Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Plants under attack of herbivores can emit increased amounts of volatile compounds from their leaves. Similarly, mechanically-injured plants can emit volatile chemicals that differ both quantitatively and qualitatively from undamaged plants. In this experiment, mechanical injury increased the release of the secondary metabolites linalool (3,7-dimethyl-1,6-octadien-3-ol) and linalool oxide (5-ethenyltetrahydro-2-furanmethanol) by wheat plants. The amounts released varied significantly with injury type and the period of time after injury. The time interval for the volatile collection within the photophase also influenced the amount collected for each day. The increased emission of these compounds, as a result of injury, may be explained as a defense mechanism against wounding. The role of these plant volatiles can be further investigated in the context of plant response to mechanical injury, within the broader context of all types of injury.

Go to article

Authors and Affiliations

Dariusz Piesik
David K. Weaver
Gavin E. Peck
Wendell L. Morrill
Download PDF Download RIS Download Bibtex

Abstract

The ability of parasitoids in locating hosts determines their success in suppressing the pest population. Chemical stimuli emitted from food products and hosts provoke the searching behavior of parasitoids. Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) is a generalist idiobiont ectoparasitoid of coleopteran pests in stored products. In the current study, the behavioral responses of A. calandrae females were evaluated regarding host food and different life stages of the host, Callosobruchus maculatus F. (Coleoptera: Chrysomelidae), using a Y-tube olfactometer. The parasitoid was offered uninfested chickpea kernels, damaged chickpea without larvae of C. maculatus, damaged chickpea with preferred stage (4th instar) larvae of C. maculatus, uninfested chickpea + C. maculatus adults, and eggs of C. maculatus on chickpea. In another test, the preference of A. calandrae for either damaged chickpea without larva of C. maculatus or damaged chickpea with nonpreferred stage (1st instar) larvae of C. maculatus was studied. The results showed that the females did not prefer uninfested chickpea kernels and adults of C. maculatus. However, they were attracted to damaged kernels with or without larvae, and the kernels containing eggs of C. maculatus. When the female parasitoids had a choice between damaged chickpea without larva of C. maculatus and damaged chickpea with 1st instar larva, they did not prefer one over the other. The results of this investigation can be helpful for using A. calandrae as a biological control agent in stored products.
Go to article

Authors and Affiliations

Masoomeh Moosavi
1
Nooshin Zandi-Sohani
1
Ali Rajabpour
1

  1. Plant Protection Department, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
Download PDF Download RIS Download Bibtex

Abstract

The market value of essential oils is steadily increasing every year. They are mainly used as aromas and preservatives in food and cosmetics industries. The content and yield of the obtained extracts change across the seasons of the year. The knowledge of these differences is important for essential oils industry to gain the best quality and quantity of products. In this study Thuja occidentalis L. (Eng. northern white cedar) extract was obtained from leaves by maceration in dichloromethane. Plant material was collected during each season of the year and the finished products were thoroughly examined through GC-MS analysis. The seasonal variations of volatile compound composition showed that the most adequate period to obtain T. occidentalis extract on an industrial scale is spring. This is due to the best efficiency (almost 10%) and the highest content of monoterpenes (67%).
Go to article

Authors and Affiliations

Marek Chajduk
1
Marek Gołębiowski
1

  1. Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose a robust estimation of the conditional variance of the GARCH(1,1) model with respect to the non-negativity constraint against parameter sign. Conditions of second order stationary as well as the existence of moments are given for the new relaxed GARCH(1,1) model whose conditional variance is estimated deriving firstly the unconstrained estimation of the conditional variance from the GARCH(1,1) state space model, then, the robustification is implemented by the Kalman filter outcomes via density function truncation method. The GARCH(1,1) parameters are subsequently estimated by the quasi-maximum likelihood, using the simultaneous perturbation stochastic approximation, based, first, on the Gaussian distribution and, second, on the Student-t distribution. The proposed approach seems to be efficient in improving the accuracy of the quasi-maximum likelihood estimation of GARCH model parameters, in particular, with a prior boundedness information on volatility.
Go to article

