, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118514.
  81.  A.M. Druckrey, K.A. Alshibli, and R.I. Al-Raoush, “Discrete particle translation gradient concept to expose strain localisation in sheared granular materials using 3d experimental kinematic measurements,” Géotechnique, vol. 68, no. 2, pp. 162–170, Feb. 2018, doi: 10.1680/ jgeot.16.p.148.
  82.  R. Gupta, S. Salager, K. Wang, and W. Sun, “Open-source support toward validating and falsifying discrete mechanics models using synthetic granular materials – part i: Experimental tests with particles manufactured by a 3d printer,” Acta Geotech., vol. 14, no. 4, pp. 923–937, Jul. 2018, doi: 10.1007/s11440-0180703-0.
  83.  Y. Sun, S. Nimbalkar, and C. Chen, “Particle breakage of granular materials during sample preparation,” J. Rock Mech. Geotech. Eng., vol. 11, no. 2, pp. 417–422, 2019, doi: 10.1016/j.jrmge.2018.12.001.
  84.  T. Sweijen, B. Chareyre, S. Hassanizadeh, and N. Karadimitriou, “Grain-scale modelling of swelling granular materials; application to super absorbent polymers,” Powder Technol., vol. 318, pp. 411–422, 2017, doi: 10.1016/j.powtec.2017.06.015.
  85.  H. M. Beakawi Al-Hashemi and O.S. Baghabra Al-Amoudi, “A review on the angle of repose of granular materials,” Powder Technol., vol. 330, pp. 397–417, 2018, doi: 10.1016/j.powtec.2018.02.003.
  86.  P. Bartkowski, H. Bukowiecki, F. Gawiński, and R. Zalewski, “Adaptive crash energy absorber based on a granular jamming mechanism,” Bull. Pol. Acad. Sci. Tech. Sci., p. e139002, 2021.
  87.  P. Bartkowski, R. Zalewski, and P. Chodkiewicz, “Parameter identification of bouc-wen model for vacuum packed particles based on genetic algorithm,” Arch. Civ. Mech. Eng., vol. 19, no. 2, pp. 322–333, 2019, doi: 10.1016/j.acme.2018. 11.002.
  88.  P. Bartkowski, G. Suwała, and R. Zalewski, “Temperature and strain rate effects of jammed granular systems: experiments and modelling,” Granular Matter, vol. 23, no. 4, p. 79, Aug. 2021, doi: 10.1007/s10035-021-01138-x.
Go to article

Authors and Affiliations

Sebastian Garus
1
ORCID: ORCID
Bartłomiej Błachowski
2
ORCID: ORCID
Wojciech Sochacki
1
ORCID: ORCID
Anna Jaskot
3
ORCID: ORCID
Paweł Kwiatoń
1
ORCID: ORCID
Mariusz Ostrowski
2
ORCID: ORCID
Michal Šofer
4
ORCID: ORCID
Tomasz Kapitaniak
5
ORCID: ORCID

  1. Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
  2. Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
  3. Faculty of Civil Engineering, Czestochowa University of Technology, Poland
  4. Faculty of Mechanical Engineering, VŠB – Technical University of Ostrava, Czech Republic
  5. Division of Dynamics, Lodz University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article introduces a method for selecting the best clamping conditions to obtain vibration reduction during the milling of large-size workpieces. It is based on experimental modal analysis performed for a set of assumed, fixing conditions of a considered workpiece to identify frequency response functions (FRFs) for each tightening torque of the mounting screws. Simulated plots of periodically changing nominal cutting forces are then calculated. Subsequently, by multiplying FRF and spectra of cutting forces, a clamping selection function (CSF) is determined, and, thanks to this function, vibration root mean square (RMS) is calculated resulting in the clamping selection indicator (CSI) that indicates the best clamping of the workpiece. The effectiveness of the method was evidenced by assessing the RMS value of the vibration level observed in the time domain during the real-time face milling process of a large-sized exemplary item. The proposed approach may be useful for seeking the best conditions for fixing the workpiece on the table.
Go to article

Authors and Affiliations

Krzysztof J. Kaliński
1
ORCID: ORCID
Marek A. Galewski
1
ORCID: ORCID
Natalia Stawicka-Morawska
1
ORCID: ORCID
Krzysztof Jemielniak
2
ORCID: ORCID
Michał R. Mazur
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design,Gdansk, 80-233, Poland
  2. Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Institute of Manufacturing Processes,Warsaw, 00-661, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis of natural vibrations of typical façade scaffolding. Three Finite Element Method models with different levels of accuracy of the real structure of the scaffolding representation were used. Modal analysis was carried out for each of these models. The obtained frequencies and mode shapes were compared with the results from the measurements performed on the full-scale scaffolding. The authors of the paper point out the difficulties arise while modelling such structures, and suggest ways to improve the accuracy of scaffolding computational models.

