Details

Title

Nonuniform Spatial Sampling in a Ground-Based Noise SAR

Journal title

International Journal of Electronics and Telecommunications

Yearbook

2011

Volume

vol. 57

Issue

No 1

Authors

Divisions of PAS

Nauki Techniczne

Publisher

Polish Academy of Sciences Committee of Electronics and Telecommunications

Date

2011

Identifier

DOI: 10.2478/v10177-011-0010-2 ; eISSN 2300-1933 (since 2013) ; ISSN 2081-8491 (until 2012)

Source

International Journal of Electronics and Telecommunications; 2011; vol. 57; No 1

References

Kulpa K. (2008), Editorial: Signal Processing in Noise Radar Technology, IET Radar, Sonar & Navigation, 2, 4, 229, doi.org/10.1049/iet-rsn:20089017 ; Kulpa K. (2008), Quality Enhancement of Image Generated with Bistatic Ground Based Noise Waveform SAR, IET Radar, Sonar & Navigation, 2, 4, 263, doi.org/10.1049/iet-rsn:20070165 ; Maślikowski Ł. (2010), Preliminary Results of Ground-Bsed Noise SAR Experiments, null, 596. ; Maślikowski Ł. (2010), Bistatic Quasi-Passive Noise SAR Experiment, null, 1. ; Maślikowski Ł. (2010), Sub-Band Phase Calibration in Stepped Frequency GB Noise SAR, null, 200. ; Candes E. (2008), An Introduction to Compressive Sampling, Signal Processing Magazine, 25, 2, 21, doi.org/10.1109/MSP.2007.914731 ; Misiurewicz J. (1997), Unambiguous Doppler Frequency Estimation in an MTI Radar, null, 530. ; Younkins L. (1997), Velocity Etimation for Radar Systems with Staggered Pulse Repetition Frequency, null, 425. ; Lemke C. (2007), Coherent Prameter Estimation for Radar Signals, null, 145. ; Li D. (2010), The Sparse Array Aperture Synthesis with Space Constraint, null, 950. ; Zhang B. (2010), Synthetic Aperture Radar Iaging of Sarse Cmpressed Sensing, null, 689. ; Prünte L. (2010), Application of Compressed Sensing to SAR/GMTI-Data, null, 465. ; Zhu X. (2010), Super-Resolution for 4-D SAR Tomography via Compressive Sensing, null, 273. ; Candes E. (2006), Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory, 52, 12, 5406, doi.org/10.1109/TIT.2006.885507 ; Candes E. (2006), Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information, IEEE Transactions on Information Theory, 52, 2, 489, doi.org/10.1109/TIT.2005.862083 ; Donoho D. (2006), Compressed Sensing, IEEE Transactions on Information Theory, 52, 4, 1289, doi.org/10.1109/TIT.2006.871582 ; G. Peyre, "Toolbox Sarsity-Sparsity-Based Signal Pocessing Related Functions," 12 April 2010. ; A. Majumdar, "Orthogonal Least Squares Algorithms for Sparse Signal Reconstruction," 12 April 2010. ; W. Yin, S. Morgan, J. Yang, and Z. Yin, "Practical Compressive Sensing with Toeplitz and Circulant Matrices," 12 April 2010.
×