Bibliography

[1] Allal J., Benmoumen M., (2011), Parameter Estimation for GARCH(1,1) Models Based on Kalman Filter, Advances and Applications in Statistics 25, 115–30.
[2] Anderson B., Moore J., (1979), Optimal Filtering, Prentice Hall, 230–238.
[3] Bahamonde N., Veiga H., (2016), A robust closed-form estimator for the GARCH (1,1) model, Journal of Statistical Computation and Simulation 86(8), 1605–1619.
[4] Bollerslev T., (1986), Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31(3), 307-327.
[5] Bollerslev T., (1987), A conditionally heteroskedastic time series model for speculative prices and rates of return, The review of economics and statistics, 542–547.
[6] Carnero M. A., Peña D., Ruiz E., (2012), Estimating GARCH volatility in the presence of outliers, Economics Letters 114(1), 86–90.
[7] Engle R. F., (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica 50(4), 987–1007.
[8] Fan J., Qi L., Xiu D., (2014), Quasi-maximum likelihood estimation of GARCH models with heavy-tailed likelihoods, Journal of Business & Economic Statistics 32(2), 178–191.
[9] Francq C., Zakoïan J. M., (2007), Quasi-maximum likelihood estimation in garch processes when some coefficients are equal to zero, Stochastic Processes and their Applications 117(9), 1265–1284.
[10] Francq C., Wintenberger O., Zakoïan J. M., (2013), GARCH models without positivity constraints: Exponential or Log GARCH, Journal of Econometrics 177(1), 34–46.
[11] Ghalanos A. (2014), Rugarch: Univariate GARCH models. R package version 1.4-0, accessed 16 January 2019, available at: https://cran.r-project.org/ web/packages/rugarch/rugarch.pdf.
[12] Ling S., (1999), On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model, Journal of Applied Probability 36(3), 688–705.
[13] Ling S., McAleer M., (2002), Necessary and sufficient moment conditions for the GARCH (r,s) and asymmetric power GARCH (r,s) models, Econometric Theory 18(3), 722–729.
[14] Ling S., McAleer M., (2003), Asymptotic theory for a vector arma-garch model, Econometric Theory 19(2), 280–310.
[15] Luethi D., Erb P., & Otziger S., (2018), FKF: Fast Kalman Filter. R package version 0.1.5, accessed 16 July 2018, available at: https://http://cran. univ-paris1.fr/web/packages/FKF/FKF.pdf.
[16] Nelson D. B., Cao C. Q., (1992), Inequality Constraints in the Univariate GARCH Model, Journal of Business & Economic Statistics 10(2), 229–235.
[17] Ossandón S., Bahamonde N., (2013), A new nonlinear formulation for GARCH models, Comptes Rendus Mathematique 351(5-6), 235–239.
[18] Simon D., (2006), Optimal state estimation, John Wiley & Sons, 218–223.
[19] Spall J. C., (1992), Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation, IEEE Transactions on Automatic Control 37(3), 332–341.
[20] Spall J. C., (1998), Implementation of the simultaneous perturbation algorithm for stochastic optimization, IEEE Transactions on aerospace and electronic systems 34(3), 817–823.
[21] Tsai H., Chan K. S., (2008), A note on inequality constraints in the GARCH model, Econometric Theory 24(3), 823–828.
[22] Zhu X., Xie L., (2016), Adaptive quasi-maximum likelihood estimation of GARCH models with Student’st likelihood, Communications in Statistics-Theory and Methods 45(20), 6102-6111.
Go to article

Authors and Affiliations

Abdeljalil Settar
1
ORCID: ORCID
Nadia Idrissi Fatmi
1
ORCID: ORCID
Mohammed Badaoui
1 2
ORCID: ORCID

  1. LIPIM, École Nationale des Sciences Appliquées (ENSA), Khouribga, Morocco
  2. LaMSD, École Supérieure de Technologie (EST), Oujda, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The paper presents new non-ionic deep eutectic solvent (DES) composed of natural and non-toxic components i.e. guaiacol, camphor and levulinic acid in 1:1:3 molar ratio as a promising absorbent for removal of selected volatile organic compounds (VOCs) including dichloromethane, toluene, hexamethyldisiloxane and propionaldehyde from model biogas. The affi nity of DES for VOCs was determined as vapour-liquid coeffi cients and the results were compared with several well-known DESs based on quaternary ammonium salt as well as n-hexadecane and water. For new DES, the absorption process was carried out under dynamic conditions. The results indicate that non-ionic DES has high affi nity and capacity for VOCs being comparable to n-hexadecane. In addition, absorbed VOCs could be easily desorbed from DES using activated carbon and absorbent could be re-use minimum fi ve times without significant loss of absorption capacity.
Go to article

Authors and Affiliations

Edyta Słupek
1
ORCID: ORCID
Patrycja Makoś
1
Jacek Gębicki
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work presents results of investigations on biotrickling filtration of air polluted with cyclohexane co-treated in binary, ternary and quaternary volatile organic compounds (VOCs) mixtures, including vapors of hexane, toluene and ethanol. The removal of cyclohexane from a gas mixture depends on the physicochemical properties of the co-treated VOCs and the lower the hydrophobicity of the VOC, the higher the removal efficiency of cyclohexane. In this work, the performance of biotrickling filters treating VOCs mixtures is discussed based on surface tension of trickling liquid for the first time. A mixed natural – synthetic packing for biotrickling filters was utilized, showing promising performance and limited maintenance requirements. Maximum elimination capacity of about 95 g/(m 3·h) of cyclohexane was reached for the total VOCs inlet loading of about 450 g/(m 3·h). This work presents also a novel approach of combining biological air treatment with management of a spent trickling liquid in the perspective of circular economy assumptions. The waste liquid phase was applied to the plant cultivation, showing a potential for e.g. enhanced production of energetic biomass or polluted soil phytoremediation.
Go to article

Authors and Affiliations

Piotr Rybarczyk
1
ORCID: ORCID
Bartosz Szulczyński
1
ORCID: ORCID
Dominik Dobrzyniewski
1
ORCID: ORCID
Karolina Kucharska
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
Download PDF Download RIS Download Bibtex

