Nauki Techniczne

Archives of Thermodynamics

Zawartość

Archives of Thermodynamics | 2018 | vol. 39 | No 3

Abstrakt

Falling film, shell-tube type evaporators are commonly used heat exchangers for the production of fruit juice concentrate. The main problem in the design of the exchanger is a reliable estimation of wall heat transfer coefficients for all effects in real operating conditions. Most literature sources for the overall heat transfer coefficients are based on laboratory measurements, where the tubes are usually short, no fouling exists and the flow rate is carefully adjusted. This paper shows the heat transfer estimated in real industrial operating conditions, compared to literature sources. Paper is based on the author’s own experience in designing and launching several evaporators for juice concentrate production into operation. As a summary, the design heat transfer coefficients are provided with relation to sugar content in juice concentrate.

Przejdź do artykułu

Autorzy i Afiliacje

Piotr Cyklis

Abstrakt

Micro-channel heat sinks are used in a wide variety of applications, including microelectronic devices, computers and high-energy-laser mirrors. Due to the high power density that is encountered in these devices (the density of delivered electrical power up to a few kW/cm2) they require efficient cooling as their temperatures must generally not exceed 100 ◦C. In the paper a new design for micro-channel heat sink (MCHS) to be used for cooling laser diode arrays (LDA) is considered. It is made from copper and consisting of 37 micro-channels with length of 9.78 mm, width of 190 μm and depth of 180 μm with the deionized water as a cooling medium. Mathematical and numerical models of the proposed design of the heat sink were developed. A series of thermofluid numerical simulations were performed for various volumetric flow rates of the cooling medium, its inlet temperature and different thermal power released in the laser diode. The results show that the LDA temperature could be decreased from 14 to 17% in comparison with earlier proposed design of the heat sink with the further drop in temperature obtained by applying indium instead of gallium arsenide as the soldering material between the LDA and MCHS interface. Moreover, it was found that the maximum temperature, and therefore the thermal resistance of the considered heat sink, could be decreased by increasing the coolant flow rate.

Przejdź do artykułu

Autorzy i Afiliacje

Piotr Furmański
Kadhim Thualfaqir
Piotr Łapka

Abstrakt

The paper describes experimental research on a resistojet type rocket thruster which was built as an actuator in the Attitude Control System of a model space robotic platform. A key element of the thruster is the heater responsible for increasing the temperature of the working medium in the thruster chamber and hence the specific impulse. This parameter describes the performance of the thruster, increases providing – for lower propellant consumption – the same propulsion effect (thrust). A high performance thruster means either total launch mass can be reduced or satellite lifetime increased, which are key commercial factors. During the first phase of the project, 7 different heating chamber designs were examined. The heater is made of resistive wire with resistivity of 9Ω/m. Power is delivered by a dedicated supply system based on supercapacitors with output voltage regulated in the range of 20–70 V. The experimental phase was followed by designing the chamber geometry and the heating element able to deliver both: maximum increase of gas temperature and minimum construction dimensions. Experiments with the optimal design show an increase in temperature of the working gas (air) by about 300 ◦C giving a 40% increase in specific impulse. The final effect of that is a 40% reduction in mass flow rate while retaining thrust at a nominal level of 1 N.

Przejdź do artykułu

Autorzy i Afiliacje

Jan Kindracki
Łukasz Mężyk
Przemysław Paszkiewicz

Abstrakt

Development of new or upgrading of existing airplanes requires many different analyses, e.g., thermal, aerodynamical, structural, and safety. Similar studies were performed during re-design of two small aircrafts, which were equipped with new turboprop engines. In this paper thermo-fluid analyses of interactions of new propulsion systems with selected elements of airplane skin were carried out. Commercial software based numerical models were developed. Analyses of heat and fluid flow in the engine bay and nacelle of a single-engine airplane with a power unit in the front part of the fuselage were performed in the first stage. Subsequently, numerical simulations of thermal interactions between the hot exhaust gases, which leave the exhaust system close to the front landing gear, and the bottom part of the fuselage were investigated. Similar studies were carried out for the twin-engine airplane with power units mounted on the wings. In this case thermal interactions between the hot exhaust gases, which were flowing out below the wings, and the wing covers and flaps were studied. Simulations were carried out for different airplane configurations and operating conditions. The aim of these studies was to check if for the assumed airplane skin materials and the initially proposed airplane geometries, the cover destruction due to high temperature is likely. The results of the simulations were used to recommend some modifications of constructions of the considered airplanes.

