Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March |

Download PDF Download RIS Download Bibtex

Abstract

The article provides a theoretical basis for a method allowing to calculate probability of effects of electric shock, as well as a method for determining probabilistic characteristics of random touch current values and of human body impedance in a person who suffered from specific effects of electric shock. Results of example calculations are presented, including probabilities of occurrence of sensory symptoms, exceeding the letgo threshold, and development of ventricular fibrillation, as well as probabilistic characteristics of random touch current values and of impedance of human body in people who experienced specific effects of electric shock.

Go to article

Authors and Affiliations

Włodzimierz Korniluk
Dariusz Sajewicz
Download PDF Download RIS Download Bibtex

Abstract

The unbalance of the neutral point voltage is an inherent problem of three-level neutral-point-clamped (NPC) inverter, the effect of neutral point voltage balancing which is caused by voltage vector is analyzed, and the relationship of the voltage offset and neutral point voltage is studied in this paper. This paper proposes a novel neutral point balance strategy for three-level NPC inverter based on space vector pulse width modulation (SVPWM). A voltage offset is added to the modulation wave, and a closed-loop neutral point voltage balance control system is designed. In the control system, the dwelling time of synthesis voltage vectors for SVPWM is varied to solve the problem of the unbalance of the neutral point voltage, the sequence of the voltage vectors maintains unchanging. Simulation and experimental results show the neutral point voltage balancing control strategy based on SVPWM is effective.

Go to article

Authors and Affiliations

Bo Gong
Shanmei Cheng
Yi Qin
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel speed estimator using Reactive Power based Model Reference Neural Learning Adaptive System (RP-MRNLAS) for sensorless indirect vector controlled induction motor drives. The Model Reference Adaptive System (MRAS) based speed estimator using simplified reactive power equations is one of the speed estimation method used for sensor-less indirect vector controlled induction motor drives. The conventional MRAS speed estimator uses PI controller for adaptation mechanism. The nonlinear mapping capability of Neural Network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. This paper proposes the use of neural learning algorithm for adaptation in a reactive power technique based MRAS for speed estimation. The proposed scheme combines the advantages of simplified reactive power technique and the capability of neural learning algorithm to form a scheme named “Reactive Power based Model Reference Neural Learning Adaptive System” (RP-MRNLAS) for speed estimator in Sensorless Indirect Vector Controlled Induction Motor Drives. The proposed RP-MRNLAS is compared in terms of accuracy, integrator drift problems and stator resistance versions with the commonly used Rotor Flux based MRNLAS (RF-MRNLAS) for the same system and validated through Matlab/Simulink. The superiority of the RP-MRNLAS technique is demonstrated.

Go to article

Authors and Affiliations

K. Sedhuraman
S. Himavathi
A. Muthuramalingam
Download PDF Download RIS Download Bibtex

Abstract

In order to research the losses and heat of damper bars thoroughly, a multislice moving electromagnetic field-circuit coupling FE model of tubular hydro-generator and a 3D temperature field FE model of the rotor are built respectively. The factors such as rotor motion and non-linearity of the time-varying electromagnetic field, the stator slots skew, the anisotropic heat conduction of the rotor core lamination and different heat dissipation conditions on the windward and lee side of the poles are considered. Furthermore, according to the different operating conditions, different rotor structures and materials, compositive calculations about the losses and temperatures of the damper bars of a 36 MW generator are carried out, and the data are compared with the test. The results show that the computation precision is satisfied and the generator design is reasonable.

Go to article

Authors and Affiliations

Yong Liao
Zhen-Nan Fan
Li Han
Li-Dan Xie
Download PDF Download RIS Download Bibtex

Abstract

The considered shunt active power filter can be controlled not only to compensate non-active current in the supply source, but additionally to optimize energy flow between the source and the load. In such a case the filter shapes the source current to be active and simultaneously regulates its magnitude. The presented filter/buffer can operate properly even when the load contains AC or DC variable energy source of any characteristic. The device can optimize energy flow for a single load, but also for a group of loads as well. The distinctive feature of the employed control method of the filter/buffer is that certain changes of energy stored in the device are utilized as the source of information concerning the active current of the load. This control method is very flexible and can be implemented to nearly all structures of active filters, for DC, single- and multiphase circuits.

Go to article

Authors and Affiliations

Andrzej Szromba
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a computationally efficient method for modelling an impact of the converter drive on the power grid. The formalized variable structure method (FVSM) allows for comprehensive studies of the effect on the power grid and examining the relation between this effect and the number of drive and feeding line parameters. In order to obtain a comprehensive model along with the model of the power grid, the parameters that are applied originate from a drive of a coal-fired power station. These parameters have been determined based on assessment and estimation. The estimation process was conducted with the aid of a model that allows for the commutation of power electronic elements. The authors confirmed that the model was correct by comparing empirical and theoretical voltage and current waveforms. Harmonic content of the voltage and current in the power grid which feeds the drive are considered to be the measure of the converter drive impact on the power grid. The standard method for the reduction of a harmonic content in the voltage and current involves the application of line reactors and distribution or converter transformers. As an example, the authors determine the impact of the drive on the power grid with respect to the adopted parameters of the line reactor. This example presents FVSM abilities with regard to simulation of complex systems that contain power grid components and converter drives.

Go to article

Authors and Affiliations

Ryszard Beniak
Arkadiusz Gardecki
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a methodology based on installation cost for locating the optimal position of interline power flow controller (IPFC) in a power system network. Here both conventional and non conventional optimization tools such as LR and ABC are applied. This methodology is formulated mathematically based on installation cost of the FACTS device and active power generation cost. The capability of IPFC to control the real and reactive power simultaneously in multiple transmission lines is exploited here. Apart from locating the optimal position of IPFC, this algorithm is used to find the optimal dispatch of the generating units and the optimal value of IPFC parameters. IPFC is modeled using Power Injection (PI) model and incorporated into the problem formulation. This proposed method is compared with that of conventional LR method by validating on standard test systems like 5-bus, IEEE 30-bus and IEEE 118-bus systems. A detailed discussion on power flow and voltage profile improvement is carried out which reveals that incorporating IPFC into power system network in its optimal location significantly enhance the load margin as well as the reliability of the system.

Go to article

Authors and Affiliations

S. Sreejith
Sishaj Psimon
M.P. Selvan
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the formulation and implementation of the broadband finite element time domain algorithm. The presented formalism is valid to analysis of electromagnetic phenomena in linear, frequency selective materials. The complex profile of permittivity of materials is approximated using a set of the Lorentz resonance models. The solution of the integro-differential second order equation is obtained using a singlestep integration scheme and a recursive convolution algorithm. The discussed formulation enables to adopt the structure of the narrowband part as well as the phase of calculation of the convolution equations for the subsequent components. The properties of the algorithm are validated using a finite difference broadband algorithm.

Go to article

Authors and Affiliations

Bogusław Butryło
Download PDF Download RIS Download Bibtex

Abstract

Harmonic flux penetrating solid conductive material causes eddy currents inside. It seems plausible that its magnitude does not exceed the exciting magnetomotive force (mmf). However, under certain circumstances the opposite occurs. This article deals with a special case in which the eddy current is approximately 13% higher than the exciting mmf. An analytical field solution, a finite element calculation and a measurement proving this phenomenon are presented. A special flux linkage is turned out to be the reason for this phenomenon. Finally, another example with higher pronounced mmfexceeding in a coil is presented.

Go to article

Authors and Affiliations

Roman Vogel
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a novel bacterial foraging algorithm (BFA) based approach for robust and optimal design of PID controller connected to power system stabilizer (PSS) is proposed for damping low frequency power oscillations of a single machine infinite bus bar (SMIB) power system. This paper attempts to optimize three parameters (Kp, Ki, Kd) of PID-PSS based on foraging behaviour of Escherichia coli bacteria in human intestine. The problem of robustly selecting the parameters of the power system stabilizer is converted to an optimization problem which is solved by a bacterial foraging algorithm with a carefully selected objective function. The eigenvalue analysis and the simulation results obtained for internal and external disturbances for a wide range of operating conditions show the effectiveness and robustness of the proposed BFAPSS. Further, the time domain simulation results when compared with those obtained using conventional PSS and Genetic Algorithm (GA) based PSS show the superiority of the proposed design.

Go to article

Authors and Affiliations

K. Abdul Hameed
S. Palani
Download PDF Download RIS Download Bibtex

Abstract

Since a few years ago, there is an increasing interest for utilization of transfer functions (TF) as a reliable method for diagnosing of mechanical faults in transformer structure. However, this paper aims to develop the application of TF method in order to evaluate the drying quality of active part during the manufacturing process of transformer. To reach this goal, the required measurements are carried out on 50 MVA 132 KV/33 KV power transformer when active part is placed in the drying chamber. Two different features extracted from the measured TFs are then used as the inputs to artificial neural network (ANN) to give an estimate for required time in drying process. Results show that this new represented method could well forecast the required time. The results obtained from this method are valid for all the transformers which have the same design.

Go to article

Authors and Affiliations

Hormatollah Firoozi
Mehdi Bigdeli
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of how the nonlinear boundary condition [1] may be applied in nonlinear problems of electromagnetic field theory. It is introduced for problems with nonlinear conductivity. An analytical procedure has been constructed, which seeks to reduce calculations related with the nonlinear region. In order to verify the proposed solutions, two problems have been formulated: one of linear and the other of cylindrical symmetry. These have been additionally solved by the authors’ modification of the perturbation method that has been described in previous papers [7, 8, 10]. The electromagnetic field distribution obtained thereby has served as a referential result since it can obtain very accurate solutions [10]. Relative errors of electric and magnetic field strength are introduced to verify the results.

Go to article

Authors and Affiliations

Marcin Sowa
Dariusz Spałek

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

This page uses 'cookies'. Learn more