Details Details PDF BIBTEX RIS Title Proteolytic Activity in the Midgut of the Crimson Speckled Moth Utethesia Pulchella L. (Lepidoptera: Arctiidae) Journal title Journal of Plant Protection Research Yearbook 2012 Volume vol. 52 Issue No 3 Authors Ajamhassani, Maryam ; Arash Zibaee ; Jalal Sendi ; Askary, Hassan ; Nasser Farrar Divisions of PAS Nauki Biologiczne i Rolnicze Publisher Committee of Plant Protection PAS ; Institute of Plant Protection – National Research Institute Date 2012 Identifier DOI: 10.2478/v10045-012-0061-0 ; ISSN 1427-4345 ; eISSN 1899-007X Source Journal of Plant Protection Research; 2012; vol. 52; No 3 References Applebaum S. (1985), Comparative Insect Physiology, Biochemistry and Pharmacology, 279. ; Bernardi B. (1996), Isolation and some molecular properties of a trypsin-like enzyme from larvae of European corn borer <i>Ostrinia nubilalis</i> Hübner (Lepidoptera: Pyralidae), Insect. Biochem. Mol. Biol, 26, 9, 883, doi.org/10.1016/S0965-1748(96)00057-4 ; Bradford M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem, 72, 2, 248, doi.org/10.1016/0003-2697(76)90527-3 ; Broadway R. (1995), Are insects resistant to plant proteinase inhibitors?, J. Insect. Physiol, 41, 2, 107, doi.org/10.1016/0022-1910(94)00101-L ; Broadway R. (1986), Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval <i>Heliothis zea</i> and Spodoptera exigua, J. Insect. Physiol, 32, 10, 827, doi.org/10.1016/0022-1910(86)90097-1 ; Chougule N. (2008), Biochemical characterization of midgut digestive proteases from <i>Mamestra brassicae</i> (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays, J. Insect Physiol, 54, 3, 563, doi.org/10.1016/j.jinsphys.2007.12.005 ; Christeller J. (1992), Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and proteases inhibitory interactions, Insect. Biochem. Mol. Biol, 22, 7, 248, doi.org/10.1016/0965-1748(92)90052-G ; Cohen A. (1993), Organization of digestion and preliminary characterization of salivary trypsin like enzymes in a predaceous Heteropteran, Zelus renadii, J. Insect. Physiol, 39, 10, 823, doi.org/10.1016/0022-1910(93)90114-7 ; Eguchi M. (1982), Interrelation of proteases from the midgut lumen, epithelia and peritrophic membrane of the silkworm, <i>Bombyx mori</i>, L. Comp. Biochem. Physiol. (A), 72, 2, 359, doi.org/10.1016/0300-9629(82)90231-6 ; Elpidina E. (2001), Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut, Arch. Insect. Biochem. Physiol, 48, 4, 206, doi.org/10.1002/arch.10000 ; Farmer E. (1992), Octadecanoid precursors of jasmonic acid activate the syntesis of wound-inducible proteinase inhibitors, Plant. Cell, 4, 2, 129. ; Folin O. (1927), On tyrosine and tryptophane determinations in proteins, J. Biol. Chem, 73, 627. ; Garcia-Carreno F. (1993), Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous protease inhibitors, Analyt. Biochem, 214, 1, 61. ; Gatehouse A. (1998), Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops, Pest. Sci, 52, 2, 165, doi.org/10.1002/(SICI)1096-9063(199802)52:2<165::AID-PS679>3.0.CO;2-7 ; Gatehouse A. (1999), Digestive proteolytic activity in larvae of tomato moth, <i>Lacanobia oleracea</i>; effects of plant proteinase inhibitors <i>in vitro</i> and <i>in vivo.</i>, J. Insect Physiol, 45, 6, 545, doi.org/10.1016/S0022-1910(98)00161-9 ; Gazzoni D. (1998), Mathematical simulation model of the velvetbean caterpillar, Pesquisa Agropecuária Brasileira, 33, 385. ; Gorman M. (2000a), Molecular characterization of five serine protease genes cloned from <i>Anopheles gambiae</i> hemolymph Insect Biochem, Mol. Biol, 30, 1, 35. ; Gorman M. (2000b), Sp22D: a multidomain serine protease with a putative role in insect immunity, Gene, 251, 1, 9, doi.org/10.1016/S0378-1119(00)00181-5 ; Harrison J. (2001), Insect acid-base physiology, Ann. Rev. Entomol, 46, 221. ; Hegedus D. (2003), Midgut proteases from <i>Mamestra