Abstract

The influence of a fixed adsorption bed height on the adsorption process was studied using acetone, ethyl acetate, toluene, and n-butyl acetate as a gaseous adsorbate mixture. All experiments were conducted under the same gas flow and temperature conditions. Concentrations of adsorbates were monitored using gas chromatography with a flame ionization detector. Activated carbon WG-12 (Grand Activated Sp. z o.o) was selected as the adsorbent, and the following heights of the fixed adsorption bed were used: 0.8, 1.6, 3.2, and 4.8 cm. The results of the study allowed to deduce that as the height of the fixed adsorption bed increased, the degree of displacement of adsorbate molecules from the bed strengthened. In addition, it was found that both the bed breakthrough time increased linearly with a height rise of the fixed adsorption bed. The process carried out on a fixed adsorption bed with a height of 0.8 cm was characterized by an undeveloped mass transfer zone, as well as the complete displacement of the most volatile components (acetone and ethyl acetate). The utilization rate of the fixed adsorption bed also increased as the height of the adsorption bed went up. However, at a certain bed height, the bed breakthrough curves were formed and the adsorption capacity did not change significantly, solely the bed breakthrough time increased.
Go to article

Authors and Affiliations

Martyna Jurkiewicz
1
ORCID: ORCID
Marlena Musik
1
ORCID: ORCID
Robert Pełech
1
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Pułaskiego 10, 70-322 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Waste management faces more and more serious challenges, especially given the growing amount of municipal waste generated in Poland and the resulting environmental impact. One of the significant environmental aspects of waste management is the emission of odorants and odors. Taking into account the odor problem, the majority of municipal waste generated is being collected as mixed waste (62% of municipal waste), which by weight contains approximately 32.7% of kitchen and garden waste. These organic fractions are mainly responsible for the emission of odor and odorants. Those substances can be emitted at every stage: from the waste collection at residential waste bins, through transport, waste storage, and transfer stations, up to various respective treatment facilities, i.e., mechanical-biological waste treatment plants, landfills, or waste incineration plants. The gathered data during the study showed that it is necessary to increase the share of different waste management methods, i.e., recycling, composting, or fermentation processes rather than landfilling to meet all necessary regulations and to fulfill provisions of the waste hierarchy. One of the actions indicated in the legal solutions is expansion, retrofitting, and construction of new sorting plants, anaerobic digestion plants, composting plants, and increase in thermal treatment capacity. Variety of different processes that could emit odors and a diversity of different odor-generating substances released from particular waste management steps should be taken into consideration when building new facilities which are suitable for waste treatment. The overall aim of the work was to characterize and summarize available knowledge about waste management system in Poland and to gather information about odor-generating substances emitted from different waste management steps and facilities, which could be a potential source of information for preparing legal solutions to reduce possible odor nuisance form broadly understood waste management.
Go to article

