Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 552
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper the problem of modelling thermal properties of semiconductor devices with the use of compact models is presented. This class of models is defined and their development over the past dozens of years is described. Possibilities of modelling thermal phenomena both in discrete semiconductor devices, monolithic integrated circuits, power modules and selected electronic circuits are presented. The problem of the usefulness range of compact thermal models in the analysis of electronic elements and circuits is discussed on the basis of investigations performed in Gdynia Maritime University.

Go to article

Authors and Affiliations

Krzysztof Górecki
Janusz Zarębski
Paweł Górecki
Przemysław Ptak
Download PDF Download RIS Download Bibtex

Abstract

A novel method to improve the performance of the frequency band is cognitive radio that was introduced in 1999. Due to a lot of advantages of the OFDM, adaptive OFDM method, this technique is used in cognitive radio (CR) systems, widely. In adaptive OFDM, transmission rate and power of subcarriers are allocated based on the channel variations to improve the system performance. This paper investigates adaptive resource allocation in the CR systems that are used OFDM technique to transmit data. The aim of this paper is to maximize the achievable transmission rate for the CR system by considering the interference constraint. Although secondary users can be aware form channel information between each other, but in some wireless standards, it is impossible for secondary user to be aware from channel information between itself and a primary user. Therefore, due to practical limitation, statistical interference channel is considered in this paper. This paper introduces a novel suboptimal power allocation algorithm. Also, this paper introduces a novel bit loading algorithm. In the numerical results sections, the performance of our algorithm is compared by optimal and conventional algorithms. Numerical results indicate our algorithm has better performance than conventional algorithms while its complexity is less than optimal algorithm.

Go to article

Authors and Affiliations

Shirin Razmi
Naser Parhizgar
Download PDF Download RIS Download Bibtex

Abstract

A novel non-orthogonal multiple access (NOMA) scheme is proposed to improve the throughput and the outage probability of the cognitive radio (CR) inspired system which has been implemented to adapt multiple services in the nextgeneration network (5G). In the proposed scheme, the primary source (PS) had sent a superposition code symbol with a predefined power allocation to relays, it decoded and forwarded (DF) a new superposition coded symbol to the destination with the other power allocation. By using a dual antenna at relays, it will be improved the bandwidth efficiency in such CR NOMA scheme. The performance of the system is evaluated based on the outage probability and the throughput with the assumption of the Rayleigh fading channels. According to the results obtained, it is shown that the outage probability and throughput of the proposed full-duplex (FD) in CR-NOMA with reasonable parameters can be able deploy in practical design as illustration in numerical results section.

Go to article

Authors and Affiliations

Thanh-Nam Tran
Dinh-Thuan Do
Miroslav Voznak
Download PDF Download RIS Download Bibtex

Abstract

One of the crucial advancements in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher user data rates in comparison to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), whenever we utilize mm-wave frequency wave bands for signal propagation. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the real-world scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28, 38, 60 and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. Results and outcomes directly affecting the user experience based on fairness index, average cell throughput, spectral efficiency, cell-edge user’s throughput and average user throughput. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network.

Go to article

Authors and Affiliations

Faizan Qamar
MHD Nour Hindia
Talib Abbas
Kaharudin Bin Dimyati
Iraj S. Amiri
Download PDF Download RIS Download Bibtex

Abstract

This article has two outreach aims. It concisely summarizes the main research and technical efforts in the EC H2020 ARIES Integrating Activity – Accelerator Research and Innovation for European Science and Society [1] during the period 2017/2018. ARIES is a continuation of CARE, TIARA and EuCARD projects [2-3]. The article also tries to show these results as an encouragement for local physics and engineering, research and technical communities to participate actively in such important European projects. According to the author’s opinion this participation may be much bigger [4-27]. All the needed components to participate – human, material and infrastructural are there [4,7]. So why the results are not satisfying as they should be? The major research subjects of ARIES are: new methods of particles acceleration including laser, plasma and particle beam interactions, new materials and accelerator components, building new generations of accelerators, energy efficiency and management of large accelerator systems, innovative superconducting magnets, high field and ultra-high gradient magnets, cost lowering, system miniaturization, promotion of innovation originating from accelerator research, industrial applications, and societal implications. Two institutions from Poland participate in ARIES – these are Warsaw University of Technology and Institute of Nuclear Chemistry and Technology in Warsaw. There are not present some of the key institutes active in accelerator technology in Poland. Let this article be a small contribution why Poland, a country of such big research potential, contributes so modestly to the European accelerator infrastructural projects? The article bases on public and internal documents of ARIES project, including the EU Grant Agreement and P1 report. The views presented in the paper are only by the author and not necessarily by the ARIES.