configurata</i> (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning and expressed sequence tag analysis, Arch. Insect Biochem. Physiol, 53, 1, 30, doi.org/10.1002/arch.10084 ; Hilder V. (1987), A novel mechanism of insect resistance engineered into tobacco, Nature, 330, 160, doi.org/10.1038/330160a0 ; Kuriyama K. (1985), Conversion of the molecular form alkaline treatment of gut protease from the silkworm Bombyx mori, Comp. Biochem. Physiol. (B), 82, 4, 575. ; Laemmli U. (1970), Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, doi.org/10.1038/227680a0 ; Lee M. (1995), Endoproteases from the midgut of larval <i>Spodoptera littoralis</i> includes a chymotrypsin-like enzyme with an extended binding site, Insect. Biochem. Mol. Biol, 25, 1, 49, doi.org/10.1016/0965-1748(94)00042-G ; Ma C. (2000), A beta 1,3-glucan recognition protein from an insect, <i>Manduca sexta</i> agglutinates microorganisms and activates the phenoloxidase cascade, J. Biol. Chem, 275, 7505, doi.org/10.1074/jbc.275.11.7505 ; Marchetti S. (1998), Isolation and partial characterization of two trypsins from the larval midgut of <i>Spodoptera littoralis</i> (Boisduval), Insect Biochem. Mol. Biol, 28, 11, 449, doi.org/10.1016/S0965-1748(98)00010-1 ; Mohammadi D. (2010), Activity and some properties of <i>Helicoverpa armigera</i> Hubner and <i>Spodoptera exigua</i> Hubner (Lep.: Noctuidae) midgut protease, Munis. Entomol. Zool, 5, 2, 697. ; Nakajima Y. (1997), A novel protease in the pupal yellow body of <i>Sarcophaga peregrine</i> (flesh fly), J. Biol. Chem, 272, 38, 23805, doi.org/10.1074/jbc.272.38.23805 ; Ozgur E. (2009), Identification and characterization of hydrolytic enzymes from the midgut of Sunn Pest of wheat (<i>Eurygaster integriceps</i>), Int. J. Pest Manage, 55, 4, 359, doi.org/10.1080/09670870902939897 ; Purcell J. (1992), Examination of midgut luminal proteinase activities in six economically important insects, Insect Biochem. Mol. Biol, 22, 1, 41, doi.org/10.1016/0965-1748(92)90098-Y ; Ranjbar M. (2011), Proteolytic activity in the midgut of <i>Ectomyelois ceratoniae</i> Zeller (Lepidoptera: Pyralidae), Pomegranate carob moth, Res. Rep, 8, 2, 132. ; Ryan C. (1990), Proteinase inhibitors in plants: genes improving defenses against insects and pathogens, Ann. Rev. Phytopathol, 28, 425, doi.org/10.1146/annurev.py.28.090190.002233 ; Samuels R. (1993), cuticle degrading proteinase from the moulting fluid of the tobacco hornworm, <i>Manduca sexta.</i> Insect Biochem, Mol. Biol, 23, 5, 607. ; SAS Institute. 1997. SAS/STAT User's guide for personal computers. SAS Institute, Cary, NC. ; Shaw E. (1965), Evidence for an active-center hystidine in trypsin through use of a specific reagent 1-chloro-3-tosylamido-7-amino-2-heptanona, the chloromethyl ketone derived from <i>N</i>-tosyl-L-lysine, Biochem, 4, 10, 2219, doi.org/10.1021/bi00886a039 ; Teo L. (1990), Digestive enzymes of the velvetbean caterpillar (Lepidoptera: Noctuidae), Ann. Entomol. Soc. Am, 88, 820, doi.org/10.1093/aesa/83.4.820 ; Terra W. (1994), Insect digestive enzymes: properties, compartmentalization and function, Com. Biochem. Physiol. (B), 109, 1, 1. ; Terra W. (2005), Comprehensive Molecular Insect Science, 171, doi.org/10.1016/B0-44-451924-6/00053-3 ; Zibaee A. (2011), Purification and characterization of phenoloxidase from the hemocytes of <i>Eurygaster integriceps</i> (Hemiptera: Scutelleridae), Comp. Biochem. Physiol. B, 158, 1, 117, doi.org/10.1016/j.cbpb.2010.10.006 ; Zibaee A. (2012a), Digestive enzymes of large cabbage white butterfly, <i>Pieris brassicae</i> L. (Lepidoptera: Pieridae) from developmental and site of activity perspectives, Italian. J. Zool, 79, 1, 13, doi.org/10.1080/11250003.2011.607190 ; Zibaee A. (2012b), Proteolytic profile in the larval midgut of <i>Chilo suppressalis</i> Walker (Lepidoptera: Crambidae), Entomol. Res, 42, 1, 142, doi.org/10.1111/j.1748-5967.2012.00447.x