Szczegóły

Tytuł artykułu

Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2016

Numer

No 1

Autorzy

Słowa kluczowe

heat exchangers ; radiative heat transfer ; numerical model ; experimental validation

Wydział PAN

Nauki Techniczne

Zakres

99-112

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Data

2016

Typ

Artykuły / Articles

Identyfikator

DOI: 10.1515/aoter-2016-0007 ; ISSN 1231-0956 ; eISSN 2083-6023

Źródło

Archives of Thermodynamics; 2016; No 1; 99-112

Referencje

BuryT (2010), Experimental and numerical analyses of finned cross flow heat exchangers efficiency under non - uniform gas inlet flow conditions, Arch Thermodyn, 133. ; BorodulyaV (1983), Radiative heat transfer between a fluidized bed and a surface, Int J Heat Mass Tran, 277, doi.org/10.1016/S0017-9310(83)80032-5 ; MoriY (1980), Radiation effects on performances of radiative gas heat exchangers at high temperatures, Int J Heat Mass Tran, 1079, doi.org/10.1016/0017-9310(80)90172-6 ; ShuangtaoC (2009), A numerical model of thermal analysis for woven wire screen matrix heat exchanger, Cryogenics, 9, 482, doi.org/10.1016/j.cryogenics.2009.07.001 ; PetersonR (2001), Analysis of a Bayonet - type counterflow heat exchanger with axial heat conduction and radiative heat loss Heat Tr, Numer, 203. ; ContentoG (2014), Prediction of radiative heat transfer in metallic foams, Int J Therm Sci, 147, doi.org/10.1016/j.ijthermalsci.2013.09.001 ; BoleaI (2014), Heat transfer in the external heat exchanger of oxy - fuel fluidized bed boilers, Appl Therm Eng, 1. ; MitrovicJ (2012), Heat exchangers basic design applications ISBN, InTech, 978. ; CoelhoP (2014), Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media, J Quant Spectrosc Ra, 121, doi.org/10.1016/j.jqsrt.2014.04.021 ; KaysW (1998), Compact Heat Exchangers rd Krieger Publishing Company EAN, Edn, 9781575240602. ; MathewB (2013), Modeling non - adiabatic counter flow microchannel heat exchangers, App Therm Eng, 1. ; RogiersF (2010), Towards maximal heat transfer rate densities for small - scale high effectiveness parallel plate heat exchangers, Int J Heat Mass Tran, 605, doi.org/10.1016/j.ijheatmasstransfer.2009.10.036

Rada naukowa

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×