Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a procedure of calculation of natural frequencies and critical buckling forces of a micrononhomogeneous plate band resting on nonhomogeneous elastic subsoil and having any given boundary conditions. The band consists of N parts – cells [?] called elements, having a constant width l = L/N. Each band element consists of three parts – subelements with variable widths. The two of these subelements are matrix, the third – inclusion placed symmetrically relative to the matrix. Each band element is built of two isotropic materials. The matrix and inclusion bands have the stiffness and mass per area unit as well as they rest on the subsoil. The model has been derived with use of the classical displacement method. The stiffness matrix of any band element and then the band stiffness matrix have been built. An appropriate computer program has been written to calculate natural frequencies and critical buckling forces. A number of tests have been performed to check the working of the program and several calculative examples has been presented in the paper.
Go to article

Authors and Affiliations

Marek Chalecki
1
ORCID: ORCID
Grzegorz Jemielita
2

  1. Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska166, Warsaw, 02-787, Poland
  2. Faculty of Civil Engineering, Warsaw University of Technology, Armii Ludowej16, Warsaw, 00-637, Poland
Download PDF Download RIS Download Bibtex

Abstract

The calculations of fuel tanks should take into account the geometric imperfections of the structure as well as the variability of the material parameters of the foundation. The deformation of the tank shell can have a significant impact on the limit state of the structure and its operating conditions. The paper presents a probabilistic analysis of a vertical-axis, floating-roof cylindrical shell of a tank with a capacity of 50000 m3 placed on stratified soil with heterogeneous material parameters. The impact of a random subsoil description was estimated using the Point Estimated Method (PEM). In this way, the number of analyzed FEM models was significantly reduced. This approach also makes it possible to assess the sensitivity of tank settlement and deformation to the changing foundation conditions.
Go to article

Authors and Affiliations

Kamil Żyliński
1 2
Jarosław Górski
1
ORCID: ORCID

  1. Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland
  2. ERSYS, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research paper reviews issues associated with the impact of groundwater flow on soil characteristics and parameters, hence, the entire structure of a building set on it.Water seepage through the ground, building subsoil or structural elements of buildings made of soil affects the soil skeleton and may lead to changes in the arrangement of individual grains relative to each other, i.e., a modified soil structure. Soil solid phase (soil skeleton) deformations resulting from seepage forces are called seepage-induced deformations. The article characterizes typical seepage-induced deformations and specifies a criterion defining the beginning of the phenomenon. The case study involved using data on cracks and deformations in a historic building, as well as water seepage in its subsoil. Seepage was analysed, and zones where the seepage process initiation criterion was exceeded, were determined based on subsoil water level monitoring data. The determined zones coincide with the location of building cracks and scratches and confirm the possible cause behind building damage.
Go to article

Authors and Affiliations

Paweł Popielski
1
ORCID: ORCID
Bartosz Bednarz
1
ORCID: ORCID
Tomasz Majewski
2 3
ORCID: ORCID
Maciej Niedostatkiewicz
4
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Department of Hydro Engineering and Hydraulics, ul. Nowowiejska 20, 00-653 Warsaw, Poland
  2. Gdansk University of Technology, Doctoral School of Implementation, ul. Gabriela Narutowicza11/12, 80-233 Gdansk, Poland
  3. Pracownia Projektowo-Inzynierska [Design and Engineering Studio] Tomasz Majewski, Os. Sierakowskich 9B lok. 3. 82-400 Sztum, Poland
  4. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Concrete Structures, Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of an analysis of selected seismic profiles (reflection and refraction data) from the Radom-Lublin area aimed at obtaining a better understanding of geological structure and the identification of hydrocarbon deposits. To accurately reproduce the seismic reflection covering the sub-Permian formations, seismic cross sections were interpreted based on effective reflection coefficients (ERC). In interpreting the results, reference was made to the results of studies of the area using other geophysical methods.
The results of these studies made it possible to obtain new information on the geology and structure of the Paleozoic complex of the Radom-Lublin area and its relationships with the basement tectonics. The structural arrangement of Carboniferous and Devonian formations as well as older Silurian, Ordovician, and Cambrian series were recognized. Selected significant tectonic and lithological discontinuities and the nature and directions of their course were characterized. Special attention was given to regional tectonic zones: the Skrzynno Fault, the Ursynów-Kazimierz fault zone and the Kock zone. The use of ERC methodology made it possible to define the boundaries of lithostratigraphic units in Carboniferous, Devonian, and older formations. The obtained results can be used to assess hydrocarbon accumulation in the area under consideration.
Go to article