Go to article

Authors and Affiliations

Ryszard S. Romaniuk
Download PDF Download RIS Download Bibtex

Abstract

Performance of standard Direction of Arrival (DOA) estimation techniques degraded under real-time signal conditions. The classical algorithms are Multiple Signal Classification (MUSIC), and Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT). There are many signal conditions hamper on its performance, such as closely spaced and coherent signals caused due to the multipath propagations of signals results in a decrease of the signal to noise ratio (SNR) of the received signal. In this paper, a novel DOA estimation technique named CW-PCA MUSIC is proposed using Principal Component Analysis (PCA) to threshold the nearby correlated wavelet coefficients of Dual-Tree Complex Wavelet transform (DTCWT) for denoising the signals before applying to MUSIC algorithm. The proposed technique improves the detection performance under closely spaced, and coherent signals with relatively low SNR conditions. Also, this method requires fewer snapshots, and less antenna array elements compared with standard MUSIC and wavelet-based DOA estimation algorithms.

Go to article

Authors and Affiliations

Dharmendra Ganage
Yerram Ravinder
Download PDF Download RIS Download Bibtex

Abstract

A new simple design methodology which makes LDR output nearly insensitive to jumps of the load current for long times is proposed. This methodology is tested for more than 104 seconds. Our procedure leans on cross coupling of the time second derivative of the LDR power transistor gate and drain voltages along with their currents. This technique keeps low values of these currents in order of nano or hundreds of micro amperes for undershot or overshot cases, respectively. The introduced methodology has been applied to a standard CMOS of 0.18μm technology for NMOS transistors and validated using MATLAB R2014a.

Go to article

Authors and Affiliations

Ahmed Abdel_Monem
Mohamed B. El_Mashade
T.E. Dabbous
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a unique method of an error detection and correction (EDAC) circuit, carried out using arithmetic logic blocks. The modified logic blocks circuit and its auxiliary components are designed with Boolean and block reduction technique, which reduced one logic gate per block. The reduced logic circuits were simulated and designed using MATLAB Simulink, DSCH 2 CAD, and Microwind CAD tools. The modified, 2:1 multiplexer, demultiplexer, comparator, 1-bit adder, ALU, and error correction and detection circuit were simulated using MATLAB and Microwind. The EDAC circuit operates at a speed of 454.676 MHz and a slew rate of -2.00 which indicates excellence in high speed and low-area.

Go to article

Authors and Affiliations

S. Kavitha
Fazida Hanim Hashim
Noorfazila Kamal
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel complementary CPWfed slotted microstrip patch antenna for operation at 2.4 GHz, 5.2 GHz and 6.3 GHz frequencies. The primary structure consists of the complementary split ring resonator slots on a patch and the design is fabricated on FR-4 epoxy substrate with substrate thickness of 1.6 mm. The described structure lacks the presence of a ground plane and makes use of a number of circular complementary SRRs along with rectangular slots on the radiating patch. The structure provides a wide bandwidth of around 390 MHz, 470 MHz and 600 MHz at the three bands with return losses of -11.5 dB, -24.3996dB and -24.4226 dB, respectively. The inclusion of the rectangular slots in the CSRR based slot antenna with stairecase structure improved the performance with respect to return loss.

Go to article

Authors and Affiliations

Kaustubh Bhattacharyya
Rupanda Thangjam
Sivaranjan Goswami
Kumaresh Sarmah
Sunandan Baruah
Download PDF Download RIS Download Bibtex

Abstract

A low power regenerative comparator is very useful in Successive Approximation Register (SAR) type Analog to Digital Converter (ADC) for a Wireless Sensor Node (WSN). A regenerative type comparator generates output pulses by comparing input with a reference input. This paper deals with control of a power with an adjustable duty cycle. The regenerative comparator with an adjustable duty cycle and a positive feedback of a latch will help in improving accuracy, speed and also in achieving the less power consumption. The optimum value of a duty cycle is determined with metastability timing constraints. The proposed low power regenerative comparator circuit is designed and simulated by using TSMC 180 nm CMOS technology. The comparator consumes power as low as 298.54 nW with a regenerative time 264 ps at 1 V power supply.

