The active distribution network (ADN) represents the future development of distribution networks, whether the islanding phenomenon occurs or not determines the control strategy adopted by the ADN. The best wavelet packet has a better time-frequency characteristic than traditional wavelet analysis in the different signal processing, because it can extract better and more information from the signal effectively. Based on wavelet packet energy and the neural network, the islanding phenomenon of the ADN can be detected. Firstly, the wavelet packet is used to decompose current and voltage signals of the public coupling point between the distributed photovoltaic (PV) system and power grid, and calculate the energy value of each decomposed frequency band. Secondly, the network is trained using the constructed energy characteristic matrix as a neural network learning sample. At last, in order to achieve the function of identification for islanding detection, lots of samples are trained in the neural network. Based on the actual circumstance of PV operation in the ADN, the MATLAB/SIMULINK simulation model of the ADN is established. After the simulation, there are good output results, which show that the method has the characteristics of high identification accuracy and strong generalization ability.
This paper proposes a fair calculation approach for the cost and emission of generators. Generators also have reactive power requirements along with the active power demand to meet up the total power demand. In this paper, firstly the reactive power is calculated considering the random active power operating points on the capability curve of a generator then the cost for reactive power generation as well as emission are calculated. In order to develop the mathematical function for the reactive power cost and reactive power emission, a curve-fitting technique is applied, which gives the generalised reactive power cost and reactive power emission functions. At the end, the problem is formulated as a multiobjective problem, considering conflicting objectives such as combined active- reactive economic dispatch and combined active-reactive emission dispatch. The problem is converted from the multiobjective load dispatch problem (MOLDP) into a scalar problem, using the weighting method and the best compromised solution has been calculated using the particle swarmoptimization (PSO) technique.Afuzzy cardinal method has been applied to choose the best solution. In order to demonstrate the efficiency of developed functions the proposed method is applied on a 3 generator unit system and a 10 generator unit system, the results obtained show its validity and effectiveness.
The article presents the consequences of the introduction of EU regulation 2016/631 for power park modules (PPMs), of which wind farms are a typical example. Analysing the yearlong course of changes in the generated power, the possibility of a typical wind farm meeting the requirements for the production and absorption of reactive power was checked. It was shown that in the selected cases it was necessary to introduce additional sources of reactive power on the side of the farm’s MV.
During a blackout, after the post-disaster collapse of an electric power system (EPS), units of thermal power plants should switch-over to the house load operation mode (PPW). However, regarding the dynamics of a post-disaster blackout process, many units can be in forced outage Therefore, restart of these units from the start-up sources with a self-start capability is necessary. The Transmission Network Code in force imposes periodic tests and system tests for such sources. Any system test must be preceded and followed by simulation investigations in which the possibilities: (1) to bring voltage to the started-up power plant by a starting path and (2) to activate the highest-power auxiliaries (PW) of the unit being started-up are evaluated. In the paper, chosen results of simulative investigations of the transient phenomena in the starting path from the hydroelectric power plant of Włocławek (HPP Włocławek) to the thermal power plant of P˛atnów (TPP P˛atnów), related to the system test conducted in September 2017 have been presented.
This paper presents a study on ferroresonance occurring in a high voltage 400 kV transmission grid due to energization of power transformer under no-load conditions. The system scenarios analyzed in the present paper are considered as critical for development and modernization plans as currently announced by the national grid operator in Poland. The PSCADsimulation modelwas developed and applied for several study cases of a system with double-circuit arrangement of a transmission line. It is shown that the ferroresonant oscillations can be initiated by two-phase switching operation of a line circuit breaker. The impact of the double-circuit length on the ferroresonance mode and severity is demonstrated with the use of the Poincaré map analysis and Short Time Fourier Transform. It is demon- strated that the length of the transmission line that is mutually coupled in the double-circuit arrangement has a significant impact on the ferroresonance occurrence and on its mode. As the ferroresonance can pose severe threat to the power system components due to the severe overvoltage and overcurrent oscillations, the analysis presented in this paper demonstrates the necessity of the ferroresonance analyses for any re-designed transmission system.