Przejdź do artykułu

Autorzy i Afiliacje

Piotr Łapka
Mirosław Seredyński
Piotr Furmański

Abstrakt

Plate fin-tube heat exchangers fins are bonded with tubes by means of brazing or by mechanical expansion of tubes. Various errors made in the process of expansion can result in formation of an air gap between tube and fin. A number of numerical simulations was carried out for symmetric section of plate fin-tube heat exchanger to study the influence of air gap on heat transfer in forced convection conditions. Different locations of air gap spanning 1/2 circumference of the tube were considered, relatively to air flow direction. Inlet velocities were a variable parameter in the simulations (1– 5 m/s). Velocity and temperature fields for cases with air gap were compared with cases without it (ideal thermal contact). For the case of gap in the back of the tube (in recirculation zone) the lowest reduction (relatively to the case without gap) of heat transfer rate was obtained (average of 11%). The worst performance was obtained for the gap in the front (reduction relatively to full thermal contact in the average of 16%).

Przejdź do artykułu

Autorzy i Afiliacje

Dariusz Andrzejewski
Marcin Łęcki
Artur Gutkowski

Abstrakt

This work discusses the heat transfer aspects of the neonate’s brain cooling process carried out by the the device to treat hypoxic-ischemic encephalopathy. This kind of hypothermic therapy is undertaken in case of improper blood circulation during delivery which causes insufficient transport of oxygen to the brain and insufficient cooling of the brain by circulating blood. The experimental setup discussed in this manuscript consists of a special water flow meter and two temperature sensors allowing to measure inlet and outlet water temperatures. Collected results of the measurements allowed to determine time histories of the heat transfer rate transferred from brain to the cooling water for three patients. These results are then analysed and compared among themselves.

Przejdź do artykułu

Autorzy i Afiliacje

Dominika Bandoła
Marek Rojczyk
Ziemowit Ostrowski
Joanna Łaszczyk
Wojciech Walas
Andrzej J. Nowak

Abstrakt

This paper reports the results of research involving observations of flow patterns during air-oil-water three-phase flow through a vertical pipe with an internal diameter of 0.03 m and a length of 3 m. The conductometric method based on the measurement of electrical conductivity of the gas-liquid-liquid system was used to evaluate the flow patterns. In the studies, a set of eight probes spaced concentrically in two tube sections (four probes per each) with a spacing of 0.015 m were used. The paper presents a theoretical description of the test method and the analysis of the measurement results for air-oil-water multiphase flow system. Results of this study indicate that the developed method of characterizing the voltage of the gas-liquid-liquid system can be an important tool supporting other methods to identify flow patterns, including visual observation.

Przejdź do artykułu

Autorzy i Afiliacje

Małgorzata Płaczek
Marcin Pietrzak
Stanisław Witczak

Abstrakt

The paper presents a description of used methods and exemplary mathematical models which are classified into theoretical-empirical models of thermal processes. Such models encompass equations resulting from the laws of physics and additional empirical functions describing processes for which analytical models are complex and difficult to develop. The principle of developing, advantages and disadvantages of presented models as well as quality prediction assessment were presented. Mathematical models of a steam boiler, a steam turbine as well as a heat recovery steam generator were described. Exemplary calculation results were presented and compared with measurements.

Przejdź do artykułu

Autorzy i Afiliacje

Henryk Rusinowski
Marcin Plis

Abstrakt

Nowadays, the energy cost is very high and this problem is carried out to seek techniques for improvement of the aerothermal and thermal (heat flow) systems performances in different technical applications. The transient and steady-state techniques with liquid crystals for the surface temperature and heat transfer coefficient or Nusselt number distribution measurements have been developed. The flow pattern produced by transverse vortex generators (ribs) and other fluid obstacles (e.g. turbine blades) was visualized using liquid crystals (Liquid Crystal Thermography) in combination with the true-colour image processing as well as planar beam of double-impulse laser tailored by a cylindrical lens and oil particles (particle image velocimetry or laser anemometry). Experiments using both research tools were performed at Gdańsk University of Technology, Faculty of Mechanical Engineering. Present work provides selected results obtained during this research.