Go to article

Authors and Affiliations

P. Jamińska-Gadomska
J. Bęc
T. Lipecki
A. Robak
Download PDF Download RIS Download Bibtex

Abstract

Paintings inevitably bear severe mechanical loads during transportation.Understanding the dynamic characteristics of paintings helps to avoid damage during transportation and to effectively slow down their aging.In this contribution, the vibration characteristics of canvas and primed canvas of paintings and their influencing factors are studied experimentally.For this reason, two dummy paintings with canvas in a common orientation and a tilted orientation are investigated, and an experimental setup using an excitation mechanism and a laser Doppler vibrometer is developed.In order to avoid changes of the modal parameters related to humidity or temperature, all experiments were conducted in a climate box.The modal parameters of dummy paintings are identified by means of experimental modal analysis.Also, the difference in modal properties of the two dummy paintings before and after applying the primer are compared.The identified modal parameters are used to reconstruct their eigenmodes.From the identified modal parameters a numerical model is derived, which is then compared to measurements.The comparison shows a good agreement, hence is a hint for the correctness of assuming a modal structure and the quality of the modal parameter identification.Lastly, with the help of the climate box, the influences of humidity and temperature on the eigenfrequencies of dummy paintings are studied.
Go to article

Bibliography

[1] M.F. Mecklenburg. Art in transit: Studies in the transport of paintings. In Proceedings of International Conference on the Packing and Transportation of Paintings, London, 1991.
[2] E. Tsiranidou, E. Bernikola, V. Tornari, T. Fankhauser, M. Läuchli, C. Palmbach, and N. Bäschlin. Holographic monitoring of transportation effects on canvas paintings. SPIE Newsroom, pages 1–3, 2011. doi: 10.1117/2.1201106.003767 .
[3] N. Hein. Die materielle Veränderung von Kunst durch Transporte–Monitoring und Transportschadensbewertung an Gemälden durch das Streifenprojektionsverfahren. Ph.D. Thesis, Staatliche Akademie der Bildenden Künste Stuttgart, Stuttgart, 2015. (in German).
[4] C. Krekel and N. Hein. Kunsttransport: Gibt es eine Grenze zwischen Schaden und beschleunigter Alterung? In Proceedings of ICOM International Council of Museums, Köln, volume 4, pages 12–17, 2014.
[5] C. Krekel and Heinemann C. Wenn Kunstwerke auf Reisen gehen: Mikroschäden mithilfe hochauflösender 3D-Modelle finden und dokumentieren. Das Magazin der Deutschen Forschungsgemeinschaft, 4:12–17, 2020. (in German).
[6] K. Kracht. Die Untersuchung des Schwingungsverhaltens von Ölgemälden in Abhängigkeit der Alterung. Ph.D. Thesis, Technische Universität, Berlin, 2011. (in German).
[7] A. Gmach. Erschütternde Umstände – Schwingungsbelastung von Kunst- und Bauwerken. M.Sc. Thesis, Technische Universität München, 2010. (in German).
[8] M. Läuchli, N. Bäschlin, A. Hoess, T. Fankhauser, C. Palmbach, and M. Ryser. Packing systems for paintings: Damping capacity in relation to transport-induced shock and vibration. In Proceedings of ICOM-CC 17th Trienniel Conference, Melbourne, pages 1–9, 15–19 Sep. 2014.
[9] K. Kracht and T. Kletschkowski. From art to engineering: a technical review on the problem of vibrating canvas part i: excitation and efforts of vibration reduction. Facta Universitatis, Series: Mechanical Engineering, 15(1):163–182, 2017. doi: /10.22190/FUME161010009K .
[10] C. Palmbach. Messung transportbedingter Schwingungen an textilen Bildträgern. M.Sc. Thesis, 2007. (in German).
[11] C. Heinemann, P. Ziegler, N. Hein, C. Krekel, and P. Eberhard. Objektiviertes Gemäldetransportmonitoring unter Berücksichtigung mechanischer Einflussfaktoren. Zeitschrift für Kunsttechnologie und Konservierung, 33(1):178–198, 2019. (in German).
[12] P.G. Chiriboga Arroyo. Finite Element Modeling of Vibrations in Canvas Paintings. Ph.D. Thesis, Delft University of Technology, Delft, 2013.
[13] S. Michalski. Paintings: Their response to temperature, relative humidity, shock, and vibration. Art in Transit: Studies in the Transport of Paintings, pages 223–248, 1991.
[14] M.F. Mecklenburg. Some aspects of the mechanical behavior of fabric supported paintings. Smithsonian Institution, 1982.
[15] E.W. Hagan, M.N. Charalambides, C.T. Young, T.J. Learner, and S. Hackney. Tensile properties of latex paint films with TiO2 pigment. Mechanics of Time-Dependent Materials, 13(2):149–161, 2009. doi: 10.1007/s11043-009-9076-y .
[16] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 10 edition, 2009.
[17] D.J. Ewins. Modal Testing: theory, practice and application. John Wiley & Sons, 2009.
[18] R.J. Allemang and D.L. Brown. A complete review of the complex mode indicator function (CMIF) with applications. In Proceedings of ISMA International Conference on Noise and Vibration Engineering, Katholieke Universiteit Leuven, Belgium, pages 3209–3246, 2006.
[19] N.R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, 3 edition, 1998.
Go to article

