Applied sciences

Archives of Thermodynamics

Content

Archives of Thermodynamics | 2019 | vol. 40 | No 1 |

Download PDF Download RIS Download Bibtex

Abstract

The instability characteristics of a dielectric fluid layer heated from below under the influence of a uniform vertical alternating current (AC) electric field is analyzed for different types of electric potential (constant electric potential/ electric current), velocity (rigid/free) and temperature boundary conditions (constant temperature/heat flux or a mixed condition at the upper boundary). The resulting eigenvalue problem is solved numerically using the shooting method for various boundary conditions and the solution is also found in a simple closed form when the perturbation heat flux is zero at the boundaries. The possibility of a more precise control of electrothermal convection (ETC) through various boundary conditions is emphasized. The effect of increasing AC electric Rayleigh number is to hasten while that of Biot number is to delay the onset of ETC. The system is more stable for rigid-rigid boundaries when compared to rigid-free and least stable for free-free boundaries. The change of electric potential boundary condition at the upper boundary from constant electric potential to constant electric current is found to instill more stability on the system. Besides, increase in the AC electric Rayleigh number and the Biot number is to reduce the size of convection cells.

Go to article

Authors and Affiliations

M. Ravisha
K.R. Raghunatha
A.L. Mamatha
I.S. Shivakumara
Download PDF Download RIS Download Bibtex

Abstract

Transverse effective thermal conductivity of the random unidirectional fibre-reinforced composite was studied. The geometry was circular with random patterns formed using random sequential addition method. Composite geometries for different volume fraction and fibre radii were generated and their effective thermal conductivities (ETC) were calculated. Influence of fibre-matrix conductivity ratio on composite ETC was investigated for high and low values. Patterns were described by a set of coordination numbers (CN) and correlations between ETC and CN were constructed. The correlations were compared with available formulae presented in literature. Additionally, symmetry of the conductivity tensor for the studied geometries of fibres was analysed.

Go to article

Authors and Affiliations

Piotr Darnowski
Piotr Furmański
Roman Domański
Download PDF Download RIS Download Bibtex

Abstract

The presence of more than one solute diffused in fluid mixtures is very often requested for discussing the natural phenomena such as transportation of contaminants, underground water, acid rain and so on. In the paper, the effect of nonlinear thermal radiation on triple diffusive convective boundary layer flow of Casson nanofluid along a horizontal plate is theoretically investigated. Similarity transformations are utilized to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameters on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, modified Dufour parameter and Dufour solutal Lewis number enhances the temperature and solutal concentration profiles respectively.

Go to article

Authors and Affiliations

Manjappa Archana
Bijjanal Jayanna Gireesha
Ballajja Chandrappa Prasannakumara
Download PDF Download RIS Download Bibtex

Abstract

In this article, a comparison of economic effectiveness of various heating systems dedicated to residential applications is presented: a natural gas-fueled micro-cogeneration (micro-combined heat and power – μCHP) unit based on a free-piston Stirling engine that generates additional electric energy; and three so-called classical heating systems based on: gas boiler, coal boiler, and a heat pump. Calculation includes covering the demand for electricity, which is purchased from the grid or produced in residential system. The presented analyses are partially based on an experimental investigation. The measurements of the heat pump system as well as those of the energy (electricity and heat) demand profiles in the analyzed building were conducted for a single-family house. The measurements of the μCHP unit were made using a laboratory stand prepared for simulating a variable heat demand. The overall efficiency of the μCHP was in the range of 88.6– 92.4%. The amounts of the produced/consumed energy (electricity, heat, and chemical energy of fuel) were determined. The consumption and the generation of electricity were settled on a daily basis. Operational costs of the heat pump system or coal boiler based heating system are lower comparing to the micro-cogeneration, however no support system for natural gas-based μCHP system is included.

Go to article

Authors and Affiliations

Wojciech Uchman
Leszek Remiorz
Janusz Kotowicz
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to present an energy analysis of different absorption refrigerating systems operating with diverse refrigerants. Also is applied the method of experimental design to optimize configurations proposed by the absorption pairs used and the operating conditions. Both acceptable coefficient of performance and low operating generator temperature are scrutinised. Therefore, a computer program is developed. An investigation of the thermodynamic properties is presented. Results show the coefficient of performance evolution versus respectively the evaporator temperature, temperature of condensation and generator temperature. A particular interest is devoted to the intermediate pressure effect on the performance of different systems. In order to better converge in the selection of the configuration and the refrigerant, which can ensure a high coefficient of performance associated to relatively low operating generator temperature the plan of experiments has been developed, taking in account all parameters influencing the system performance and the function of operating temperature. Results show that the refrigerating machine containing a compressor between the evaporator and the absorber has a coefficient of performance quite acceptable and that it can work at low generator temperature for about 60 ◦C and using the NH3/LiNO3 as refrigerant.