Along with the increase in the use of nonlinear electronic devices, e.g. personal computers, power tools and other electrical appliances, the requirements for uninterruptible power supplies are constantly growing. This paper proposes a method and deep analysis of results viable for checking how single-phase uninterruptible power supplies (UPSs) cope with nonlinear circuits under varying power loads in terms of electric energy quality.Various classes of single-phase UPS systems with different topologies were tested, for instance line-interactive and double conversion (online) single-phase UPS devices. Furthermore, measurements were carried out in view of a power source – loads were supplied both from a power grid and UPS built-in battery. Juxtaposition of the obtained results such as a THDU, THDI (Total Harmonic Distortion) percentage ratio of input/output voltage and current, a power factor and crest factor volume etc. of the tested UPS systems indicated major differences in their performance during laboratory tests.
In order to solve the problem of traditional carrier phase-shift modulation with multiple ratios or PI controllers and cumbersome tuning parameters, this paper uses improved carrier phase-shift modulation. The total turn-on number of sub-modules each bridge arm is determined by comparing the sinusoidal modulated wave with the triangular carrier, and then the control signal is generated according to the capacitance voltage sorting result and the bridge armcurrent polarity. However, this modulation method uses a sorting method that causes the insulated gate bipolar transistor (IGBT) have an excessively high switching frequency. Therefore, a sorting trigger condition that can effectively reduce the switching frequency is used. The method determines whether to reorder based on the error between the voltage average and the actual value. For the circulation problem, the double-frequency negative sequence component is extracted by rotating coordinate transformation, and it is suppressed by PI control. A 21-level MMC model was built in MATLAB/simulink to analyze the sub-module capacitor voltage fluctuation, output current, voltage distortion rate and bridge arm circulation. It is verified that the modulation method can combine the sorting algorithm and circulation suppression method at the same time, and has better voltage equalization and circulation suppression effects.
The paper presents the analysis of different fault states in drive systems with multiphase induction motors. The mathematical models of a five-phase and six-phase induction motor and the MRASCC estimator have been presented and the description of the Space Vector Modulation has been shown. The Direct Field-Oriented Control (DFOC) system is analyzed. Results of the simulation and experimental studies of the Direct Field-Oriented Control systems in the fault conditions are presented. The author’s original contribution includes analysis and studies of the DFOC control method of a five-phase induction motor resistant to the motor speed sensor fault with the use of the MRASCC estimator.
With the increasing number of electric vehicles (EVs), the disordered charging of a large number of EVs will have a large influence on the power grid. The problems of charging and discharging optimization management for EVs are studied in this paper. The distribution of characteristic quantities of charging behaviour such as the starting time and charging duration are analysed. The results show that charging distribution is in line with a logarithmic normal distribution. An EV charging behaviour model is established, and error calibration is carried out. The result shows that the error is within its permitted scope. The daily EV charge load is obtained by using the Latin hypercube Monte Carlo statistical method. Genetic particle swarm optimization (PSO) is proposed to optimize the proportion of AC 1, AC 2 and DC charging equipment, and the optimal solution can not only meet the needs of users but also reduce equipment investment and the EV peak valley difference, so the effectiveness of the method is verified.
Brushless DC motors are often used as the power sources for modern ship electric propulsion systems. Due to the electromagnetic torque ripple of the motor, the traditional control method reduces the drive performance of the motor under load changes. Aiming at the problem of the torque ripple of the DC brushless motor during a non- commutation period, this paper analysis the reasons for the torque ripple caused by pulse- width modulation (PWM), and proposes a PWM_ON_PWM method to suppress the torque ripple of the DC brushless motor. Based on the mathematical model of a DC brushless motor, this method adopts a double closed-loop control method based on fuzzy control to suppress the torque ripple of the DC brushless motor. The fuzzy control technology is integrated into the parameter tuning process of the proportional–integral–derivative (PID) controller to effectively improve the stability of the motor control system. Under the Matlab/Simulink platform, the response performance of different PID control methods and the torque characteristics of different PWM modulation methods are simulated and compared. The results show that the fuzzy adaptive PID control method has good dynamic response performance. It is verified that the PWM_ON_PWM modulation method can effectively suppress the torque ripple of the motor during non-commutation period, improve the stability of the double closed-loop control system and meet the driving performance of the motor under different load conditions.