Authors and Affiliations

Yulong Gao
ORCID: ORCID
Pascal Ziegler
ORCID: ORCID
Carolin Heinemann
ORCID: ORCID
Eva Hartlieb
ORCID: ORCID
Peter Eberhard
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

It is assumed in the paper that the signals in the enclosure in a transient period are similar to a noise induced by vehicles, tracks, cars, etc. passing by. The components of such signals usually points out specific dynamic processes running during the observation or measurements. In order to choose the best method of analysis of these phenomena, an acoustic field in a closed space with a sound source inside is created. Acoustic modes of this space influence the sound field. Analytically, the modal analyses describe the above mentioned phenomena. The experimental measurements were conducted in the room that might comprise the closed space with known boundary conditions and the sound source Brüel & Kjær Omni-directional type 4292 inside. To record sound signals before the field's steady state was reached, the microphone type 4349 and the 4-channel frontend 3590 had been used. The obtained signals have been analysed by using two approaches, i.e. Fourier and the wavelet analysis, with the emphasis on their efficiency and the capability to recognise important details of the signal. The results obtained for the enclosure might lead to the formulation of a methodology for an extended investigation of a rail track or vehicles dynamics.
Go to article

Authors and Affiliations

Andrzej Błażejewski
Piotr Kozioł
Maciej Łuczak
Download PDF Download RIS Download Bibtex

Abstract

In the current study, investigations are made to control the MB truck cabin interior noise by reducing noise in the transmission path. The main sources of cabin noise include the engine, exhaust system, air inlet system, driveline system, and tyres (especially at higher speeds). Furthermore, vibrations of the body and interior parts of the truck may significantly impact the overall in-cabin sound level. Noise is transmitted into the cabin via air (airborne noise) and cabin structure (structure-borne noise). In the noise treatment phase, noise transmission paths are considered. A viscoelastic layer damping material is used to reduce the vibration amplitude of the cabin back wall. The overall loss factor and vibration amplitude reduction ratio for the structure treated is calculated. Computational results are then compared with the values obtained by the experimental modal analysis results. Choosing the suitable material and thickness can significantly reduce the vibration amplitude. A sound barrier, silicon adhesive, and foam are also utilised for noise control in the transmission path. The effectiveness of the mentioned acoustic materials on cabin noise reduction is evaluated experimentally. The experimental SPL values are reported in the frequency range of 20 Hz–20 kHz based on a 1/3 octave filter. The experimental results show that using acoustics materials reduces the overall in-cabin sound level for a wide range of frequencies.
Go to article

Authors and Affiliations

Nader Mohammadi
1

  1. Department of Mechanical Engineering, Islamic Azad University, Parand Branch, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