Go to article

Authors and Affiliations

Dipak S. Marathe
Uday P. Khot
Download PDF Download RIS Download Bibtex

Abstract

At present, most of the existing target detection algorithms use the method of region proposal to search for the target in the image. The most effective regional proposal method usually requires thousands of target prediction areas to achieve high recall rate.This lowers the detection efficiency. Even though recent region proposal network approach have yielded good results by using hundreds of proposals, it still faces the challenge when applied to small objects and precise locations. This is mainly because these approaches use coarse feature. Therefore, we propose a new method for extracting more efficient global features and multi-scale features to provide target detection performance. Given that feature maps under continuous convolution lose the resolution required to detect small objects when obtaining deeper semantic information; hence, we use rolling convolution (RC) to maintain the high resolution of low-level feature maps to explore objects in greater detail, even if there is no structure dedicated to combining the features of multiple convolutional layers. Furthermore, we use a recurrent neural network of multiple gated recurrent units (GRUs) at the top of the convolutional layer to highlight useful global context locations for assisting in the detection of objects. Through experiments in the benchmark data set, our proposed method achieved 78.2% mAP in PASCAL VOC 2007 and 72.3% mAP in PASCAL VOC 2012 dataset. It has been verified through many experiments that this method has reached a more advanced level of detection.

Go to article

Authors and Affiliations

WenQing Huang
MingZhu Huang
YaMing Wang
Download PDF Download RIS Download Bibtex

Abstract

This research proposes a method to enhance the payload message by embedding messages on the dilated edge areas by the Least Significant Bit (LSB) method. To add security aspects to messages, messages are not embedded directly on the LSB but encrypted with XOR operations with Most Significant Bit (MSB). The experimental results of the test in this study showed that the dilation process to some extent can increase the payload of 18.65% and the average bpp is 1.42 while maintaining the imperceptibilty quality of stego image with an average PSNR value of about 47 dB, SSIM is 0.9977 and MSE is 1.13.

Go to article

Authors and Affiliations

De Rosal Ignatius Moses Setiadi
Download PDF Download RIS Download Bibtex

Abstract

In this article the magnetic memory model with nano-meter size made from iron cells was proposed. For a purpose of determining the model specifications, the magnetic probes group with different geometrical parameters were examined using numeric simulations for the two different time duration of transitions among quasistable magnetic distributions found in the system, derived from the energy minimums. The geometrical parameters range was found, for which the 16 quasi–stable energetic states exist for the each probe. Having considered these results the 4 bits magnetic cells systems can be designed whose state is changed by spin-polarized current. Time dependent current densities and the current electron spin polarization directions were determined for all cases of transitions among quasi–stable states, for discovered set of 4 bits cells with different geometrical parameters. The 16- states cells, with the least geometrical area, achieved the 300 times bigger writing density in comparison to actual semiconductor solutions with the largest writing densities. The transitions among quasi-stable states of cells were examined for the time durations 105 times shorter than that for up to date solutions.

Go to article

Authors and Affiliations

P. Steblinski
T. Blachowicz
Download PDF Download RIS Download Bibtex

Abstract

A variety of algorithms allows gesture recognition in video sequences. Alleviating the need for interpreters is of interest to hearing impaired people, since it allows a great degree of self-sufficiency in communicating their intent to the non-sign language speakers without the need for interpreters. State-of-theart in currently used algorithms in this domain is capable of either real-time recognition of sign language in low resolution videos or non-real-time recognition in high-resolution videos. This paper proposes a novel approach to real-time recognition of fingerspelling alphabet letters of American Sign Language (ASL) in ultra-high-resolution (UHD) video sequences. The proposed approach is based on adaptive Laplacian of Gaussian (LoG) filtering with local extrema detection using Features from Accelerated Segment Test (FAST) algorithm classified by a Convolutional Neural Network (CNN). The recognition rate of our algorithm was verified on real-life data.

Go to article

Authors and Affiliations

Filip Csóka
Jaroslav Polec
Tibor Csóka
Juraj Kačur
Download PDF Download RIS Download Bibtex

Abstract

Most of the developing countries economy largely depends on the agriculture. More than half of the population rely on agriculture related activities for their survival. In spite of dependency on agriculture, the technological development of agricultural work in developing country is not comparable to the countries like Australia or Israel. The main reason behind the lack of development is the small size of farms. Such farmers cannot afford expensive technology available in the market due to limited profit margins. The report describes an autonomous fertilization system that takes care of the fertilization requirements of the small scale farms at affordable rates. The system is divided in two parts namely User Interface and Control System. The user interface is designed using the state of the art Raspberry Pi board and a touch screen LCD. The control system is developed using the Arduino platform and can control five fertilizers at a time. The output of the system is the mix of the fertilizer, which is forced into the drip irrigation system of the farm. The system has built in data for the fertilization requirement for important crops and vegetation. The system also facilitates the customize fertilization requirements to be added in the system as per the user requirements.