Bibliography

  1. Aatamila, M., Verkasalo, P.K., Korhonen, M.J., Viluksela, M.K., Pasanen, K., Tiittanen, P. & Nevalainen, A. (2010). Odor annoyance near waste treatment centers: A population-based study in Finland. J. Air Waste Manag. Assoc., 60, pp. 412–418. DOI:10.3155/1047-3289.60.4.412.
  2. Almarcha, D., Almarcha, M., Nadal, S. & Caixach, J. (2012). Comparison of the depuration efficiency for voc and other odoriferous compounds in conventional and advanced biofilters in the abatement of odour emissions from municipal waste treatment plants. Chem. Eng. Trans., 30, pp. 259–264. DOI:10.3303/CET1230044.
  3. Alwaeli, M. (2015). An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng., 41, pp. 181–193. DOI:10.5277/epel50414.
  4. Bax, C., Sironi, S. & Capelli, L. (2020). How can odors be measured? An overview of methods and their applications. Atmosphere (Basel)., 11. DOI:10.3390/atmos11010092.
  5. Beylot, A., Hochar, A., Michel, P., Descat, M., Ménard, Y. & Villeneuve, J. (2018). Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency. J. Ind. Ecol., 22, pp. 1016–1026. DOI:10.1111/jiec.12701.
  6. den Boer, E. Banaszkiewicz, K. & Sebastian M. (2018). Badania ilości i składu odpadów komunalnych w cyklu rocznym pochodzących z terenu gminy Wrocław. Raporty Wydziału Inżynierii Środowiska Politechniki Wrocławskiej. Ser. SPR nr 30, 226 (in Polish).
  7. den Boer, E., Jedrczak, A., Kowalski, Z., Kulczycka, J. & Szpadt, R. (2010). A review of municipal solid waste composition and quantities in Poland. Waste Manag., 30, pp. 369–377. DOI:10.1016/j.wasman.2009.09.018.
  8. Brattoli, M., de Gennaro, G., de Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: Olfactometry and chemical sensors. Sensors, 11, pp. 5290–5322. DOI:10.3390/s110505290.
  9. Bruno, P., Caselli, M., de Gennaro, G., Solito, M. & Tutino, M. (2007). Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manag., 27, pp. 539–544. DOI:10.1016/j.wasman.2006.03.006.
  10. Burnley, S.J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste Manag., 27, pp. 1274–1285. DOI:10.1016/j.wasman.2006.06.018.
  11. Butrymowicz T. (2018). Badania odpadów w Jarocinie. Centralne Laboratorium Instytutu Inżynierii Środowiska, Uniwersytet Zielonogórski., unpublished (in Polish).
  12. Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M. & Stellacci, P. (2008). Health risk assessment of air emissions from a municipal solid waste incineration plant - A case study. Waste Manag., 28, pp. 885–895. DOI:10.1016/j.wasman.2007.05.006.
  13. Capelli, L. & Sironi, S. (2018). Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmos. Environ., 191, pp. 273–290. DOI:10.1016/j.atmosenv.2018.08.007.
  14. Capelli, L., Sironi, S. & del Rosso, R. (2013a). Odor sampling: Techniques and strategies for the estimation of odor emission rates from different source types. Sensors, 13, pp. 938–955. DOI:10.3390/s130100938.
  15. Capelli, L., Sironi, S., Del Rosso, R. & Guillot, J.M. (2013b). Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ., 79, pp. 731–743. DOI:10.1016/j.atmosenv.2013.07.029.
  16. Chang, H., Tan, H., Zhao, Y., Wang, Y., Wang, X., Li, Y., Lu, W. & Wang, H. (2019). Statistical correlations on the emissions of volatile odorous compounds from the transfer stage of municipal solid waste. Waste Manag., 87, pp. 701–708. DOI:10.1016/j.wasman.2019.03.014.
  17. Chen, Y.C. (2018). Effects of urbanization on municipal solid waste composition. Waste Manag., 79, pp. 828–836. DOI:10.1016/j.wasman.2018.04.017.
  18. Cheng, Z., Zhu, S., Chen, X., Wang, L., Lou, Z. & Feng, L. (2020). Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater., 384, 120912. DOI:10.1016/j.jhazmat.2019.120912.
  19. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ., 649, pp. 1038–1044. DOI:10.1016/j.scitotenv.2018.08.230.
  20. Colón, J., Alvarez, C., Vinot, M., Lafuente, F.J., Ponsá, S., Sánchez, A. & Gabriel, D. (2017). Characterization of odorous compounds and odor load in indoor air of modern complex MBT facilities. Chem. Eng. J., 313, pp. 1311–1319. DOI:10.1016/j.cej.2016.11.026.
  21. Conti, C., Guarino, M. & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environ. Int., 134, 105261. DOI:10.1016/j.envint.2019.105261.
  22. Curren, J., Hallis, S.A., Snyder, C. (Cher) L. & Suffet, I. (Mel) H. (2016). Identification and quantification of nuisance odors at a trash transfer station. Waste Manag., 58, pp. 52–61. DOI:10.1016/j.wasman.2016.09.021.
  23. Çetin Doğruparmak, Ş., Pekey, H. & Arslanbaş, D. (2018). Odor dispersion modeling with CALPUFF: Case study of a waste and residue treatment incineration and utilization plant in Kocaeli, Turkey. Environ. Forensics, 19, pp. 79–86. DOI:10.1080/15275922.2017.1408160.
  24. Damgaard, A., Riber, C., Fruergaard, T., Hulgaard, T. & Christensen, T.H. (2010) Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag., 30, pp. 1244–1250. DOI:10.1016/j.wasman.2010.03.025.