Przejdź do artykułu

Autorzy i Afiliacje

Jan A. Stąsiek
Marcin Jewartowski

Abstrakt

This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics – cokes. The study was conducted for a variety of hydrodynamic conditions, using air. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally – as a result of their anisotropic internal structure – to a significant effect of the flow direction on the value of gas stream. In aspect of scale transfer problem, a method of mapping the flow geometry of skeletal materials has been developed and usefulness of numerical methods has been evaluated to determine pressure drop and velocity distribution of gas flow. The results indicate the compliance of the used calculation method with the result of experiments.

Przejdź do artykułu

Autorzy i Afiliacje

Grzegorz Wałowski
Gabriel Filipczak

Abstrakt

The coupled fluid/solid heat transfer computations are performed to predict the temperatures reached in the rotating disc systems. An efficient finite element analysis (FEA) and computational fluid dynamics (CFD) thermal coupling technique is developed and demonstrated. The thermal coupling is achieved by an iterative procedure between FEA and CFD calculations. In the coupling procedure, FEA simulation is treated as unsteady for a given transient cycle. To speed up the thermal coupling, steady CFD calculations are employed, considering that fluid flow time scales are much shorter than those for the solid heat conduction and therefore the influence of unsteadiness in fluid regions is negligible. To facilitate the thermal coupling, the procedure is designed to allow a set of CFD models to be defined at key time points/intervals in the transient cycle and to be invoked during the coupling process at specified time points. The computational procedure is applied to predict heat transfer characteristics of a free rotating disc.

Przejdź do artykułu

Autorzy i Afiliacje

Pavel V. Bulat
Konstantin N. Volkov

Instrukcja dla autorów

Submission of manuscript
Manuscripts should be electronically submitted to the Editorial System http://www.editorialsystem.com/aot. Each manuscript should be accompanied by a cover letter explaining why the manuscript is considered suitable for publication in the journal. The letter should contain:

• full title of the paper,
• full list of authors with affiliations,
• e-mail address of the authors,
• contact address and telephone numbers of the corresponding author.

The cover letter should explicitly state that the manuscript has not been previously published in any language anywhere and that it is not under simultaneous consideration or in press by another journal.

Manuscripts that have been previously rejected, or withdrawn after being returned for modification, may be resubmitted if the major criticisms have been addressed. The cover letter must state that the manuscript is a resubmission, and the former manuscript number should be provided.
All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf. The corresponding author is responsible for informing the co-authors of the manuscript status throughout the submission, review, and production process.

From January 1, 2024, the authors are requested to submit their paper using a dedicated template provided at the AOT webpage https://www.imp.gda.pl/archives-of-thermodynamics/.


Notes for Contributors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The journal does not have article processing charges (APCs) nor article submission charges. The language of the papers is English. The authors are responsible to prepare papers with good English. All pages should be numbered.

Paper preparation quidelines

1. The manuscript should be written in very good English, using the two-column format provided in the template.

2. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please indicate the corresponding author. The heading should be followed by Abstract and Keywords.

3. More important symbols used in the paper should be listed in Nomenclature, placed below Abstract and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg etc.

The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should be expressed in SI units ( Système International d’Unités). In the template a dedicated area is created to put the nomenclature.

4. All abbreviations should be spelled out first time they are introduced in the text. Abbreviations should also be listed in the Nomenclature.

5. The equations should be each in a separate line. Standard mathematical notation should be used. All symbols used in equations must be clearly defined. The numbers of equations should run consecutively, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the righthand side of the column.

6. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa) should be avoided wherever possible.

7. Computer-generated figures should be produced using bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only. Figures should be as small as possible while displaying clearly all the information requires, and with all lettering readable. The relevant explanations can be given in the caption.

