Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 49
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Exploitation of hard coal seams by roadway system is applied by two coal mines in southern Poland in Upper Silesian Basin. It is a secondary mining exploitation carries out in safety pillars of urban areas and shafts within mining areas of closed coal mines. Roadway system is the excavation process of gateways which are made in parallel order leaving coal pillars between them. An optimal width of coal pillar makes roadway stable and reduces subsidence of terrain surface. The article presents results of subsidence simulation caused by partial extraction using empirical and numerical methods on the example of one exploitation field of “Siltech” coal mine. The asymptotic state of subsidence was considered after mining ceased in the study area. In order to simulate of subsidence, numerical model of rock mass and model of Knothe-Budryk theory were calibrated. Simulation of vertical displacements in numerical method was carried out using RS3 program by Rocscience based on finite element method. The assumption was made that model of rock mass is transversely isotropic medium, in which panels were designed according to order of extraction of coal seams. The results of empirical and numerical methods were compared with measured values of subsidence at benchmarks along drawn lines (subsidence profiles).

Go to article

Authors and Affiliations

Piotr Polanin
Andrzej Kowalski
ORCID: ORCID
Andrzej Walentek
Download PDF Download RIS Download Bibtex

Abstract

The stability of gateroads is one of the key factors for the mining process of hard coal by a longwall system. Wrong designed and applied the gateroad support at the stage of drilling, may adversely affect the functionality of the gateroad and the safety of the crew throughout its existence.

The article presents the results of the underground tests and observations such as: convergence of the gateroad, stratification and the fractured zone range in the roof rocks, carried out in four longwall gateroads at the stage of their drilling.

The obtained test results were the basis for the assessment of the possibility of using a convergence control method in the design of the gateroad support. The method is based on three interdependent relationships, such as: Ground Reaction Curve (GRC), Longitudinal Displacement Profile (LDP), and a Support Characteristic Curve (SCC). All calculations were performed using numerical modeling in the Phase2 program, based on the finite element method (FEM).

Go to article

Authors and Affiliations

Andrzej Walentek
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of model research concerning the change of technology of argon blowing into liquid steel at the ladle furnace, using the dual plug system. The results of numerical simulations were verified with experimental data carried out on the water model device. The verified model was used to perform numerical simulations to predict the impact of using a new gas injection technology – with different flow rates – on the time to achieve the assumed degree of metal chemical homogenization after alloy addition. Simulation results show that argon blowing metal bath in dual plug mode can effectively reduce mixing time compared to conventional technology with the same gas flow rates. Generally, the use of the dual plug system is beneficial for reducing the bath mixing time, however, the assumed optimal proportion of gas blown through individual plug should be followed. Finally, numerical predictions were used to perform experimental melt under industrial conditions. Industrial verification has clearly confirmed the validity of numerical modeling and showed that also in industrial conditions, a shorter time of chemical homogenization was obtained for the dual plug system.
Go to article

Authors and Affiliations

M. Warzecha
1
A. Hutny
1
P. Warzecha
1
Z. Kutyła
2
T. Merder
3

  1. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
  2. CMC Poland Sp. z o.o., 82 Piłsudskiego Str., 42-400 Zawiercie, Poland
  3. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasinskiego Str., 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

As part of the work, the error level of simulations of uniform optical-fibre Bragg gratings was determined using the transitionmatrixmethod. The errorswere established by comparing the transmission characteristics of the structures obtained by simulation with the corresponding characteristics arrived at experimentally. To compile these objects, elementary properties of the characteristics were specified, also affecting the applications of Bragg gratings, and compared with each other. The level of error in determining each of these features was estimated. Relationships were also found between the size of the physical properties of Bragg gratings and the level of errors obtained. Based on the findings, the correctness of the simulation of structures with the said method was verified, giving satisfying results.

Go to article

Authors and Affiliations

Piotr Stępniak
Piotr Kisała
Download PDF Download RIS Download Bibtex

Abstract

Biskupin is one of the most recognizable archaeological site in Poland and Central Europe. The origins of the excavations dates back to year 1934 and had lasted almost continuously until 1974. In the framework of the grant from the Ministry of Culture and National Heritage interdisciplinary team of scientists from Archaeological Museum in Biskupin and Warsaw University of Technology performed multi-dimensional analysis of the settlement. Based on the integrated vector documentation, resulting from the photographic documentation, numerical models of structural systems of main types of buildings and defensive rampart were prepared. The aim of the analysis was a verification of the earlier findings of archaeological and architectural researches. The analysis allowed to verify both the arrangement of individual parts of structure of buildings, their work and the interconnection, as well as the possible dimensions of the individual components.