  25. Defoer, N., De Bo, I., Van Langenhove, H., Dewulf, J. & Van Elst, T. (2002) Gas chromatography-mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J. Chromatogr. A, 970, pp. 259–273. DOI:10.1016/S0021-9673(02)00654-4.
  26. Di Foggia, G., Beccarello, M. (2021) Market structure of urban waste treatment and disposal: Empirical evidence from the italian industry. Sustain., 13. DOI:10.3390/su13137412.
  27. Di, Y., Liu, J., Liu, J., Liu, S. & Yan, L. (2013). Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. J. Air Waste Manag. Assoc., 63, pp. 1173–1181. DOI:10.1080/10962247.2013.807318.
  28. Directive 2008/98/EC of The European Parliment and of The Council of 19 November 2008 on waste and repealing certain Directives.
  29. Duan, Z., Scheutz, C. & Kjeldsen, P. (2021). Trace gas emissions from municipal solid waste landfills: A review. Waste Manag., 119, pp. 39–62. DOI:10.1016/j.wasman.2020.09.015.
  30. European Comission Eurostat Available online: https://ec.europa.eu/eurostat/web/main/data/database.
  31. European Union Council Directive 1999/31/EC on the landfill, 1999.
  32. European Union Directive 2018/851 amending Directive 2008/98/EC on waste.
  33. Fang, J.J., Yang, N., Cen, D.Y., Shao, L.M. & He, P.J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag., 32, pp. 1401–1410. DOI:10.1016/j.wasman.2012.02.013.
  34. Fang, J., Zhang, H., Yang, N., Shao, L. & He, P. (2013). Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: Odor assessment and photochemical reactivity. J. Air Waste Manag. Assoc., 63, pp. 1287–1297. DOI:10.1080/10962247.2013.822439.
  35. Fei, F., Wen, Z., Huang, S. & De Clercq, D. (2018). Mechanical biological treatment of municipal solid waste: Energy efficiency, environmental impact and economic feasibility analysis. J. Clean. Prod., 178, pp. 731–739. DOI:10.1016/j.jclepro.2018.01.060.
  36. Forastiere, F., Badaloni, C., De Hoogh, K., Von Kraus, M.K., Martuzzi, M., Mitis, F., Palkovicova, L., Porta, D., Preiss, P. & Ranzi, A. (2011). Health impact assessment of waste management facilities in three European countries. Environ. Heal. A Glob. Access Sci. Source, 10, pp. 1–13. DOI:10.1186/1476-069X-10-53.
  37. Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste Manag., 29, pp. 2227–2239. DOI:10.1016/j.wasman.2009.03.028.
  38. Guo, H., Duan, Z., Zhao, Y., Liu, Y., Mustafa, M.F., Lu, W. & Wang, H. (2017). Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ. Sci. Pollut. Res., 24, pp. 18383–18391. DOI:10.1007/s11356-017-9376-8.
  39. He, P., Du, W., Xu, X., Zhang, H., Shao, L. & Lü, F. (2020). Effect of biochemical composition on odor emission potential of biowaste during aerobic biodegradation. Sci. Total Environ., 727, 138285. DOI:10.1016/j.scitotenv.2020.138285.
  40. Heyer, K.U., Hupe, K. & Stegmann, R. (2013). Methane emissions from MBT landfills. Waste Manag., 33, pp. 1853–1860. DOI:10.1016/j.wasman.2013.05.012.
  41. Hou, J.Q., Li, M.X., Wei, Z.M., Xi, B.D., Jia, X., Zhu, C.W. & Liu, D.M. (2013). Critical components of odors and VOCs in mechanical biological treatment process of MSW. Adv. Mater. Res., 647, pp. 438–449. DOI:10.4028/www.scientific.net/AMR.647.438.
  42. Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A. & Malamakis, A. (2010). Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag., 30, pp. 1860–1870. DOI:10.1016/j.wasman.2010.02.030.
  43. Internet source, website accessed on 15.07.2021, available online https://www.portalsamorzadowy.pl/gospodarka-komunalna/spalarnie-w-polsce-gdzie-dzialaja-kto-buduje-a-kto-ma-je-w-planie,253488.html.
  44. Jędrczak, A., den Boer, E., Kamińska-Boerak, J., Kozłowska B., Szpadt, R., Mierzwiński A., Krzyśków, A. & Kundegórski, M. (2020). Analysis of waste management costs - assessment of investment needs in the country in the field of waste prevention and waste management in connection with the new EU financial perspective 2021-2027, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://odpady.net.pl/wp-content/uploads/2021
  45. Jędrczak, A., den Boer, E., Kamińska-Borak, J., Szpadt, R., Krzyśków, A. & Wielgosiński, G. (2021). Analysis of the possibilities and barriers to the management of plastic waste from separate collection of municipal waste, and the issues of circular economy, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://ios.edu.pl/aktualnosci/analiza-mozliwosci-i-barier-zagospodarowania-odpadow-z-tworzyw-sztucznych-a-goz/
  46. Jiang, J., Wang, F., Wang, J. & Li, J. (2021). Ammonia and hydrogen sulphide odour emissions from different areas of a landfill in Hangzhou, China. Waste Manag. Res., 39, pp. 360–367. DOI:10.1177/0734242X20960225.
  47. Jońca, J., Pawnuk, M., Arsen, A. & Sówka, I. (2022) Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors, 22, 1510. https://DOI:10.3390/s22041510
  48. Ko, J.H., Xu, Q. & Jang, Y.C. (2015). Emissions and Control of Hydrogen Sulfide at Landfills: A Review. Crit. Rev. Environ. Sci. Technol., 45, pp. 2043–2083. DOI:10.1080/10643389.2015.1010427.
