Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Coagulation is a process during which a flocculent suspension may sediment. It is characterized by its polydisperse structure. There are three main fractions of sedimentation particles after coagulation: spherical, non-spherical and porous agglomerates. Each of the fractions sediments in a different manner, for different forces act on them, due to interactions between the particles, inhibition or entrainment of neighboring particles. The existing sedimentation models of polydisperse suspension do not consider the flocculation process, i.e. the change of one particle into another during sedimentation, resulting from their agglomeration. The presented model considers the shape of particles and flocculation, which is a new approach to the description of the mathematical process of sedimentation. The velocity of sedimentation depends on the concentration of particles of a given fraction in a specific time step. Following the time step, the heights of individual fractions are calculated. Subsequently, new concentration values of individual fractions are determined for the correspondingly reduced volume of occurrence of a given fraction in the volume analyzed, taking particle flocculation into consideration. The new concentration values obtained in this way allow to recalculate the total sedimentation rates for the next time step. Subsequent iterations allow for numerical simulation of the sedimentation process.
Go to article

Bibliography

  1.  Z. Su et al., “Coagulation of Surface water: Observations of the significance of biopolymers,” Water Res., vol. 126, pp. 144–152, 2017, doi: 10.1016/j.watres.2017.09.022.
  2.  L. Postolachi et al., “Improvement of coagulation process for the Prut River water treatment using aluminum sulphate,” Chem. J. Mold., vol. 10, no. 1, pp. 25–32, 2015, doi: 10.3923/jest.2017.268.275.
  3.  D. Mroczko and I. Zimoch, “Coagulation of pollutions occurring in surface waters during time of dynamic water flow,” Ecol. Eng., vol. 19, no. 2, pp. 15–22, 2018, doi: 10.12911/22998993/118273.
  4.  S. Janiszewska, “Comparison of coagulation methods and electrocoagulation in purification model gray water,” Eko-Dok, vol. 26, pp. 223– 229, 2012.
  5.  I. Krupińska and A. Konkol, “The influence of selected technological parameters on the course and effectiveness of coagulation in graund water treatment”, Uniwersytet Zielonogórski, Zeszyty Naukowe, Environmental Egineering, vol. 37, no. 157, pp. 36–52, 2015.
  6.  T.E. Dutkiewicz, Fizykochemia powierzchni, Wydawnictwa Naukowo-Techniczne, Warsaw, 1998.
  7.  R. Wardzyńska, L. Smoczyński, R. Wolicki, B. Załęska-Chróst, and Z. Bukowski, “Computer simulation of flocculation and chemical coagulation,” Ecol. Chem. Eng., vol. 17, no. 12, pp.  1663–1672, 2010.
  8.  B. Joon Lee and F. Molz, “Numerical simulation of turbulenceinduced flocculation and sedimentation in a flocculent-aided sediment retention pond,” Environ. Eng. Res., vol. 19, no. 2, pp. 165–174, 2014, doi: 10.4491/eer.2014.19.2.165.
  9.  M.A. Goula, M. Kostoglou, D.T. Karapantsios, and I.A. Zoubolis, “A CFD methodology for the design of sedimentation tanks in potable water treatment, Case study: The influence of a feed flow control baffle,” Chem. Eng. J., vol. 140, pp. 110–121, 2008, doi: 10.1016/j. cej.2007.09.022.
  10.  L.A. Kowal and M. Świderska-Bróż, Water Treatment, Polish Scientific Publishers PWN, Warsaw–Wroclaw, 2000.
  11.  P.W. Atkins, Physical chemistry, Polish Scientific Publishers PWN, Warsaw, 2007.
  12.  W.T. Hermann, Physical chemistry, Wydawnictwo lekarskie PZWL, Warsaw, 2007.
  13.  S. Berres, R. Bürger, and M.E. Tory, “Applications of polydisperse sedimentation models,” Chem. Eng. J., vol. 111, no.  2–3, pp. 105–117, 2005.
  14.  R. Błażejewski, Sedimentation of solid particles. Fundamentals of theory with examples of applications, Polish Scientific Publishers PWN, Warsaw, 2015.
  15.  J. Bandrowski, H. Merta, and J. Zioło, Sedimentation of suspensions. Rules and design, Silesian University of Technology Publisher, Gliwice, 1995.
  16.  M. Dziubiński and J. Prywer, Mechanics of two-phase fluids, WNT publisher, Warsaw, 2018.
  17.  Z. Orzechowski, J. Prywer, and R. Zarzycki, Fluid mechanics in engineering and environmental protection, Scientific and Technical Publishers, Warsaw 2009.
