The paper deals with pool boiling of water-Al2O3and water-Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.
Designers of all types of equipment applied in oxygenation and aeration need to get to know the mechanism behind the gas bubble formation. This paper presents a measurement method used for determination of parameters of bubbles forming at jet attachment from which the bubles are displaced upward. The measuring system is based on an optical tomograph containing five projections. An image from the tomograph contains shapes of the forming bubbles and determine their volumes and formation rate. Additionally, this paper presents selected theoretical models known from literature. The measurement results have been compared with simple theoretical models predictions. The paper also contains a study of the potential to apply the presented method for determination of bubble structures and observation of intermediate states.
The paper presents the results of calculations related to determination of temperature distributions in a steel pipe of a heat exchanger taking into account inner mineral deposits. Calculations have been carried out for silicate-based scale being characterized by a low heat transfer coefficient. Deposits of the lowest values of heat conduction coefficient are particularly impactful on the strength of thermally loaded elements. In the analysis the location of the thermocouple and the imperfection of its installation were taken into account. The paper presents the influence of determination accuracy of the heat flux on the pipe external wall on temperature distribution. The influence of the heat flux disturbance value on the thickness of deposit has also been analyzed.
Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of 'zero-emission' technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.
The paper deals with a solution of radiation heat transfer problems in enclosures filled with nonparticipating medium using ray tracing on hierarchical ortho-Cartesian meshes. The idea behind the approach is that radiative heat transfer problems can be solved on much coarser grids than their counterparts from computational fluid dynamics (CFD). The resulting code is designed as an add-on to OpenFOAM, an open-source CFD program. Ortho-Cartesian mesh involving boundary elements is created based upon CFD mesh. Parametric non-uniform rational basis spline (NURBS) surfaces are used to define boundaries of the enclosure, allowing for dealing with domains of complex shapes. Algorithm for determining random, uniformly distributed locations of rays leaving NURBS surfaces is described. The paper presents results of test cases assuming gray diffusive walls. In the current version of the model the radiation is not absorbed within gases. However, the ultimate aim of the work is to upgrade the functionality of the model, to problems in absorbing, emitting and scattering medium projecting iteratively the results of radiative analysis on CFD mesh and CFD solution on radiative mesh.
Gas-liquid two-phase flow in minichannels has been the subject of increased research interest in the past few years. Evaluation, however, of today's state of the art regarding hydrodynamics of flow in minichannels shows significant differences between existing test results. In the literature there is no clear information regarding: defining the boundary between minichannels and conventional channels, labelling of flow patterns. The review of literature on the hydrodynamics of gas-liquid flow in minichannels shows that, despite the fact that many research works have been published, the problem of determining the effect of diameter of the minichannel on the hydrodynamics of the flow is still at an early stage. Therefore, the paper presents the results of research concerning determination of flow regime map for the vertical upward flow in minichannels. The research is based on a comprehensive analysis of the literature data and on the research that has been carried out. Such approach to the mentioned above problems concerning key issues of the two-phase flow in minichannels allowed to determine ranges of occurrence of flow structures with a relatively high accuracy.
The recently developed special unity Mach number dispersion model prescribes the corrections to heat transfer coefficients which are simple functions of the dispersive Peclet numbers. They can be determined through the residence time measurements. An evaluation method is described in which the measured input and response concentration profiles are numerically Laplace transformed and evaluated in the frequency domain. A characteristic mean Peclet number is defined. The method is also applied to the parabolic dispersion model and the cascade model. A calculated example of a tube bundle with maldistribution and backflow demonstrates the suitability of the evaluation method.
Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.