  49. Kulig, A. & Szylak-Szydlowski, M. (2016). Assessment of range of olfactory impact of plant to mechanical-biological treatment of municipal waste. Chem. Eng. Trans., 54, pp. 247–252. DOI:10.3303/CET1654042.
  50. Le Bihan, Y., Loranger-King, D., Turgeon, N., Pouliot, N., Moreau, N., Deschênes, D. & Rivard, G. (2020). Use of alternative cover materials to control surface emissions (H2s and vocs) at an engineered landfill. Detritus, 10, pp. 118–126. DOI:10.31025/2611-4135/2020.13909.
  51. Liu, Y., Lu, W., Wang, H., Gao, X. & Huang, Q. (2019). Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation. Sci. Total Environ., 648, pp. 805–810. DOI:10.1016/j.scitotenv.2018.08.213.
  52. Liu, Y., Yang, H. & Lu, W. (2020). VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. J. Environ. Sci. (China), 98, pp. 143–150. DOI:10.1016/j.jes.2020.05.009.
  53. Long, Y., Zhang, S., Fang, Y., Du, Y., Liu, W., Fang, C. & Shen, D. (2017). Dimethyl sulfide emission behavior from landfill site with air and water control. Biodegradation, 28, pp. 327–335. DOI:10.1007/s10532-017-9799-4.
  54. Lou, Z., Wang, M., Zhao, Y. & Huang, R. (2015). The contribution of biowaste disposal to odor emission from landfills. J. Air Waste Manag. Assoc., 65, pp. 479–484. DOI:10.1080/10962247.2014.1002870.
  55. Lucernoni, F., Tapparo, F., Capelli, L. & Sironi, S. (2016). Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces. Atmos. Environ., 144, pp. 87–99. DOI:10.1016/j.atmosenv.2016.08.064.
  56. Maurer, D.L., Bragdon, A.M., Short, B.C., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Arch. Environ. Prot., 44, pp. 100–107. DOI:10.24425/119699.
  57. Meišutovič-Akhtarieva, M. & Marčiulaitienė, E. (2017). Research on odours emitted from non-hazardous waste landfill using dynamic olfactometry. 10th Int. Conf. Environ. Eng. ICEE 2017, pp. 27–28. DOI:10.3846/enviro.2017.034.
  58. Monzambe, G.M., Mpofu, K. & Daniyan, I.A. (2021). Optimal location of landfills and transfer stations for municipal solid waste in developing countries using non-linear programming. Sustain. Futur., 3, 100046. DOI:10.1016/j.sftr.2021.100046.
  59. Mustafa, M.F., Liu, Y., Duan, Z., Guo, H., Xu, S., Wang, H. & Lu, W. (2017). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater., 327, pp. 35–43. DOI:10.1016/j.jhazmat.2016.11.046.
  60. Naddeo, V., Zarra, T., Oliva, G., Chiavola, A., Vivarelli, A. & Cardona, G. (2018). Odour impact assessment of a large municipal solid waste landfill under different working phases. Glob. Nest J., 20, pp. 654–658. DOI:10.30955/gnj.002770.
  61. Oleniacz, R. (2014). Impact of the municipal solid waste incineration plant in Warsaw on air quality. Geomatics Environ. Eng., 8, 25. DOI:10.7494/geom.2014.8.4.25.
  62. Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A. & Davoli, E. (2014). Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int., 68, pp. 16–24. DOI:10.1016/j.envint.2014.03.004.
  63. Pawnuk, M., Grzelka, A., Miller, U. & Sówka, I. (2020). Prevention and reduction of odour nuisance in waste management in the context of the current legal and technological solutions. J. Ecol. Eng., 21, pp. 34–41. DOI:10.12911/22998993/125455.
  64. Polish Committee for Standardization. Polish Standard PN-EN 13725:2007: Air Quality—Determination of Odour Concentration by Dynamic Olfactometry, Polish Committee for Standardization: Warsaw, Poland, 2007.
  65. Ragazzi, M., Tosi, P., Rada, E.C., Torretta, V. & Schiavon, M. (2014). Effluents from MBT plants: Plasma techniques for the treatment of VOCs. Waste Manag., 34, pp. 2400–2406. DOI:10.1016/j.wasman.2014.07.026.
  66. Sánchez-Monedero, M.A., Fernández-Hernández, A., Higashikawa, F.S. & Cayuela, M.L. (2018). Relationships between emitted volatile organic compounds and their concentration in the pile during municipal solid waste composting. Waste Manag., 79, pp. 179–187. DOI:10.1016/j.wasman.2018.07.041.
  67. Scaglia, B., Orzi, V., Artola, A., Font, X., Davoli, E., Sanchez, A. & Adani, F. (2011). Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol., 102, pp. 4638–4645. DOI:10.1016/j.biortech.2011.01.016.
  68. Schiavon, M., Martini, L.M., Corrà, C., Scapinello, M., Coller, G., Tosi, P. & Ragazzi, M. (2017). Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environ. Pollut., 231, pp. 845–853. DOI:10.1016/j.envpol.2017.08.096.
  69. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Manag., 25, pp. 928–939. DOI:10.1016/j.wasman.2005.07.006.
  70. Shi, X., Zheng, G., Shao, Z. & Gao, D. (2020). Effect of source-classified and mixed collection from residential household waste bins on the emission characteristics of volatile organic compounds. Sci. Total Environ., 707, 135478. DOI:10.1016/j.scitotenv.2019.135478.
  71. Sironi, S., Capelli, L., Céntola, P. & Del Rosso, R. (2007). Odour emissions from MSW composting process steps. Int. J. Environ. Technol. Manag., 7, pp. 304–316. DOI:10.1504/IJETM.2007.015148.