Go to article

Authors and Affiliations

Ridha Ben Iffa
Lakdar Kairouani
Nahla Bouaziz
Download PDF Download RIS Download Bibtex

Abstract

The image analysis consists in extracting from the information which is available to the observer of the part that is important from the perspective of the investigated process. This process usually accompanies a considerable reduction in the amount of information from the image. In the field of two-phase flows, computer image analysis can be used to determine flow and geometric parameters of flow patterns. This article presents the possibilities of using this method to determine the void fraction, vapor quality, bubble velocity and the geometric dimensions of flow patterns. The use of computer image analysis methods is illustrated by the example of HFE 7100 refrigerant methoxynonafluorobutane condensation in a glass tubular minichannel. The high speed video camera was used for the study, and the films and individual frames received during the study were analyzed.

Go to article

Authors and Affiliations

Małgorzata Sikora
Tadeusz Bohdal
Download PDF Download RIS Download Bibtex

Abstract

In this paper, effects of non-Fourier thermal wave interactions in a thin film have been investigated. The non-Fourier, hyperbolic heat conduction equation is solved, using finite difference method with an implicit scheme. Calculations have been carried out for three geometrical configurations with various film thicknesses. The boundary condition of a symmetrical temperature step-change on both sides has been used. Time history for the temperature distribution for each investigated case is presented. Processes of thermal wave propagation, temperature peak build-up and reverse wave front creation have been described. It has been shown that (i) significant temperature overshoot can appear in the film subjected to symmetric thermal load (which can be potentially dangerous for reallife application), and (ii) effect of temperature amplification decreases with increased film thickness.

Go to article

Authors and Affiliations

Marcin Lenarczyk
Roman Domański
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.

Go to article

Authors and Affiliations

Tomasz Muszyński
Rafał Andrzejczyk
Il Wong Park
Carlos Alberto Dorao
Download PDF Download RIS Download Bibtex

Abstract

Work on increasing the efficiency of heat exchangers used in car air conditioning systems may lead to a partial change in the construction of refrigeration systems. One of such changes is the use of smaller gas coolers, which directly translates into a reduction in the production costs of the entire system. The article presents the use of computational fluid dynamics methods to simulate the impact of changing the shape of an internal heat exchanger on the cooling efficiency with R744 as the refrigerant. Internal heat exchangers with different geometry of the outer channels were subjected to numerical analysis. The obtained results of calculations show temperature changes in inner and outer channels on the length of the heat exchanger.

Go to article

Authors and Affiliations

Jakub Janus
Przemysław Jan Skotniczy
Maria Richert
Download PDF Download RIS Download Bibtex

Abstract

This article considers designing of a renewable electrical power generation system for self-contained homes away from conventional grids. A model based on a technique for the analysis and evaluation of two solar and wind energy sources, electrochemical storage and charging of a housing area is introduced into a simulation and calculation program that aims to decide, based on the optimized results, on electrical energy production system coupled or separated from the two sources mentioned above that must be able to ensure a continuous energy balance at any time of the day. Such system is the most cost-effective among the systems found. The wind system adopted in the study is of the low starting speed that meets the criteria of low winds in the selected region under study unlike the adequate solar resource, which will lead to an examination of its feasibility and profitability to compensate for the inactivity of photovoltaic panels in periods of no sunlight. That is a system with fewer photovoltaic panels and storage batteries whereby these should return a full day of autonomy. Two configurations are selected and discussed. The first is composed of photovoltaic panels and storage batteries and the other includes the addition of a wind system in combination with the photovoltaic system with storage but at a higher investment cost than the first. Consequently, this result proves that is preferable to opt for a purely photovoltaic system supported by the storage in this type of site and invalidates the interest of adding micro wind turbines adapted to sites with low wind resources.