Go to article

Authors and Affiliations

Vijay Savani
Akash Mecwan
Jayesh Patel
Piyush Bhatasana
Download PDF Download RIS Download Bibtex

Abstract

A wideband antenna with dual band characteristic at 5.33/14.3GHz with resonating frequencies for wireless applications is presented. The strategy of the design is to introduce multiband in antenna band. Bandwidth of the antenna increases by embedding annular ring on the radiating patch and four bands are achieved by introducing coupling gap between the patches. Surface current distribution is analyzed at different resonating frequencies for understanding the radiation mechanism and effect of annular ring. The antenna parameters such as return loss, radiation pattern, gain, VSWR and group delay are discussed. The impedance bandwidth of the proposed dual band antenna at lower resonant frequency is 12.7% (simulated) and 9.8 % (measured) whereas at upper resonant frequency is 15.3 % (simulated) and 13.97 % (measured).

Go to article

Authors and Affiliations

Karunesh Srivastava
Sweta Singh
Aditya Kumar Singh
Rajeev Singh
Download PDF Download RIS Download Bibtex

Abstract

This paper presents that the effect of single aperture size of metallic enclosure on electrical shielding effectiveness (ESE) at 0 – 1 GHz frequency range has been investigated by using both Robinson’s analytical formulation and artificial neural networks (ANN) methods that are multilayer perceptron (MLP) networks and a radial basis function neural network (RBFNN). All results including measurement have been compared each other in terms of aperture geometry of metallic enclosure. The geometry of single aperture varies from square to rectangular shape while the open area of aperture is fixed. It has been observed that network structure of MLP 3-40-1 in modeling with ANN modeled with fewer neurons in the sense of overlapping of faults and data and modeled accordingly. In contrast, the RBFNN 3-150-1 is the other detection that the network structure is modeled with more neurons and more. It can be seen from the same network-structured MLP and RBFNN that the MLP modeled better. In this paper, the impact of dimension of rectangular aperture on shielding performance by using RBFNN and MLP network model with ANN has been studied, as a novelty.

Go to article

Authors and Affiliations

Ibrahim Bahadir Basyigit
Habib Dogan
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a novel double-layer multiband circularly polarized microstrip patch antenna is proposed. The design employs the concept of slotted patch fed with proximity coupled feed having defected ground plane (DGS). The proposed antenna achieves multiple operating frequency bands including FB1 (11.15 GHz), FB2 (4.17 GHz), FB3 (4.87 GHz) and FB4 (1.98 GHz). The proposed antenna has obtained bandwidth of 12.98%, 4.7%, 4.69% and 5.39% at FB1, FB2, FB3 and FB4 bands, respectively. The proposed antenna also exhibits circular polarization in the frequency band FB4. The 3dB ARBW of the antenna is 9.23% at 11.2 GHz. Finally, a metallic cavity is used with the antenna to achieve a unidirectional radiation pattern. The designed antenna radiation characteristics are verified with the experimental results.

Go to article

Authors and Affiliations

Ashish Kumar Singh
Ankit Sharma
M. Lakshmanan
Deepak Gangwar
Download PDF Download RIS Download Bibtex

Abstract

MIMO technology has become very popular in a wireless communication system because of the many advantages of multiple antennas at the transmitting end and receiving end. The main advantages of MIMO systems are higher data rate and higher reliability without the need of extra power and bandwidth. The MIMO system provides higher data rate by using spatial multiplexing technique and higher reliability by using diversity technique. The MIMO systems have not only advantages, but also have disadvantages. The main disadvantage of MIMO system is that the multiple antennas required extra high cost RF modules. The extra RF modules increase the cost of wireless communication systems. In this research, the antenna selection techniques are proposed to minimize the cost of MIMO systems. Furthermore, this research also presents techniques for antenna selection to enhance the capacity of channel in MIMO systems.

Go to article

Authors and Affiliations

Dalveer Kaur
Neeraj Kumar
Download PDF Download RIS Download Bibtex

Abstract

The biggest software development companies conduct daily more than hundreds deployments which influence currently operating IT (Information Technology) systems. This is possible due to the availability of automatic mechanisms which are providing their functional testing and later applications deployment. Unfortunately, nowadays, there are no tools or even a set of good practices related to the problem on how to include IT security issues into the whole production and deployment processes. This paper describes how to deal with this problem in the large mobile telecommunication operator environment.