  72. Sironi, S., Capelli, L., Céntola, P., Del Rosso, R. & Il Grande, M. (2006). Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos. Environ., 40, pp. 7632–7643. DOI:10.1016/j.atmosenv.2006.06.052.
  73. Sonibare, O.O., Adeniran, J.A. & Bello, I.S. (2019). Landfill air and odour emissions from an integrated waste management facility. J. Environ. Heal. Sci. Eng., 17, pp. 13–28. DOI:10.1007/s40201-018-00322-1.
  74. Statistic Poland Environment 2020. Stat. Anal. 2020, pp. 154–161.
  75. Statistic Poland Local Data Bank (2021) Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/temat.
  76. Szulczyński, B., Wasilewski, T., Wojnowski, W., Majchrzak, T., Dymerski, T., Namiésnik, J. & Gębicki, J. (2017). Different ways to apply a measurement instrument of E-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors (Switzerland), 17. DOI:10.3390/s17112671.
  77. Tan, H., Zhao, Y., Ling, Y., Wang, Y. & Wang, X. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manag., 68, pp. 677–687. DOI:10.1016/j.wasman.2017.07.015.
  78. Tagliaferri, F., Invernizzi, M., Sironi, S. & Capelli, L. (2020). Influence of modelling choices on the results of landfill odour dispersion. Detritus, 12, pp. 92–99. DOI:10.31025/2611-4135/2020.13998.
  79. The Act of 14 December 2012 on waste (Journal of Laws of 2020, item 797) (in Polish).
  80. Tyrała K. (2019. Conducting research on the quantity and morphological composition of municipal waste in Bydgoszcz. Final report. Collective analysis of the entire study, R.O.T. RECYCLING ODPADY TECHNOLOGIE S.C. K, Gliwice, (in Polish).
  81. VDI 3882 PART 1 Olfactometry, determination of odour intensity, Verein Deutscher Ingenieure, Germany, 1992.
  82. VDI 3880: Olfactometry. Static Sampling, Verein Deutscher Ingenieure, Germany, 2011.
  83. Wang, Y., Li, L., Qiu, Z., Yang, K., Han, Y., Chai, F., Li, P. & Wang, Y. (2021). Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk. Chemosphere, 272, 129582. DOI:10.1016/j.chemosphere.2021.129582.
  84. Wiśniewska, M. (2020a). Analysis of Potential Exposure to Components of Municipal Solid Waste in a Mechanical Biological Treatment. Proceedings, 51, 10. DOI:10.3390/proceedings2020051010.
  85. Wiśniewska, M. (2020b) Methods of assessing odour emissions from biogas plants processing municipal waste. J. Ecol. Eng., 21, pp. 140–147. DOI:10.12911/22998993/113039.
  86. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2021). The use of chemical sensors to monitor odour emissions at municipal waste biogas plants. Appl. Sci., 11. DOI:10.3390/app11093916.
  87. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020a). Odour emissions of municipal waste biogas plants-impact of technological factors, air temperature and humidity. Appl. Sci., 10. DOI:10.3390/app10031093.
  88. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020b). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Arch. Environ. Prot., 46, pp. 60–68. DOI:10.24425/aep.2020.134536.
  89. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2019). Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Appl. Sci., 1, pp. 1–10. DOI:10.1007/s42452-019-0534-0.
  90. Wiśniewska, M. & Szyłak-Szydłowski, M. (2021). The air and sewage pollutants from biological waste treatment. Processes, 9, pp. 1–13. DOI:10.3390/pr9020250.
  91. Wu, C., Shu, M., Liu, X., Sang, Y., Cai, H., Qu, C. & Liu, J. (2020). Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Manag., 103, pp. 314–322. DOI:10.1016/j.wasman.2019.12.043.
  92. Xu, A., Chang, H., Zhao, Y., Tan, H., Wang, Y., Zhang, Y., Lu, W. & Wang, H. (2020). Dispersion simulation of odorous compounds from waste collection vehicles: Mobile point source simulation with ModOdor. Sci. Total Environ., 711, 135109. DOI:10.1016/j.scitotenv.2019.135109.
  93. Yao, X.Z., Ma, R.C., Li, H.J., Wang, C., Zhang, C., Yin, S.S., Wu, D., He, X.Y., Wang, J. & Zhan, L.T. (2019). Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag., 91, pp. 128–138. DOI:10.1016/j.wasman.2019.05.009.
  94. Zemanek, J., Wozniak, A. & Malinowski, M. (2011). The role and place of solid waste transfer station in the waste management system. Polish Acad. Sci. Cracow Branch 2011, 11, pp. 5–13.
  95. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Manag., 126, pp. 771–780. DOI:10.1016/j.wasman.2021.03.055.
  96. Zhang, H., Schuchardt, F., Li, G., Yang, J. & Yang, Q. (2013). Emission of volatile sulfur compounds during composting of municipal solid waste (MSW). Waste Manag., 33, pp. 957–963. DOI:10.1016/j.wasman.2012.11.008.
  97. Zhao, Y., Lu, W. & Wang, H. (2015). Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution. J. Hazard. Mater., 300, pp. 695–701. DOI:10.1016/j.jhazmat.2015.07.081.
  98. Zielnica J. & Cudakiewicz P. (2016). Morphological studies of municipal waste generated in the Szczecin City Commune 2015-2016, SWECO (in Polish).
Go to article