Functionally Graded Materials (FGM) are extensively employed for hip plant component material due to their certain properties in a specific design to achieve the requirements of the hip-joint system. Nevertheless, if there are similar properties, it doesn’t necessarily indicate that the knee plant is efficiently and effectively working. Therefore, it is important to develop an ideal design of functionally graded material femoral components that can be used for a long period. A new ideal design of femoral prosthesis can be introduced using functionally graded fiber polymer (FGFP) which will reduce the stress shielding and the corresponding stresses present over the interface. Herein, modal analysis of the complete hip plant part is carried out, which is the main factor and to date, very few research studies have been found on it. Moreover, this enhances the life of hip replacement, and the modal, harmonic, and fatigue analysis determines the pre-loading failure phenomena due to the vibrational response of the hip. This study deals with the cementless hip plant applying the finite element analysis (FEA) model in which geometry is studied, and the femoral bone model is based in a 3D scan.
Go to article

Bibliography

[1] S. Gross and E.W. Abel. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics, 34(8):995–1003, 2001. doi: 10.1016/s0021-9290(01)00072-0.
[2] D. Lin, Q. Li, W. Li, S. Zhou, and M.V. Swain. Design optimization of functionally graded dental implant for bone remodeling. Composites Part B: Engineering, 40(7):668–675, 2009. doi: 10.1016/j.compositesb.2009.04.015.
[3] G. Jin, M. Takeuchi, S. Honda, T. Nishikawa, and H. Awaji. Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing. Materials Chemistry and Physics, 89(2-3):238–243, 2005. doi: 10.1016/j.matchemphys.2004.03.031.
[4] E. Yılmaz, A. Gökçe, F. Findik, H.O. Gulsoy, and O. İyibilgin. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 87:59–67, 2018. doi: 10.1016/j.jmbbm.2018.07.018.
[5] A.T. Şensoy. M. Çolak, I. Kaymaz, and F. Findik. Optimal material selection for total hip implant: a finite element case study. Arabian Journal for Science and Engineering, 44:10293--10301, 2019. doi: 10.1007/s13369-019-04088-y.
[6] T.A. Enab and N.E. Bondok. Material selection in the design of the tibia tray component of cemented artificial knee using finite element method. Materials and Design, 44:454–460, 2013. doi: 10.1016/j.matdes.2012.08.017.
[7] H. Weinans, R.Huiskes, and H.J. Grootenboer. The behavior of adaptive bone-remodeling simulation models. Journal of Biomechanics, 25(12):1425–1441, 1992. doi: 10.1016/0021-9290(92)90056-7.
[8] J.A. Simões and A.T. Marques. Design of a composite hip femoral prosthesis. Materials & Design, 26(5):391–401, 2005. doi: 10.1016/j.matdes.2004.07.024.
[9] S. Tyagi and S.K. Panigrahi. Transient analysis of ball bearing fault simulation using finite element method. Journal of The Institution of Engineers (India): Series C, 95:309–318, 2014. doi: 10.1007/s40032-014-0129-x.
[10] I.S. Jalham. Computer-aided quality function deployment method for material selection. International Journal of Computer Applications in Technology, 26((4):190–196, 2006. doi: 10.1504/IJCAT.2006.010764.
[11] E. Karana, P. Hekkert, and P. Kandachar. Material considerations in product design: A survey on crucial material aspects used by product designers. Materials & Design, 29(6):1081–1089, 2008. doi: 10.1016/j.matdes.2007.06.002.
[12] M.F. Ashby. Materials Selection in Mechanical Design. Butterworth-Heinemann, Oxford, 1995.