8. The figures, including photographs, diagrams, etc., should be numbered with Arabic numerals in the same order in which they appear in the text. Each figure should have its own caption explaining the content without reference to the text.

9. The figures should also be submitted as separate graphic files in either vector formats (PostScript (PS), Encapsulated PostScript (EPS), preferable, CorelDraw (CDR), etc.) or bitmap formats (Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), etc.), with the resolution not lower than 300 dpi, preferably 600 dpi. These resolutions refer to images sized at dimensions comparable to those of figures in the print journal. Therefore, electronic figures should be sized to fit on single printed page and can have maximum 120 mm x 170 mm.

10. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:

The references should be placed after the acknowledgment section. The references citation in the manuscript body should be numbered: [1], [2], etc. Please use the following style of references in bibliography APA – 7th ed:

Journal citation (APA – 7th ed):
[1] Król, J., & Ocłoń, P. (2019). Sensitivity analysis of hybrid combined heat and power plant on fuel and CO2 emission allowances price change. Energy Conversion and Management, 196, 127–148.
doi.org/10.1016/j.enconman.2019.05.090

[2] Zhou, Y., Bi, H., & Wang, H. (2023). Influence of the primary components of the high-speed train on fire heat release rate. Archives of Thermodynamics, 44(1), 37–61.
doi.org/10.24425/ather.2023.145876

When citing scientific papers, it is needed to provide a DOI identifier if available.
Example of citation:
• Król and Ocłoń [1] studied a hybrid CHP sensitivity on fuel and CO2 emission allowances price change.
• Zhou et al. [2] studied the influence of the primary components of the high speed train on fire heat release rate.

Book citation (APA – 7th ed):
[3] Ocłoń, P. (2021). Renewable energy utilization using underground energy systems (1st ed.). Springer Nature.
Example of citation:
• Ocłoń et al. [3] presented renewable energy systems for heating cooling and electrical energy production in buildings.

Book chapter citation (APA – 7th ed):
[4] Ciałkowski, M., & Frąckowiak, A. (2014). Boundary element method in inverse heat conduction problem. In Encyclopedia of Thermal Stresses (pp. 424–433). Springer Netherlands.
Example of citation:
• Ciałkowski and Frąckowiak [4] presented a Boundary element method application for solving inverse heat conduction problems.

Conference proceedings (APA – 7th ed):
[5] Pourghasemi, B., & Fathi, N. (2023). Validation and verification analyses of turbulent forced convection of Na and NaK in miniature heat sinks. ASME 2023 Verification, Validation, and Uncertainty Quantification Symposium, 17-19 May, Baltimore, USA.
Example of citation:
• Pourghasemi and Fathi [5] validated and verified turbulent forced convection of Na and NaK in miniature heat sinks.
For works originally published in a language other than English, the language should be indicated in parentheses at the end of the reference. Authors are responsible for ensuring that the information in each reference is complete and accurate, including the DOI number.

11. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication. When the Editors or Reviewers assess that the writing English of the manuscript is poor, the authors are obliged to correct it, and provide a Certificate of English Editing as attachment in Editorial System.

Further information

All manuscripts will undergo some editorial modification. The paper proofs (as PDF file) will be sent by e-mail to the corresponding author for acceptance, and should be returned within two weeks of receipt. Within the proofs corrections of minor and typographical errors in: author names, affiliations, articles titles, abstracts and keywords, formulas, symbols, grammatical error, details in figures, etc., are only allowed, as well as necessary small additions. The changes within the text will be accepted in case of serious errors, for example with regard to scientific accuracy, or if authors reputation and that of the journal would be affected. Submitted material will not be returned to the author, unless specifically requested. A PDF file of published paper will be supplied free of charge to the Corresponding Author. Submission of the manuscript expresses at the same time the authors consent to its publishing in both printed and electronic versions.

Transfer of Copyright Agreement

All papers are published under lincense CC BY 4.0. Once a paper has been accepted for publication, as a condition of publication, the authors are asked to send a scanned copy of the signed original of the Transfer of Copyright Agreement, signed by the Corresponding Author on behalf of all authors.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji