Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2011 | vol. 60 | No 1 March

Download PDF Download RIS Download Bibtex

Abstract

A method for modeling of the dynamics characteristics for a 5-phase permanent magnet tubular linear motor (PMTLM) is presented. Its electromagnetic nonlinear field analysis with finite element method (FEM) has been coupled with the circuit model. The calculation model includes the equations for electrical circuits and mechanical quantities as well. They have been obtained using Lagrange's method. The calculated and measured waves of the mover position have been compared for several values of the excitation current. This comparison yields a good agreement. Presented calculation model is very useful in designing and optimization of the PMTLM and in the calculation of the parameters for the control algorithms intended for such a type of actuators.
Go to article

Authors and Affiliations

Bronisław Tomczuk
Andrzej Waindok
Download PDF Download RIS Download Bibtex

Abstract

This research presents a method of modeling and numerical simulation of a reluctance stepper motor using reduced finite-element time-stepping technique. In presented model, the circuit equations are reduced to non-stationary differential equations, i.e. the inductance mapping technique is used to find relationship between coil inductance and rotor position. A strongly coupled field-circuit model of the stepper motor is presented. In analyzed model the magnetostatic field partial differential equations are coupled with rotor motion equation and solved simultaneously in each iterative step. The nonlinearity problem is solved using Newton-Raphson method with spline approximation of the B-H curve.
Go to article

Authors and Affiliations

Jakub Bernat
Jakub Kołota
Sławomir Stępień
Grzegorz Szymański
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of computing electrical and mechanical variables of BLDC motors. It takes into account electrical, magnetic and mechanical phenomena in the power supply-converter-BLDC motor-load machine system. The solution to the problem is the so-called circuit-field method. The results determined with the use of time stepping finite element method were used as the parameters of equations of the developed mathematical model. Losses in the motor, losses in transistors and diodes of the converter as well as the actual back EMF waveforms, variable moment of inertia and variable load torque are accounted for. The designed laboratory stand and the test results are presented in the paper. The experimental verification shows the correctness of the developed method, algorithm and program. The developed computational method is universal with respect to different electromechanical systems with cylindrical BLDC motors. It can be applied to electromechanical systems with BLDC motors operating at constant but also variable load torque and moment of inertia.
Go to article

Authors and Affiliations

Marek Ciurys
Ignacy Dudzikowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method for estimation of core losses in banks of single phase power transformers that are subjected to an injected DC current such as geomagnetically induced currents (GIC). The main procedure of the core loss calculation is to obtain a magnetic flux density waveform in both time and location by using a novel algorithm based on 3D FEM inside the core and then to calculate the loss distribution based on loss separation theory. Also, a simple and effective method is proposed for estimation of losses of asymmetric minor loops by using combination of symmetric loops. The effect of DC biasing on core losses in single phase power transformers is investigated and the sensitivity of core type and material is evaluated. the results shows that DC current biasing could increase core losses up to 40 percent or even more.
Go to article

Authors and Affiliations

Seyed Mousavi
Göran Engdahl
Edris Agheb
Download PDF Download RIS Download Bibtex

Abstract

An extension of the modified Jiles-Atherton description to include the effect of anisotropy is presented. Anisotropy is related to the value of the angular momentum quantum number J, which affects the form of the Brillouin function used to describe the anhysteretic magnetization. Moreover the shape of magnetization dependent R(m) function is influenced by the choice of the J value.
Go to article

Authors and Affiliations

Krzysztof Chwastek
Jan Szczygłowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a formula useful for prediction of loss density in soft magnetic materials, which takes into account multi-scale energy dissipation. A universal phenomenological P(Bm, f) relationship is used for loss prediction in chosen soft magnetic materials. A bootstrap method is used to generate additional data points, what makes it possible to increase the prediction accuracy. A substantial accuracy improvement for estimated model parameters is obtained in the case, when additional data points are taken into account. The proposed description could be useful both for device designers and researchers involved in computational electromagnetism.
Go to article