[13] C. Vezzoli and E. Manzini. Environmental complexity and designing activity. In: Design for Environmental Sustainability, pages 215–217. Springer, London, 2008. doi: 10.1007/978-1-84800-163-3_11.
[14] M. Kutz. Handbook of Materials Selection. John Wiley & Sons, New York, 2002.
[15] R.V. Rao and B.K. Patel. A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10):4738–4747, 2010. doi: 10.1016/j.matdes.2010.05.014.
[16] X.F. Zha. A web-based advisory system for process and material selection in concurrent product design for a manufacturing environment. The International Journal of Advanced Manufacturing Technology, 25:233–243, 2005. doi: 10.1007/s00170-003-1838-0.
[17] F. Giudice, G. La Rosa, and A. Risitano. Materials selection in the Life-Cycle Design process: a method to integrate mechanical and environmental performances in optimal choice. Materials & Design, 26(1):9–20, 2005. doi: 10.1016/j.matdes.2004.04.006.
[18] F. Findik and K. Turan. Materials selection for lighter wagon design with a weighted property index method. Materials & Design, 37:470–477, 2012. doi: 10.1016/j.matdes.2012.01.016.
[19] M. İpek, İ.H. Selvi, F. Findik, O. Torkul, and I.H. Cedimoğlu. An expert system based material selection approach to manufacturing. Materials & Design, 47:331–340, 2013. doi: 10.1016/j.matdes.2012.11.060.
[20] J.A. Basurto-Hurtado, G.I. Perez-Soto, R.A. Osornio-Rios, A. Dominguez-Gonzalez, and L.A. Morales-Hernandez. A new approach to modeling the ductile cast iron microstructure for a finite element analysis. Arabian Journal for Science and Engineering, 44:1221–1231, 2019. doi: 10.1007/s13369-018-3465-y.
[21] E. Yılmaz, F. Kabataş, A. Gökçe, and F. Fındık. Production and characterization of a bone-like porous Ti/Ti-hydroxyapatite functionally graded material. Journal of Materials Engineering and Performance, 29:6455--6467, 2020. doi: 10.1007/s11665-020-05165-2.
[22] E. Yılmaz, A. Gökçe, F. Findik, and H.Ö. Gulsoy. Assessment of Ti–16Nb– xZr alloys produced via PIM for implant applications. Journal of Thermal Analysis and Calorimetry, 134:7–14, 2018. doi: 10.1007/s10973-017-6808-0.
[23] H.F. El-Sheikh, B.J. MacDonald, and M.S.J. Hashmi. Material selection in the design of the femoral component of cemented total hip replacement. Journal of Materials Processing Technology, 122(2-3):309–317, 2002. doi: 10.1016/S0924-0136(01)01128-1.
[24] T.S. Rubak, S.W. Svendsen, K. Søballe, and P. Frost. Total hip replacement due to primary osteoarthritis in relation to cumulative occupational exposures and lifestyle factors: a nationwide nested case–control study. Arthritis Care & Research, 66(10):1496–1505. doi: 10.1002/acr.22326.
[25] İ. Çelik and H. Eroğlu. Selection application of material to be used in hip prosthesis production with analytic hierarchy process. Materials Science & Engineering Technology, 48(11):1125–1132, 2017. doi: 10.1002/mawe.201700046.
[26] A. Aherwar, A. Patnaik, M. Bahraminasab, and A. Singh. Preliminary evaluations on development of new materials for hip joint femoral head. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5):885–899, 2019. doi: 10.1177/1464420717714495.
[27] A. Hafezalkotob and A. Hafezalkotob. Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials & Design, 87:949–959, 2015. doi: 10.1016/j.matdes.2015.08.087.
[28] G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, anf G.N. Duda. Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34(7):859–871, 2001. doi: 10.1016/s0021-9290(01)00040-9.
[29] A.Z. Şenalp, O. Kayabasi, and H. Kurtaran. Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials and Design, 28(5):1577–1583, 2007. doi: 10.1016/j.matdes.2006.02.015.
Go to article

