Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2013 | vol. 62 | No 4 December |

Download PDF Download RIS Download Bibtex

Abstract

In this paper, the results of correlations between air temperature and electricity demand by linear regression and Wavelet Coherence (WTC) approach for three different European countries are presented. The results show a very close relationship between air temperature and electricity demand for the selected power systems, however, the WTC approach presents interesting dynamics of correlations between air temperature and electricity demand at different time-frequency space and provide useful information for a more complete understanding of the related consumption.
Go to article

Authors and Affiliations

Samir Avdakovic
Alma Ademovic
Amir Nuhanovic
Download PDF Download RIS Download Bibtex

Abstract

Transmission of the electric power is accompanied with generation of low –frequency electromagnetic fields. Electromagnetic compatibility studies require that the fields from sources of electric power be well known. Unfortunately, many of these sources are not defined to the desired degree of accuracy. This applies e.g. to the case of the twisted-wire pair used in telephone communication; already practiced is twisting of insulated high-voltage three phase power cables and single-phase distribution cables as well. The paper presents a theoretical study of the calculation of magnetic fields in vicinity of conductors having helical structure. For the helical conductor with finite length the method is based on the Biot-Savart law. Since the lay-out of the cables is much more similar to a broken line than to strait line, in the paper the magnetic flux densities produced by helical conductor of complex geometry are also derived. The analytical formulas for calculating the 3D magnetic field can be used by a software tool to model the magnetic fields generated by e.g. twisted wires, helical coils, etc.
Go to article

Authors and Affiliations

Krzysztof Budnik
Wojciech Machczyński
Download PDF Download RIS Download Bibtex

Abstract

The problem of improving the voltage profile and reducing power loss in electrical networks must be solved in an optimal manner. This paper deals with comparative study of Genetic Algorithm (GA) and Differential Evolution (DE) based algorithm for the optimal allocation of multiple FACTS (Flexible AC Transmission System) devices in an interconnected power system for the economic operation as well as to enhance loadability of lines. Proper placement of FACTS devices like Static VAr Compensator (SVC), Thyristor Controlled Switched Capacitor (TCSC) and controlling reactive generations of the generators and transformer tap settings simultaneously improves the system performance greatly using the proposed approach. These GA & DE based methods are applied on standard IEEE 30 bus system. The system is reactively loaded starting from base to 200% of base load. FACTS devices are installed in the different locations of the power system and system performance is observed with and without FACTS devices. First, the locations, where the FACTS devices to be placed is determined by calculating active and reactive power flows in the lines. GA and DE based algorithm is then applied to find the amount of magnitudes of the FACTS devices. Finally the comparison between these two techniques for the placement of FACTS devices are presented.
Go to article

Authors and Affiliations

B. Bhattacharyya
Sanjay Kumar
Vikash Kumar Gupta
Download PDF Download RIS Download Bibtex

Abstract

Necessary and sufficient conditions for the reachability and observability of the positive electrical circuits composed of resistors, coils, condensators and voltage sources are established. Definitions of the input-decoupling zeros, output-decoupling zeros and input-output decoupling zeros of the positive electrical circuits are proposed. Some properties of the decoupling zeros of positive electrical circuits are discussed.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The article introduced some expressions for self- and mutual slot leakage inductance of phase windings for the mathematical model of an induction machine in the natural phase coordinate system and for dq0 model and in an arbitrary coordinate frame. Calculation of self- and mutual slot leakage inductance have been performed for threephase double-layer, delta and delta-modified winding connections. Introduced expressions may be useful in the design of windings and in the analysis of dynamic states of AC electrical machines.
Go to article

Authors and Affiliations

Jan Staszak
Download PDF Download RIS Download Bibtex

Abstract

Department of Electrical Engineering, Anna University Regional Centre, Coimbatore, India This paper presents a new approach to solve economic load dispatch (ELD) problem in thermal units with non-convex cost functions using differential evolution technique (DE). In practical ELD problem, the fuel cost function is highly non linear due to inclusion of real time constraints such as valve point loading, prohibited operating zones and network transmission losses. This makes the traditional methods fail in finding the optimum solution. The DE algorithm is an evolutionary algorithm with less stochastic approach to problem solving than classical evolutionary algorithms.DE have the potential of simple in structure, fast convergence property and quality of solution. This paper presents a combination of DE and variable neighborhood search (VNS) to improve the quality of solution and convergence speed. Differential evolution (DE) is first introduced to find the locality of the solution, and then VNS is applied to tune the solution. To validate the DE-VNS method, it is applied to four test systems with non-smooth cost functions. The effectiveness of the DE-VNS over other techniques is shown in general.
Go to article