Authors and Affiliations

Marcin Pawnuk
1
ORCID: ORCID
Bartosz Szulczyński
2
ORCID: ORCID
Emilia den Boer
1
ORCID: ORCID
Izabela Sówka
1
ORCID: ORCID

  1. Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  2. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In response to stresses, plants are capable of communicating their physiological status to other individuals in the community using several chemical cues. Nearby receivers then adjust their own homeostasis to increase resilience. The majority of studies to date have concentrated on the communication of abiotic stressors (e.g., salinity or drought) or herbivory. Less attention has been paid to the role of communication during microbial infections and almost nothing has focused on viruses. Here we investigated the effect that the prevalence of a turnip mosaic virus in a community of Arabidopsis thaliana has on the severity of symptoms developed in a group of receivers. First, we looked at the influence of two factors on the kinetics of symptom progression in the receivers, namely the prevalence of infection among emitters and the growth stage of the receiver plants at inoculation. We found that young receiver plants developed milder symptoms than older ones, and that high infection prevalence resulted in slower disease progression in receivers. Second, we tested the possibility that jasmonates could act as chemical signaling cues. To do this, we examined the kinetics of symptom progression in jasmonate-insensitive and wild-type plants. The results showed that the protective effect vanished in the mutant plants. Third, we investigated the possibility that root communication could also be relevant. We found that the kinetics of symptom progression across receivers was further slowed down in an age-dependent manner when plants were planted in the same pot. Together, these preliminary findings point to a potential function for disease prevalence in plant communities in regulating the severity of symptoms, this effect being mediated by some volatile organic compounds.
Go to article

Authors and Affiliations

Francisca de la Iglesia
1
Santiago F. Elena
1 2

  1. Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, CL.Catedrático Agustín Escardino Belloch 9, Paterna, 46980 València, Spain
  2. Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
Download PDF Download RIS Download Bibtex

Abstract

By 2050, global crop demand is projected to rise by 60–110%. Crop yields have also been impacted by climate change in some nations, and these impacts are likely to continue. To prevent the influence of climate change on crop output, it is critical to adjust planting times in weather-related open fields to meet food security concerns. Present study was carried out at Experimental Farm of Faculty of Agriculture, Al-Azhar University, Assiut, Egypt, during two successive seasons, 2019 and 2020. It was aimed to study the effect of different sowing times (1st and 15th October, 1st and 15th November), and plant spacings (25, 20, and 15 cm) on growth, fruit yield, and oil production of caraway ( Carum carvi L.) plants. The results showed that sowing caraway plants on 15th October with plant spacing of 25 cm gave the highest dry weight (72.6 g∙plant –1), fresh weight (266.15 g∙plant –1), seed yield (37.43 g∙plant –1), and oil yield (0.659 cm3∙plant –1). The maximum umbels (50.83 number per plant) and essential oil (1.78%) were also recorded in the plants receiving same treatment. On the other hand, plants sown at 15th November with spacing of 15 cm exhibited the minimum values of recorded traits. While the highest value of plant height gave with sowing caraway plants on 15th October with plant spacing of 15 cm (135.35 cm). In conclusion, the plants sowed on October 15th with a maximum plant spacing of 25 cm had the highest values of the evaluated morphological, biochemical, and yield attributes of caraway.
Go to article

Authors and Affiliations

Mostafa Fathi Ibrahim
1
ORCID: ORCID
Muhammad Moaaz Ali
2
ORCID: ORCID
Sobhi F. Lamlom
3
ORCID: ORCID
Hazem M. Kalaji
4 5
ORCID: ORCID
Ahmed F. Yousef
1
ORCID: ORCID

  1. University of Al-Azhar (branch Assiut), College of Agriculture, Department of Horticulture, Assiut 71524, Egypt
  2. Fujian Agricultural and Forestry University, College of Horticulture, Fuzhou, China
  3. Alexandria University, Faculty of Agriculture Saba Basha, Plant Production Department, Alexandria, Egypt
  4. Warsaw University of Life Sciences (SGGW), Institute of Biology, Department of Plant Physiology, Warsaw, Poland
  5. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work aims to improve the total power dissipation, leakage currents and stability without disturbing the logic state of SRAM cell with concept called sub-threshold operation. Though, sub-threshold SRAM proves to be advantageous but fails with basic 6T SRAM cell during readability and writability. In this paper we have investigated a non-volatile 6T2M (6 Transistors & 2 Memristors) sub-threshold SRAM cell working at lower supply voltage of VDD=0.3V, where Memristor is used to store the information even at power failures and restores previous data with successful read and write operation overcomes the challenge faced. This paper also proposes a new configuration of non-volatile 6T2M (6 Transistors & 2 Memristors) subthreshold SRAM cell resulting in improved behaviour in terms of power, stability and leakage current where read and write power has improved by 40% and 90% respectively when compared to 6T2M (conventional) SRAM cell. The proposed 6T2M SRAM cell offers good stability of RSNM=65mV and WSNM=93mV which is much improved at low voltage when compared to conventional basic 6T SRAM cell, and improved leakage current of 4.92nA is achieved as compared.
Go to article

Authors and Affiliations

Zeba Mustaqueem
1
Abdul Quaiyum Ansari
1
Md Waseem Akram
1

  1. Jamia Milia Islamia Central University, India

This page uses 'cookies'. Learn more