  18.  K.D. Basson, S. Berres, and R. Bürger, “On models of polydisperse sedimentation with particle-size-specific hindered-settling factors,”Appl. Math. Modell., vol. 33, no. 4, pp. 1815–1835, 2009, doi: 10.1016/j.apm.2008.03.021.
  19.  M. Bargieł, A.R. Ford, and M.E. Tory, “Simulation of sedimentation of polydisperse suspensions: A particle-based Approach,” AIChE J., vol. 51, no. 9, pp. 2457–2468, 2005.
  20.  S.P. Antal, R.T. Lahey, and L.E. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow, vol. 17, pp. 635, 1991, doi: 10.1016/0301-9322(91)90029-3.
  21.  J.F. Richardson and W.N. Zaki, “Sedimentation and Fluidization. Part 1,” Trans. Inst. Chem. Eng., vol. 32, pp. 35–53, 1954.
  22.  J.F. Richardson, J.H. Harker, and J.R. Backhurst, Chemical engineering, vol.2 – Particle Technology and Separtion Processes, Butterworth- Heinemann, 2002.
  23.  J. Garside and M.R. Al-Dibouni, “Velocity-voidage relationship for fluidization and sedimentation in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., vol. 16, pp. 206–214, 1977, doi: 10.1021/i260062a008.
  24.  J. Happel and N. Epstein, “Viscous flow in multiparticle systems: cubical assemblage of uniform spheres,” Ind. Eng.Chem., vol. 46, pp. 1187–1194, 1954.
  25.  F. Barnea and J. Mizrahi, “A generalized approach of fluid dynamics of particulate system. Part I. General correlation for fluidization and sedimentation in solid multiparticle systems,” J. Fluid Mech., vol. 52, no. 2, pp. 245–268, 1973.
  26.  E. Barnea and J. Mizrahi, “A generalized approach to the fluid dynamics of particulate systems: General correlation for fluidization and sedimentation in solid multiparticle systems,” The Chem. Eng. J., vol. 5, no. 2, pp. 171–189, 1973, doi: 10.1016/0300-9467(73)80008-5.
  27.  P.M. Biesheuvel, H. Verweij and V. Breedveld, “Evaluation of instability criterion for bidisperse sedimentation,” AIChE J., vol. 47, no. 1, pp. 45–52, 2001, doi: 10.1002/aic.690470107.
  28.  V.S. Patwardhan and C. Tien, “Sedimentation and fluidization in solid-liquid systems: A simple approach,” AIChE J., vol. 31, no. 1, pp. 146–149, Jan. 1985, doi: 10.1002/aic.690310117.
  29.  M. Syamlal and T.J. O’Brien, “Simulation of granular layer inversion in liquid fluidized beds,” Int. J. Multiphase Flow, vol. 14, no. 4, pp. 473–481, 1988, doi: 10.1016/0301-9322(88)90023-7.
  30.  T.N. Smith, “The differential sedimentation of particles of two different spacies,” Inst. Chem. Eng. Trans., vol. 43, pp. T69–T73, 1965.
  31.  P. Krishnamoorthy, “Sedimentation model and analysis for differential settling of two-particle-size suspensions in the Stokes region,” Int. J. Sediment Res., vol. 25, no. 2, pp. 119–133, 2010, doi: 10.1016/S1001-6279(10)60032-7.
  32.  J. Bandrowski, H. Merta and J. Zioło, Sedimentation of suspensions, principles and design, Silesian University of Technology Publisher, Gliwice, 1995.
  33.  J.F. Richardson and F.A. Shabi, “The determination of concentration distribution on sedimenting suspension using radioactive solids,” Transactions of the Institution of Chemical Engineers, vol. 38, pp. 33–41, 1960.
  34.  T.N. Smith, “The differential sedimentation of particles of various species,” Transactions of the Institution of Chemical Engineers, vol. 45, pp. T311–T313, 1967.
  35.  B. Xue and Y. Sun, “Modeling of sedimentation of polydisperse spherical beads with a broad size distribution,” Chem. Eng. Sci., vol. 58, pp. 1531–1543, 2003, doi: 10.1016/S0009-2509(02)00656-5.
  36.  Y. Zimmels, “Theory of hindered sedimentation of polydisperse mixtures,” AIChE J., vol. 29, no. 4, pp. 669–676, 1983, doi: 10.1002/ AIC.690290423.
  37.  J. Happel, “Viscus flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles,” AIChE J., vol. 4, no. 2, pp. 197–201, 1958.
  38.  S.F. Chien, “Settling Velocity of Irregularly Shaped Particles, Society of Petroleum Engineers,” SPE Drill. Complet., vol. 4, no. 04, pp. 281–289, 1994, doi: 10.2118/26121-PA.
  39.  G.H. Ganser, “A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles,” Powder Technol., vol. 77, no.  2, pp. 143–152, 1993, doi: 10.1016/0032-5910(93)80051-B.
  40.  A. Haider and O. Levenspiel, “Drag Coefficient and Terminal Velocity of Spherical and Non-Spherical Particles,” Powder Technol., vol. 58, no. 1, pp. 63–70, 1989, doi: 10.1016/0032-5910(89)80008-7.