Authors and Affiliations

Jan Szczygłowski
Paweł Kopciuszewski
Krzysztof Chwastek
Mariusz Najgebauer
Wiesław Wilczyński
Download PDF Download RIS Download Bibtex

Abstract

The purpose of that paper is to develop of unified equations of electromechanical energy converters accounting for the magnetic non-linearity of the main magnetic circuit of a converter. The concept of applying higher order forms of winding currents for the description of the co-energy function is introduced in order to derive the structure of converter equations via mathematical analysis. Also, another concept of equivalent magnetizing currents is applied to determine the higher order forms for selected converters designs. The structure of circuital equations for converters with multiple windings has been unified by means of the introduction of matrices of dynamic and nonlinear inductances following the higher order forms of the co-energy function.
Go to article

Authors and Affiliations

Tadeusz Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

The paper investigates a significant influence of transients on steady states in a matrix converter with the one-periodic control strategy. Proposed controller can be used as an interconnection device within a power system for a power flow control. However, the presence of inductances in external systems has the significant influence on steady state of a matrix converter operation. The special current injection method has been developed to ensure a proper operation of a matrix converter. Presented analysis of steady states is carried out in a frequency domain using the harmonic balance method. Obtained numerical results, which are confirmed by a time domain analysis, prove the effectiveness of the proposed method.
Go to article

Authors and Affiliations

Dariusz Borkowski
Tadeusz Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the possibility of exciting high quality trapped resonant modes on frequency selective surfaces consisting of identical sub-wavelength metallic inclusions (symmetrically split rings) with no structural asymmetry but exhibitting electrical asymmetry. The electrical symmetry is broken by using different dielectric substrates. The existence of such anti-symmetric trapped mode on geometrical symmetric structure is demonstrated through numerical simulation. Numerical results suggest that the high quality factor observed for these resonant modes is achieved via weak coupling between the "trapped modes" and free space which enables the excitation of these modes.
Go to article

Authors and Affiliations

Mihai Rotaru
Jan Sykulski
Download PDF Download RIS Download Bibtex

Abstract

A simplified isoperibol calorimetry method for measuring specific heat in solids is described. Taking advantage of the classical Nernst dependency the specific heat is calculated from time-domain temperature curves registered for a sample forced heating and natural cooling phase. In order to improve accuracy of the measurements a correction factor, taking into account the heat transferred to the surrounding, is introduced along with a procedure of statistical elimination of unavoidable measurement deviations. The method is implemented in a simple and straightforward measuring system involving no vacuum calorimeter. The method is applicable for quick and routine specific heat measurements performed on small solid dielectric or metallic specimens at near-room temperature. Test results of various materials used commonly in electrical engineering are demonstrated and discussed as well as comparison to drop calorimetry and differential scanning calorimetry reference measurements is included. The overall repeatability of the test method and the simplified apparatus is estimated as not worse than 2.6%.
Go to article

Authors and Affiliations

Leszek Moroń
Paweł Żyłka

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

Manuscript submission:

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the Archives of Electrical Engineering is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.

Template:

Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.

While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).

The articles that don’t conform to the above will not be processed and published.

The reviewing process:

Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:

a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE

b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place

c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected

d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.

The papers are published on average within 3 months after acceptance.

Requirements for preparation of manuscripts:

The manuscript submitted for publication should have no less than 12 pages and no more than 16 pages. In the case of the manuscript longer than 16 pages, please contact the AEE Editorial Board before submitting your paper. The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").

All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.

If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.

The manuscripts are published on average within 3 months after their acceptance.

Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures.

The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.

Text:

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.

Math:

Please use the MathML editor as well as MathType editor to build an equation in your manuscript.

Equations:

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.

If the symbols are written in Times New Roman use italic fonts. Symbols of vectors and matrices should be written in bold fonts. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.

Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.

Unit Symbols, Abbreviations:

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength H is A/m. Apply the center dot to separate compound units.

Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".

Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."

Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the IEEE standard

Tables, figures (illustrations) and captions:

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.

All figures, figure captions, and tables in the text must be inserted into the correct places.

Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.

Authors are requested to send all drawings used in the article in additional files. Create a separate file for each image. Images should be submitted in a bitmap format (.jpeg) or/and in a vector format (.eps, .pdf or .cdr). Each file must be saved according to the number in the original article, e.g.: FIG1.JPG, FIG2.EPS, or FIG3.PDF. Bitmap illustrations must be “flattened”, which means no additional layers, for example, covering old descriptions.

Photographs, colour, and greyscale figures should be at least at a resolution of 400 dpi.

All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.

When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.

Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).

AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.

Conclusions:

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.

References:

References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.

Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.

You can use the rules presented on the site: IEEE standard.

Examples of the ways in which references should be cited are given below:

Journal manuscript

[1] Author1 A., Author2 A., Title of paper, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).

example

[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).

[2] Idziak P., Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor, Electrical Review (in Polish), to be published.

[3] Cardwell W., Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor, submitted for publication in IEEE Transactions on Magnetics.

Conference manuscript

[4] Author A., Title of conference paper, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).

example

[4] Popescu M., Staton D.A., Thermal aspects in power traction motors with permanent magnets, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).

Book, book chapter and manual

[5] Author1 A., Author2 A.B., Title of book, Name of the publisher (YEAR).

example

[5] Zienkiewicz O., Taylor R.L., Finite Element method, McGraw-Hill Book Company (2000).

Patent

[6] Author1 A., Author2 A., Title of patent, European Patent, EP xxx xxx (YEAR).

example

[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).

Thesis

[7] Author A., Title of thesis, PhD Thesis, Department, University, City of Univ. (YEAR).

example

[7] Driesen J., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).

For on electronic forms

[8] Author A., Title of article, in Title of Conference, record as it appears on the copyright page], © [applicable copyright holder of the Conference Record] (copyright year), doi: [DOI number].

example

[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., Zero-sequence current suppression for open-end winding induction motor drive with resonant controller,in IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC (2016), doi: 10.1109/APEC.2016.7468259

Website

[9] http://www.aee.put.poznan.pl, accessed April 2010.

Proofs:

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.

Fees for printing the papers in Archives of Electrical Engineering:

AEE is published in Open Access, which means that all articles are available on the internet to all users immediately upon publication free of charge for the readers. Authors will be asked to a declaration that they are ready to cover the costs of printing their article.

The publication cost in the AEE journal is estimated at 2 000 PLN, (approx. €500 Euro) up to 20 pages of the journal format and mandatory over-length charges of 120PLN (approx. 40EUR) per page. The publication cost does not include bank transfer costs.

Abstracting & Indexing:

Archives of Electrical Engineering is covered by the following services:

  • Arianta
  • Baidu Scholar
  • BazTech
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastucture)
  • CNPIEC
  • DOAJ
  • EBSCO - TOC Premie
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Compendex
  • Elsevier - Engineering Village
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • ICI Journals Master List
  • Inspec
  • J-Gate
  • Naviga (Softweco)
  • POL-Index
  • Primo Central (ExLibris)
  • ProQuest - Advanced Technologies Database with Aerospace
  • ProQuest - Electronics and Communications Abstracts
  • ProQuest - Engineering Journals
  • ProQuest - High Tech Research Database
  • ProQuest - Illustrata: Technology
  • ProQuest - SciTech Journals
  • ProQuest - Technology Journals
  • ProQuest - Technology Research Database
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • TEMA Technik und Management
  • Thomson Reuters - Emerging Sources Citation Index
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

Preparation of manuscript for Archives of Electrical Engineering (AEE)

AEE License to publish

This page uses 'cookies'. Learn more