Authors and Affiliations

Saeed Asiri
1
ORCID: ORCID

  1. Mechanical Engineering Department, Engineering College King Abdulaziz University, Jeddah, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

This study aims to optimize the 2-cylinder in-line reciprocating compressor crankshaft. As the crankshaft is considered the "bulkiest" component of the reciprocating compressor, its weight reduction is the focus of current research for improved performance and lower cost. Therefore, achieving a lightweight crankshaft without compromising the mechanical properties is the core objective of this study. Computational analysis for the crankshaft design optimization was performed in the following steps: kinematic analysis, static analysis, fatigue analysis, topology analysis, and dynamic modal analysis. Material retention by employing topology optimization resulted in a significant amount of weight reduction. A weight reduction of approximately 13% of the original crankshaft was achieved. At the same time, design optimization results demonstrate improvement in the mechanical properties due to better stress concentration and distribution on the crankshaft. In addition, material retention would also contribute to the material cost reduction of the crankshaft. The exact 3D model of the optimized crankshaft with complete design features is the main outcome of this research. The optimization and stress analysis methodology developed in this study can be used in broader fields such as reciprocating compressors/engines, structures, piping, and aerospace industries.
Go to article

Bibliography

[1] Z.P. Mourelatos. A crankshaft system model for structural dynamic analysis of internal combustion engines. Computers & Structures, 79(20-21):2009–2027, 2001. doi: 10.1016/S0045-7949(01)00119-5.
[2] A.P. Druschitz, D.C. Fitzgerald, and I. Hoegfeldt. Lightweight crankshafts. SAE Technical Paper 2006-01-0016, 2006. doi: 10.4271/2006-01-0016.
[3] K. Mizoue, Y. Kawahito, and K. Mizogawa. Development of hollow crankshaft. Honda R&D Technical Review 2009, pages 243–245, 2009.
[4] I. Papadimitriou and K. Track. Lightweight potential of crankshafts with hollow design. MTZ Worldwide, 79:42–45, 2018. doi: 10.1007/s38313-017-0140-8.
[5] M. Roeper and S. Reinsch. Hydroforging: a new manufacturing technology for forged lightweight products of aluminum. Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Manufacturing Engineering and Materials Handling, Parts A and B, pages 297-304. Orlando, Florida, USA, November 5–11, 2005. doi: 10.1115/IMECE2005-80424.
[6] J. Lampinen. Cam shape optimization by genetic algorithm. Computer-Aided Design, 35(8):727–737. doi: 10.1016/S0010-4485(03)00004-6.
[7] A. Albers, N. Leon, H. Aguayo, and T. Maier. Multi-objective system optimization of engine crankshafts using an integration approach. Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 14: New Developments in Simulation Methods and Software for Engineering Applications, pages 101–109. Boston, Massachusetts, USA. October 31–November 6, 2008. doi: 10.1115/IMECE2008-67447.
[8] J.P. Henry, J. Topolsky, and M. Abramczuk. Crankshaft durability prediction – a new 3-D approach. SAE Technical Paper 920087, 1992. doi: 10.4271/920087.
[9] M. Guagliano, A. Terranova, and L. Vergani. Theoretical and experimental study of the stress concentration factor in diesel engine crankshafts. Journal of Mechanical Design, 115(1):47–52, 1993. doi: 10.1115/1.2919323.
[10] A.C.C. Borges, L.C. Oliveira, and P.S. Neto. Stress distribution in a crankshaft crank using a geometrically restricted finite element model. SAE Technical Paper 2002-01-2183, 2002. doi: 10.4271/2002-01-2183.
[11] D. Taylor, W. Zhou, A.J. Ciepalowicz, and J. Devlukia. Mixed-mode fatigue from stress concentrations: an approach based on equivalent stress intensity. International Journal of Fatigue, 21(2):173–178, 1999. doi: 10.1016/S0142-1123(98)00066-8.
[12] W. Li, Q. Yan, and J. Xue. Analysis of a crankshaft fatigue failure. Engineering Failure Analysis, 55:13-9-147, 2015. doi: 10.1016/j.engfailanal.2015.05.013.
[13] R.M. Metkar, V.K. Sunnapwar, and S.D. Hiwase. Comparative evaluation of fatigue assessment techniques on a forged steel crankshaft of a single cylinder diesel engine. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, pages 601–609. Houston, Texas, USA, November 9–15, 2012. doi: 10.1115/IMECE2012-85493.
[14] Y. Shi, L. Dong, H.Wang, G. Li, and S. Liu. Fatigue features study on the crankshaft material of 42CrMo steel using acoustic emission. Frontiers of Mechanical Engineering, 11(3):233–241, 2016. doi: 10.1007/s11465-016-0400-3.
[15] J. Yao and J. Zhang. A modal analysis for vehicle’s crankshaft. 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, pages 300–303, 2017. doi: 10.1109/ITOEC.2017.8122303.