Authors and Affiliations

Lidia Dziewińska
1
ORCID: ORCID
Radosław Tarkowski
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the original concept of description and analysis of buildings (wall and floor structures), corresponding to the natural components of construction, quasi finite elements (QWSFS). This concept constitutes one of the component of the developed, interactive model of deep foundation buildings. The presented modelling method enables a significant reduction of the number of unknowns, which in the case of interaction building – subsoil, gives a possibility of including the factual geometry and building development stiffness into the FEM model. Therefore the true representation of static operation of the objects can be analysed. The paper gives basic assumptions to the construction of the QWSF-superelements as well as the results of numerical tests conducted. The potential of using the developed modelling concept in the analysis of the structural elements and deep foundation problems, in a three-dimensional system: subsoil – new building – potential neighbouring building development (at each stage of erection of investment, using a structural statics stage analysis) was presented.
Go to article

Authors and Affiliations

Czesław Miedziałowski
1
ORCID: ORCID
Leonas Ustinovichius
2
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Civil Engineering And Environmental Sciences, Wiejska 45E, 15-351 Bialystok
  2. Vilnius Gediminas Technical University, Civil Engineering Faculty, Vilnius, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

This article presents results of the numerical analysis of the interaction between heavy caterpillar tracks system and subsoil. The main goal of the article is to present an algorithm to design working platforms - temporary structures enabling the work of heavy construction equipment on weak subsoils. A semi-analytical method is based on the results of the numerical analysis performed with use of the finite element method (FE software ZSoil.PC [12]). The calculations were carried out for the piling rig machine - Bauer BH20H (BT60). Three ground models were adopted: Model 1: one layer - weak cohesive soil (clay); Model 2: two layers: weak cohesive soil (clay) and cohesionless working platform (medium sand); Model 3: one layer: strong cohesionless subsoil (medium sand). The following problems were solved: I) entry of the machine on the ground with various geotechnical parameters under each caterpillar tracks II) detection of the maximum permissible angle of ground slope.

Go to article

Authors and Affiliations

A. Urbański
M. Richter
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors present an extension of the scope of the previously conducted research to the full three-dimensional computer simulation (using the finite element method), which takes into account the interaction between: heavy caterpillar tracks system – working platform – weak subsoil. The article presents a computer model considering two caterpillars, resting on elastic-plastic sub-soil, with standard Mohr-Coulomb yield conditions, allowing for computer simulation of the behavior of the system up to achievement of ultimate limit state. The results of the above model are treated as the reference for a simplified Analytical Models of estimating the limit state, which might be used in design procedures. In turn, these Analytical Models are enhancements of previously presented one. The most important results concluding form the Analytical Model are simple interaction formulas, in the space of moments acting on the machine-subsoil system, limiting a domain of safety in given soil conditions.
Go to article

Authors and Affiliations

Aleksander Urbański
1
ORCID: ORCID
Mateusz Richter
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Environmental Engineering and Energy, ul. Warszawska 24, 31-155 Krakow, Poland
  2. University of Agriculture in Krakow, Department of Rural Building, Al. Mickiewicza 24/28, 59-130 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Significant subsoil deformation and additional loads from the new denitrification unit caused a major problem with the load-bearing capacity of the coal power plant. It was necessary to perform an advanced assessment of the technical condition of the structure. Laser scanning (LiDAR) were used to obtain detailed data upon structure. Based on the analysis of the point cloud, the location of the column axes was determined, which allowed to determine the global and local displacements of the structure. Spatial models of the structure were created. Non-linear analyses of the structure were carried out using two types of models: 1) global beam-shell 3D models of the boiler room used to calculate the magnitude of internal forces and deformations of the structure; 2) local beam-shell detailed models of selected structural elements. Based on the results of the calculations, necessary reinforcement of the structure was designed and successfully implemented. Advanced analysis of the structure using laser scanning, subsoil monitoring and complex numerical models made it possible to perform only local reinforcements of the entire complex structure.
Go to article

Authors and Affiliations

Szymon Skibicki
1
ORCID: ORCID
Tomasz Wróblewski
1
ORCID: ORCID
Wiesław Paczkowski
1
ORCID: ORCID
Krzysztof Kozieł
2
ORCID: ORCID
Marcin Matyl
2
ORCID: ORCID
Maciej Wisniowski
3
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Civil and Environmental Engineering, al. Piastów 50a, 70-311 Szczecin, Poland
  2. Optimal Design of Structures Krzysztof Kozieł, ul. Na Piasku 12a, 44-122 Gliwice, Poland
  3. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 2A, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more