Go to article

Authors and Affiliations

Grzegorz Siewruk
Wojciech Mazurczyk
Andrzej Karpiński
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, alternative models of elliptic curves like Montgomery, Edwards, twisted Edwards, Hessian, twisted Hessian, Huff’s curves and many others are very popular and many people use them in cryptosystems which are based on elliptic curve cryptography. Most of these models allow to use fast and complete arithmetic which is especially convenient in fast implementations that are side-channel attacks resistant. Montgomery, Edwards and twisted Edwards curves have always order of group of rational points divisible by 4. Huff’s curves have always order of rational points divisible by 8. Moreover, sometimes to get fast and efficient implementations one can choose elliptic curve with even bigger cofactor, for example 16. Of course the bigger cofactor is, the smaller is the security of cryptosystem which uses such elliptic curve. In this article will be checked what influence on the security has form of cofactor of elliptic curve and will be showed that in some situations elliptic curves with cofactor divisible by 2m are vulnerable for combined small subgroups and side-channel attacks.

Go to article

Authors and Affiliations

Michał Wrońska
Download PDF Download RIS Download Bibtex

Abstract

A compact planar multiband antenna operating at 3.1 (S-band) /4.7/6.4/7.6 (C-band) /8.9/10.4/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a rectangular radiator in which an E-shaped slot is etched out and a microstrip feed line. The E-shaped slot modifies the total current path thereby making the antenna to operate at seven useful bands. No external impedance matching circuit is used and the impedance matching at these bands are solely achieved by using a rectangular microstrip feed line of length 10mm (L6) and width 2mm (W10). The antenna has a compact dimension of ���� × ���� × ��. �� ������ and exhibits S11<-10dB bandwidth of about 6.45% (3.2-3.0GHz), 8.5% (4.9-4.5GHz), 7.6% (6.7-6.2GHz), 3.9% (7.8-7.5GHz), 5.7% (9.1-8.6GHz), 1.2% (10.44-10.35GHz) and 2.2% (11.87-11.62GHz). The simulation analysis of the antenna is carried out by using HFSS v.13.0.

Go to article

Authors and Affiliations

Imran Khan
Geetha D. Devanagavi
K.R. Sudhindra
Tanweer Ali
R.K. Rashmitha
Raksha Gunjal
Download PDF Download RIS Download Bibtex

Abstract

A low drop-out [LDO] voltage regulator with fast transient response which does not require a capacitor for proper operation is proposed in this paper. Recent cap-less LDOs do not use off chip capacitor but instead they use on chip capacitor which occupy a large area on the chip. In the proposed LDO, this on chip capacitor is also avoided. A novel secondary local feedback technique is introduced which helps to achieve a good transient response even in the absence of output capacitor. Further an error amplifier that does need compensation capacitor is selected to reduce the on chip area. Stability analysis shows that the proposed LDO is stable with a phase margin of 78°. The proposed LDO is laid out using Cadence Virtuoso in 180 nm standard CMOS technology. Post layout simulation is carried out and LDO gives 6mV=V and 360µV=mA line and load regulation respectively. An undershoot of 120 mV is observed during the load transition from 0 mA to 50 mA in 1 µs transition time, however LDO is able to recover within 1:4 µs. Since capacitor is not required in any part of design, it occupies only 0:010824 mm2 area on the chip.

Go to article

Authors and Affiliations

Guruprasad
Kumara Shama
Download PDF Download RIS Download Bibtex

Abstract

This electronic paper presents an innovative technology for efficient use of the radio spectrum. This new frequency reconfigurable rotatable antenna is intended for wireless applications such as WLAN, WiMAX and Bluetooth mobile applications. The working principle of this proposed work is to print square patches mounted on the same circular dielectric substrate feed by a proximity coupling to eliminate the noise signal transmission and problems related to interference. The three positions correspond to an operating frequency controlled by a bipolar step-by-step engine. An optimization of the structure using the FEM finite element method as well as a comparison with other structures recently realized are detailed in this paper. The final numerical simulation results are: WLAN 4.95-5.53 GHz (BW = 11%) Gain = 6.06 dBi, WiMAX 3.35-3.75 GHz (BW = 11.2%) Gain = 7.48 dBi and Bluetooth 2.3-2.51 GHz (BW = 8.7%) Gain = 17.78 dBi.

Go to article

Authors and Affiliations

Aziz El Fatimi
Seddik Bri
Adil Saadi

This page uses 'cookies'. Learn more