[16] A.S. Mendes, E. Kanpolat, and R. Rauschen. Crankcase and crankshaft coupled structural analysis based on hybrid dynamic simulation. SAE International Journal of Engines, 6(4):2044– 2053, 2013. doi: 10.4271/2013-01-9047.
[17] B. Yu, Q. Feng, and X. Yu. Dynamic simulation and stress analysis for reciprocating compressor crankshaft. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(4):845–851, 2013. doi: 10.1177/0954406212453523.
[18] A. Arshad, S. Samarasinghe, M.A.F. Ameer, and A. Urbahs. A simplified design approach for high-speed wind tunnels. Part I: Table of inclination. Journal of Mechanical Science and Technology, 34(6):2455–2468, 2020. doi: 10.1007/s12206-020-0521-9.
[19] A. Arshad, S. Samarasinghe, and V. Kovalcuks. A simplified design approach for high-speed wind tunnels. Part-I.I: Optimized design of settling chamber and inlet nozzle. 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), pages 150–154, 2020. doi: 10.1109/ICMAE50897.2020.9178865.
[20] A. Arshad, M.A.F. Ameer, and O. Kovzels. A simplified design approach for high-speed wind tunnels. Part II: Diffuser optimization and complete duct design. Journal of Mechanical Science and Technology, 35(7):2949–2960, 2021. doi: 10.1007/s12206-021-0618-9.
[21] A. Arshad, N. Andrew, and I. Blumbergs. Computational study of noise reduction in CFM56-5B using core nozzle chevrons. 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), pages 162-167, 2020. doi: 10.1109/ICMAE50897.2020.9178891.
[22] A. Arshad, L.B. Rodrigues, and I.M. López. Design optimization and investigation of aerodynamic characteristics of low Reynolds number airfoils. International Journal of Aeronautical and Space Sciences, 22:751–764, 2021. doi: 10.1007/s42405-021-00362-2.
[23] A. Arshad, A.J. Kallungal and A.E.E.E. Elmenshawy. Stability analysis for a concept design of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV). 2021 International Conference on Military Technologies (ICMT), pages 1–6, 2021. doi: 10.1109/ICMT52455.2021.9502764.
[24] RanTong official database for the ZW-0.8/10-16 reciprocating compressor specifications, online resources.
[25] F. Rodriges Minucci, A.A. dos Santos, and R.A. Lime e Silva. Comparison of multiaxial fatigue criteria to evaluate the life of crankshafts. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 11: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems, pages 775–784. Vancouver, British Columbia, Canada. November 12–18, 2010. doi: 10.1115/IMECE2010-39018.
[26] Y.F. Sun, H.B. Qiu, L. Gao, K. Lin, and X.Z. Chu. Stochastic response surface method based on weighted regression and its application to fatigue reliability analysis of crankshaft. Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 13: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems, pages 263-268. Lake Buena Vista, Florida, USA. November 13–19, 2009. doi: 10.1115/IMECE2009-11095.
[27] Y. Gorash, T. Comlekci, and D.MacKenzie. Comparative study of FE-models and material data for fatigue life assessments of welded thin-walled cross-beam connections. Procedia Engineering, 133:420–432, 2015. doi: 10.1016/j.proeng.2015.12.612.
[28] C. Cevik and E. Kanpolat. Achieving optimum crankshaft design – I. SAE Technical Paper 2014-01-0930, 2014. doi: 10.4271/2014-01-0930.
[29] G. Mu, F.Wang, and X. Mi. Optimum design on structural parameters of reciprocating refrigeration compressor crankshaft. Proceedings of the 2016 International Congress on Computation Algorithms in Engineering, pages 281–286, 2016. doi: 10.12783/dtcse/iccae2016/7204.
Go to article

Authors and Affiliations

Ali Arshad
1
ORCID: ORCID
Pengbo Cong
2
Adham Awad Elsayed Elmenshawy
1
Ilmārs Blumbergs
1
ORCID: ORCID

  1. Institute of Aeronautics, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Latvia
  2. Institute of Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Latvia
Download PDF Download RIS Download Bibtex

Abstract

Two vibrating circular membranes radiate acoustic waves into the region bounded by three infinite baffles arranged perpendicularly to one another. The Neumann boundary value problem has been investigated in the case when both sources are embedded in the same baffle. The analyzed processes are time harmonic. The membranes vibrate asymmetrically. External excitations of different surface distributions and different phases have been applied to the sound sources’ surfaces. The influence of the radiated acoustic waves on the membranes’ vibrations has been included. The acoustic power of the sound sources system has been calculated by using a complete eigenfunctions system.

Go to article

Authors and Affiliations

Wojciech P. Rdzanek
Krzysztof Szemela
Witold J. Rdzanek

This page uses 'cookies'. Learn more