Go to article

Authors and Affiliations

Mohammed Salim Hadjidj
Nacereddine Bibi-Triki
Faouzi Didi

Instructions for authors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The journal does not have article processing charges (APCs) nor article submission charges. The language of the papers is English. The paper should not exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please indicate the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines and Keywords.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Abstract and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg etc.
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should be expressed in SI units ( Système International d’Unités).

3. All abbreviations should be spelled out first time they are introduced in the text.

4. The equations should be each in a separate line. Standard mathematical notation should be used. All symbols used in equations must be clearly defined. The numbers of equations should run consecutively, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the righthand side of the page.

5. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa) should be avoided wherever possible.

6. Computer-generated figures should be produced using bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only. Figures should be as small as possible while displaying clearly all the information requires, and with all lettering readable. The relevant explanations can be given in the caption.

7. The figures, including photographs, diagrams, etc., should be numbered with Arabic numerals in the same order in which they appear in the text. Each figure should have its own caption explaining the content without reference to the text.

8. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a MS Word file – ∗.doc, ∗.docx or LATEX file – ∗.tex. For revised manuscripts after peer review process, figures should be submitted as separate graphic files in either vector formats (PostScript (PS), Encapsulated PostScript (EPS), preferable, CorelDraw (CDR), etc.) or bitmap formats (Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), etc.), with the resolution not lower than 300 dpi, preferably 600 dpi. These resolutions refer to images sized at dimensions comparable to those of figures in the print journal. Therefore, electronic figures should be sized to fit on single printed page and can have maximum 120 mm x 170 mm. Figures created in MS World, Exel, or PowerPoint will not be accepted. The quality of images downloaded from websites and the Internet are also not acceptable, because of their low resolution (usually only 72 dpi), inadequate for print reproduction.

9. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:

(a) for books: the publishing house and the place and year of publication, for example:
[1] Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.

(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example:
[2] Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction . AIAA J. 8(1970), No. 11, 2004–2009.

For works originally published in a language other than English, the language should be indicated in parentheses at the end of the reference.

Authors are responsible for ensuring that the information in each reference is complete and accurate.

10. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.


Manuscript submission

Manuscripts to be considered for publication should be electronically submitted to the Editorial Office via the online submission and reviewing system, the Editorial System, at http://www.editorialsystem.com/aot. Submission to the journal proceeds totally on line and you will be guided stepwise throughout the process of the creation and uploading of your files. The body of the text, tables and figures, along with captions for figures and tables should be submitted separately. The system automatically converts source files to a single PDF file article, for subsequent approval by the corresponding Author, which is then used in the peer-review process. All correspondence, including notification confirming the submission of the manuscripts to the Editorial Office, notification of the Editorsñs decision and requests for revision, takes place by e-mails. Authors should designate the corresponding author, whose responsibility is to represent the Authors in contacts with the Editorial Office. Authors are requested not to submit the manuscripts by post or e-mail.
The illustrations may be submitted in color, however they will be printed in black and white in the journal, so the grayscale contributions are preferable. Therefore, the figure caption and the entire text of the paper should not make any reference to color in the illustration. Moreover the illustration should effectively convey author’s intended meaning when it is printed as a halftone. The illustrations will be reproduced in color in the online publication.


Further information

All manuscripts will undergo some editorial modification. The paper proofs (as PDF file) will be sent by e-mail to the corresponding author for acceptance, and should be returned within two weeks of receipt. Within the proofs corrections of minor and typographical errors in: author names, affiliations, articles titles, abstracts and keywords, formulas, symbols, grammatical error, details in figures, etc., are only allowed, as well as necessary small additions. The changes within the text will be accepted in case of serious errors, for example with regard to scientific accuracy, or if authors reputation and that of the journal would be affected. Submitted material will not be returned to the author, unless specifically requested. A PDF file of published paper will be supplied free of charge to the Corresponding Author. Submission of the manuscript expresses at the same time the authors consent to its publishing in both printed and electronic versions.


Transfer of Copyright Agreement

Submission of the manuscript means that the authors automatically agree to assign the copyright to the Publisher. Once a paper has been accepted for publication, as a condition of publication, the authors are asked to send by email a scanned copy of the signed original of the Transfer of Copyright Agreement, signed by the Corresponding Author on behalf of all authors to the Managing Editor of the Journal. The copyright form can be downloaded from the journal’s website at http://www.imp.gda.pl/archives-of-thermodynamics/ under Notes for Contributors.

This page uses 'cookies'. Learn more