The problem of a closed-form accurate determination of self and mutual capacitance of conductors in air and earth is considered: the application is the complete modeling of a railway line including buried conductors. The Generalized Potential Method (GPM) is presented and analyzed with regard to conditions of validity and solution methods. The accuracy of the GPM is evaluated solving some reference cases using the Complex Image Method and a commercial Finite Element Method simulator, comparing the model results with experimental data, and including the sensitivity on soil conductivity and permittivity, distance of conductors from the air–earth interface and frequency.
The invariant properties of the stability, reachability, observability and transfer matrices of positive linear electrical circuits with integer and fractional orders are investi- gated. It is shown that the stability, reachability, observability and transfer matrix of positive linear systems are invariant under their integer and fractional orders.
Averaged models: an AC large signal, DC and AC small signals of a current-controlled buck converter are described. Only peak current mode control of a converter working in the continuous conduction mode (CCM) is considered. The model derivation differs from the typical approaches presented in the literature and doesn’t refer to the multi-loop concept of a current controlled converter. The separation of the variables method is used in the model derivation. The resulting models are presented in the form of an equation set and equivalent circuits. The calculations based on the presented models are verified by measurements and full-wave PSpice simulations.
Accurate prediction of power load plays a crucial role in the power industry and provides economic operation decisions for the power operation department. Due to the unpredictability and periodicity of power load, an improved method to deal with complex nonlinear relation was adopted, and a short-term load forecasting model combining FEW (fuzzy exponential weighting) and IHS (improved harmonic search) algorithms was proposed. Firstly, the domain space was defined, the harmony memory base was initialized, and the fuzzy logic relation was identified. Then the optimal interval length was calculated using the training sample data, and local and global optimum were updated by optimization criteria and judging criteria. Finally, the optimized parameters obtained by an IHS algorithm were applied to the FEW model and the load data of the Huludao region (2013) in Northeast China in May. The accuracy of the proposed model was verified using an evaluation criterion as the fitness function. The results of error analysis show that the model can effectively predict short-term power load data and has high stability and accuracy, which provides a reference for application of short-term prediction in other industrial fields.
The aim of this article is to present the results of research aimed at confirmation whether it is possible to form an intermediate band in GaAs implantation with H+ ions. The obtained results were discussed with particular emphasis on possible applications in the photovoltaic industry. As it is commonly known, the idea of intermediate band solar cells reveals considerable potential as the most fundamental principle of the next generation of semiconductors solar cells. In progress of the research, a series of GaAs samples were subjected to poly-energy implantation of H+ ions, followed by high-temperature annealing. Tests were conducted using thermal admittance spectroscopy, under conditions of variable ambient temperature, measuring signal frequency in order to localize deep energy levels, introduced by ion implantation. Activation energy ΔE was determined for additional energy levels resulting from the implantation of H+ ions. The method of determining the activation energy value is shown in Fig. 2 and the values read from it are σ0 = 10−9 (Ω·cm)−1 for 1000/T0 = 3.75 K−1 and σ1 = 1.34 × 10−4 (Ω·cm)−1 for 1000/T1 = 2.0 K−1. As a result, we obtain ΔE ≈ 0:58 eV. It was possible to identify a single deep level in the sample of GaAs implanted with H+ ions. Subsequently, its location in the band gap was determined by estimating the value of ΔE. However, in order to confirm whether the intermediate band was actually formed, it is necessary to perform further analyses. In particular, it is necessary to implement a new analytical model, which takes into consideration the phenomena associated with the thermally activated mechanisms of carrier transport as it was described in [13]. Moreover, the influence of certain parameters of ion implantation, post-implantation treatment and testing conditions should also be considered.
The paper presents an FE model of coupled electromagnetic and thermal phenomena in Line Start Permanent Magnet Synchronous Motors (LSPMSMs). An algorithm for solving equations of a discrete model using the FEM has been presented. On the basis of this algorithm the author’s personally developed software for the analysis of coupled electromagnetic-thermal phenomena in the LSPMS motors was elaborated. This software was used to analyze the start-up process of motors with identical stator and rotor magnetic circuits and different materials of the starting cage. The start-up process of motors with the squirrel-cage made of aluminum and copper was considered. The influence of temperature on the start-up process has been taken into account. The results of simulation tests were compared with the results of measurements.
ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.
Manuscript submission:
All manuscripts should be submitted electronically on Editorial System.
Submission of paper to the Archives of Electrical Engineering is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.
Template:
Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.
While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).
The articles that don’t conform to the above will not be processed and published.
The reviewing process:
Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:
a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE
b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place
c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected
d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.
The papers are published on average within 3 months after acceptance.
Requirements for preparation of manuscripts:
The manuscript submitted for publication should have no less than 12 pages and no more than 16 pages. In the case of the manuscript longer than 16 pages, please contact the AEE Editorial Board before submitting your paper. The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").
All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.
If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.
The manuscripts are published on average within 3 months after their acceptance.
Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures.
The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.
Text:
The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.
Math:
Please use the MathML editor as well as MathType editor to build an equation in your manuscript.
Equations:
Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.
If the symbols are written in Times New Roman use italic fonts. Symbols of vectors and matrices should be written in bold fonts. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.
Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.
Unit Symbols, Abbreviations:
Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.
Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength H is A/m. Apply the center dot to separate compound units.
Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".
Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."
Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the IEEE standard
Tables, figures (illustrations) and captions:
The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.
All figures, figure captions, and tables in the text must be inserted into the correct places.
Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.
Authors are requested to send all drawings used in the article in additional files. Create a separate file for each image. Images should be submitted in a bitmap format (.jpeg) or/and in a vector format (.eps, .pdf or .cdr). Each file must be saved according to the number in the original article, e.g.: FIG1.JPG, FIG2.EPS, or FIG3.PDF. Bitmap illustrations must be “flattened”, which means no additional layers, for example, covering old descriptions.
Photographs, colour, and greyscale figures should be at least at a resolution of 400 dpi.
All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.
When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.
Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).
AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.
Conclusions:
A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.
References:
References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.
Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.
You can use the rules presented on the site: IEEE standard.
Examples of the ways in which references should be cited are given below:
Journal manuscript
[1] Author1 A., Author2 A., Title of paper, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).
example
[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).
[2] Idziak P., Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor, Electrical Review (in Polish), to be published.
[3] Cardwell W., Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor, submitted for publication in IEEE Transactions on Magnetics.
Conference manuscript
[4] Author A., Title of conference paper, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).
example
[4] Popescu M., Staton D.A., Thermal aspects in power traction motors with permanent magnets, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).
Book, book chapter and manual
[5] Author1 A., Author2 A.B., Title of book, Name of the publisher (YEAR).
example
[5] Zienkiewicz O., Taylor R.L., Finite Element method, McGraw-Hill Book Company (2000).
Patent
[6] Author1 A., Author2 A., Title of patent, European Patent, EP xxx xxx (YEAR).
example
[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).
Thesis
[7] Author A., Title of thesis, PhD Thesis, Department, University, City of Univ. (YEAR).
example
[7] Driesen J., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).
For on electronic forms
[8] Author A., Title of article, in Title of Conference, record as it appears on the copyright page], © [applicable copyright holder of the Conference Record] (copyright year), doi: [DOI number].
example
[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., Zero-sequence current suppression for open-end winding induction motor drive with resonant controller,in IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC (2016), doi: 10.1109/APEC.2016.7468259
Website
[9] http://www.aee.put.poznan.pl, accessed April 2010.
Proofs:
Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.
Fees for printing the papers in Archives of Electrical Engineering:
AEE is published in Open Access, which means that all articles are available on the internet to all users immediately upon publication free of charge for the readers. Authors will be asked to a declaration that they are ready to cover the costs of printing their article.
The publication cost in the AEE journal is estimated at 2 000 PLN, (approx. €500 Euro) up to 20 pages of the journal format and mandatory over-length charges of 120PLN (approx. 40EUR) per page. The publication cost does not include bank transfer costs.
Abstracting & Indexing:
Archives of Electrical Engineering is covered by the following services:
Preparation of manuscript for Archives of Electrical Engineering (AEE)