Authors and Affiliations

J. Jasper
T. Aruldoss Albert Victoire
Download PDF Download RIS Download Bibtex

Abstract

Topics of this article concern the study of the fundamental nature of the sonoluminescence phenomenon occurring in liquids. At the Institute of Electrical Power Engineering at Opole University of Technology the interest in that phenomenon known as secondary phenomenon of cavitation caused by ultrasound became the genesis of a research project concerning acoustic cavitation in mineral insulation oils in which a number of additional experiments performed in the laboratory aimed to determine the influence of a number of acoustic parameters on the process of the studied phenomenona. The main purpose of scientific research subject undertaken was to determine the relationship between the generation of partial discharges in high-voltage power transformer insulation systems, the issue of gas bubbles in transformer oils and the generated acoustic emission signals. It should be noted that currently in the standard approach, the phenomenon of generation of acoustic waves accompanying the occurrence of partial discharges is generally treated as a secondary phenomenon, but it can also be a source of many other related phenomena. Based on our review of the literature data on those referred subjects taken, it must be noted, that this problem has not been clearly resolved, and the description of the relationship between these phenomena is still an open question. This study doesn’t prove all in line with the objective of the study, but can be an inspiration for new research project in the future in this topic. Solution of this problem could be a step forward in the diagnostics of insulation systems for electrical Power devices based on non-invasive acoustic emission method.
Go to article

Authors and Affiliations

Marek Szmechta
Dariusz Zmarzły
Tomasz Boczar
Download PDF Download RIS Download Bibtex

Abstract

With the continuous increase of output power ratings, multi-phase (multichannel) interleaved power factor corrector (IPFC) is gradually employed in domestic and commercial inverter air-conditioners. IPFC can solve several main problems, such as power rating increase, power device selection, input current ripple reduction as well as inductor on-board mounting. But for a multi-phase IPFC, the key problem is that it should show rapid dynamic responds and good current sharing capability, so in this paper the aim is to improve the dynamic performance and current sharing capability by means of passivity control theory. Considering the power circuit topology of a four-phase IPFC, an EL (Euler-Lagrange) mathematical model is established when the IPFC operates in continuous conduction mode (CCM). Then the passivity of the four-phase IPFC is proved, and the passivity-based controller using the state variables feedback and damping injection method is designed. The proposed control scheme, which is easy to control and needs no proportion integral controller, has strong robustness on disturbance from singlephase AC input voltage, the load as well as the parameters of the employed devices. Even in wide-range load condition, the mains current has a fast dynamic response and the average output voltage almost keep unchanged. As a result, the main functions of the four-phase IPFC are implemented including nearly unitary power factor and constant DC output voltage. Meanwhile, the four-phase IPFC acquires an excellent current sparing effect after using passivity-based controller. The above analysis has been proved with simulated results by means of MATLAB/SIMULINK and experimental results, showing that the passivity-based IPFC controller has superior performances and feasibility.
Go to article

Authors and Affiliations

Hua-Wu Li
Hong-Xing Ma
Jiang Jian-Feng
Yang Xi-Jun
Yang Xing-Hua
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of diagnostic measurements of partial discharge signal propagation from the winding insulation in electrical machinery, which were performed using an on-line method. This paper describes the results of experiments and the acquired experience in the monitoring of winding insulation in high power and high voltage electrical machines which are important in industrial production processes. The authors show the measurement techniques employed in their research. Representative measurement results are presented along with their analysis. The authors use an SKF monitoring systems to measure: vibrations, temperature, and humidity, as major factors affecting partial discharge activity in the from winding insulation of electrical machines.
Go to article

Authors and Affiliations

Zbigniew Plutecki
Sławomir Szymaniec
Download PDF Download RIS Download Bibtex

Abstract

Static Var Compensator (SVC) is a popular FACTS device for providing reactive power support in power systems and its placement representing the location and size has significant influence on network loss, while keeping the voltage magnitudes within the acceptable range. This paper presents a Firefly algorithm based optimization strategy for placement of SVC in power systems with a view of minimizing the transmission loss besides keeping the voltage magnitude within the acceptable range. The method uses a self-adaptive scheme for tuning the parameters in the Firefly algorithm. The strategy is tested on three IEEE test systems and their results are presented to demonstrate its effectiveness.
Go to article

Authors and Affiliations

R. Selvarasu
M. Surya Kalavathi
C. Christober Asir Rajan
Download PDF Download RIS Download Bibtex

Abstract

This article presents the time optimal control system adopted to control double winding VCM motor. This kind of control is widely used in hard disk drive servo for head positioning. Mathematical model of double winding VCM motor is presented, and its implementation in MATLAB/Simulink is shown. The extended time optimal control algorithm is implemented on dSpace DS1104 board. The results obtained from simulation and real measurements are compared and discussed.
Go to article

Authors and Affiliations

Wojciech Kołton

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

This page uses 'cookies'. Learn more