  41.  L. Rosendahl, “Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow,” Appl. Math. Modell., vol. 24, no. 1, pp. 11‒25, 2000, doi: 10.1016/S0307-904X(99)00023-2.
  42.  M. Zastawny, G. Mallouppas, F. Zhao, and B. van Wachem, “Derivation of drag and lift force and torque coefficients for nonspherical particles in flows,” Int. J. Multiphase Flow, vol. 39, pp 227‒239, 2012, doi: 10.1016/j.ijmultiphaseflow.2011.09.004.
  43.  A. Hölzer and M. Sommerfeld, “New simple correlation formula for the drag coefficient of non-spherical particles,” Powder Technol., vol. 184, no. 3, pp. 361–365, June 2008, doi: 10.1016/j.powtec.2007.08.021.
  44.  R. Barati, S.A. Neyshabouri, and G. Ahmadi, “Issues in Eulerian– Lagrangian modeling of sediment transport under saltation regime,” Int. J. Sediment Res., vol. 33, no. 4, pp. 441–461, 2018, doi: 10.1016/j.ijsrc.2018.04.003.
  45.  B. Oesterle and B. Dinh, ”Experiments on the lift of a spinning sphere in the range of intermediate Reynolds numbers,” Exp. Fluids, vol. 25, no.1, pp. 16–22, 1998, doi: 10.1007/s003480050203.
  46.  I. Mema, V.V. Mahajan, B W. Fitzgerald, and J.T. Padding, “Effect of lift force and hydrodynamic torque on fluidisation of nonspherical particles,” Chem. Eng. Sci., vol. 195, no. 23, pp. 642– 656, 2019, doi: 10.1016/j.ces.2018.10.009.
  47.  S.K.P. Sanjeevi, J.A.M. Kuipers, and J.T. Padding, “Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers,” Int. J. Multiphase Flow, vol.  106, pp. 325–337, 2018, doi: 10.1016/j.ijmultiphaseflow.2018.05.011.
  48.  S.F. Hoerner, Fluid-dynamic drag, Published by the Autor, 1965.
  49.  R. Ouchene, M. Khalij, B. Arcen, and A. Tanière, “A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers,” Powder Technol., vol. 303, pp. 33–43, 2016, doi: 10.1016/j.powtec.2016.07.067.
  50.  M. Leva, M. Weintraub, M. Grummer, M. Pollchik, and H.H. Storsh, “Fluid flow through packed and fluidized systems,” Bull. U. S. Min. Bur., vol. 504, 1951.
  51.  V. Saritha, N. Srinivas, and N.V. Srikanth Vuppala, “Analysis and optimization of coagulation and ?occulation process,” Appl. Water Sci., vol. 7, pp. 451–460, 2017, doi: 10.1007/s13201-014-0262-y.
  52.  M. Smoluchowski, “Versuch einer mathematischen theorie der koagulationskinetic,” Kolloider Lsungen Zeitschrift für Physikalische Chemie, vol. 92, pp. 129–168, 1917.
  53.  H. Müller, “Zur allgemeinen teorie der raschen koagulation,” Kolloidbeihefte, vol. 27, pp. 223‒250, 1928.
  54.  F.S. Torrealba, A Continuous mathematical model of the one-dimensional sedimentation process of flocculated sediment particles, University of Kentucky Doctoral Dissertations, 2010.
  55.  D. Miedzińska, T. Niezgoda, E. Małek, and Z. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 499–505, doi: 10.2478/bpasts-2013-0049.
Go to article

Authors and Affiliations

Mariusz Rząsa
1
ORCID: ORCID
Ewelina Łukasiewicz
2
ORCID: ORCID

  1. Department of Computer Science, Opole University of Technology, ul. Oleska 48, 45-052 Opole, Poland
  2. Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, ul. St. Mikołajczyka 5, 45-271 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

Humic substances are polydisperse mixtures of structurally complex matters with different molecular weights. The complexity of molecular composition of humic substances is reflected through their physical and chemical properties and results in diverse interactions both with inorganic components and living organisms. The correlation of the molecular composition of humic and fulvic acids and their molecular weight distribution were analyzed by means of CP/MAS 13C NMR spectroscopy and size exclusion chromatography. Humic acids are a dynamic system containing macromolecular, oligomeric and low-molecular components. Fulvic acids are a monodisperse mixture of relatively low-molecular (up to 2 kDa) organic compounds. A significant correlation between the content of high and medium weight molecular fractions with labile fragments and low molecular weight fractions with hydrophobous fragments of humic acids has been revealed.

Go to article

Authors and Affiliations

Evgeny Lodygin
Roman Vasilevich

This page uses 'cookies'. Learn more