Go to article

Authors and Affiliations

Wojciech Terlikowski
ORCID: ORCID
Martyna Gregoriou-Szczepaniak
ORCID: ORCID
Ewa Sobczyńska
ORCID: ORCID
Kacper Wasilewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory tests of SCB (semi-circular beam) samples of asphalt concrete, subjected to the destructive effect of water and frost as well as the aging processes. The determined values of material parameters show significant dispersions, which makes the design of mixtures difficult. Statistical analysis of the test results supplemented by computer simulations made with the use of the proprietary FEM model was carried out. The main distinguishing feature of the model is the assignment of material parameters of coarse aggregate and bituminous mortar to randomly selected finite elements. The parameters of the mortar are selected by trial and error to match the numerical results to the experimental ones. The stiffness modulus of the bituminous mortar is, therefore, a substitute parameter, taking into account the influence of many factors, including material degradation resulting from the aging and changing environmental conditions, the influence of voids, and contact between the aggregate and the bituminous mortar. The use of the Monte Carlo method allows to reflect the scattering of the results obtained based on laboratory tests. The computational algorithm created in the ABAQUS was limited only to the analysis of the global mechanical bending response of the SCB sample, without mapping the failure process in detail. The combination of the results of laboratory tests usually carried out on a limited number of samples and numerical simulations provide a sufficiently large population of data to carry out a reliable statistical analysis, and to estimate the reliability of the material designed.
Go to article

Authors and Affiliations

Cezary Szydłowski
1
ORCID: ORCID
Łukasz Smakosz
2
ORCID: ORCID
Marcin Stienss
1
ORCID: ORCID
Jarosław Górski
2
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Highway and Transportation Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
  2. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Structural Mechanics, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

Go to article

Authors and Affiliations

Małgorzata Hanuszkiewicz-Drapała
Tomasz Bury
Katarzyna Widziewicz
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model of the steam superheater exchanger with distributed parameters has been developed. Scale deposits were assumed to be present on the internal tube surfaces. It was assumed that the inner tube surfaces are covered by a thin layer of scale deposits. The finite volume method was used to solve partial differential equations describing flue gas, tube wall and steam temperature. The developed modeling technique can especially be used for modeling tube heat exchangers when detail information on the tube wall temperature distribution is needed. The numerical model of the superheater developed in the paper can be used for modeling of the superheaters with complex flow arrangement accounting scales on the internal tube surfaces. Using the model proposed the detailed steam, wall and flue gas temperature distribution over the entire superheater can be determined. The steam pressure distribution along its path flow and the total heat transfer rate can also be obtained. The calculations showed that the presence of scale on the internal surfaces of the tubes cause the steam temperature decrease and the heat flow rate transferred from the flue gas to the steam. Scale deposits on the inner surfaces of the tubes cause the tube wall temperature growth and can lead to premature wear of tubes due to overheating.

Go to article

Authors and Affiliations

Marcin Trojan
Jan Taler
Download PDF Download RIS Download Bibtex

Abstract

This study, describing computer simulation of a glider crash against a non-deformable ground barrier, is a part of a larger glider crash modeling project. The studies were intended to develop a numerical model of the pilot - glider - environment system, whereby the dynamics of the human body and the composite cockpit structure during a crash would make it possible to analyze flight accidents with focus on the pilot's safety. Notwithstanding that accidents involving glider crash against a rigid barrier (a wall, for example) are not common, establishing a simulation model for such event may prove quite useful considering subsequent research projects. First, it is much easier to observe the process of composite cockpit structure destruction if the crash is against a rigid barrier. Furthermore, the use of a non-deformable barrier allows one to avoid the errors that are associated with the modeling of a deformable substrate, which in most cases is quite problematic. Crash test simulation, carried out using a MAYMO package, involved a glider crash against a wall positioned perpendicularly to the object moving at a speed of 77 km/h. Computations allowed for determination of time intervals of the signals that are required to assess the behavior of the cockpit and pilot's body - accelerations and displacements in selected points of the glider's structure and loads applied to the pilot's body: head and chest accelerations, forces at femur, lumbar spine and safety belts. Computational results were compared with the results of a previous experimental test that had been designed to verify the numerical model. The glider's cockpit was completely destroyed in the crash and the loads transferred to the pilot's body were very substantial - way over the permitted levels. Since modeling results are fairly consistent with the experimental test, the numerical model can be used for simulation of plane crashes in the future.

Go to article

Authors and Affiliations

Lukasz Lindstedt
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a complex study of anhydrite interbeds influence on the cavern stability in the Mechelinki salt deposit. The impact of interbeds on the cavern shape and the stress concentrations were also considered. The stability analysis was based on the 3D numerical modelling. Numerical simulations were performed with use of the Finite Difference Method (FDM) and the FLAC3D v. 6.00 software. The numerical model in a cuboidal shape and the following dimensions: length 1400, width 1400, height 1400 m, comprised the part of the Mechelinki salt deposit. Three (K-6, K-8, K-9) caverns were projected inside this model. The mesh of the numerical model contained about 15 million tetrahedral elements. The occurrence of anhydrite interbeds within the rock salt beds had contributed to the reduction in a diameter and irregular shape of the analysed caverns. The results of the 3D numerical modelling had indicated that the contact area between the rock salt beds and the anhydrite interbeds is likely to the occurrence of displacements. Irregularities in a shape of the analysed caverns are prone to the stress concentration. However, the stability of the analysed caverns are not expected to be affected in the assumed operation conditions and time period (9.5 years).

Go to article

Authors and Affiliations

Marek Cała
ORCID: ORCID
Katarzyna Cyran
ORCID: ORCID
Michał Kowalski
ORCID: ORCID
Paweł Wilkosz
Download PDF Download RIS Download Bibtex

Abstract

The article presents a numerical model of a U-ventilated longwall, taking into account detailed elements such as arch yielding support, roof supports and shearer. What distinguishes it from previous models is the mapping of adjacent goafs. This model considers the current state of knowledge regarding spatial height distribution, porosity and permeability of goafs. Airflow calculations were carried out using the selected turbulence models to select appropriate numerical methods for the model. Obtained results show possibilities of conducting extensive numerical calculations for the flow problems in the mine environment, taking into account more complex descriptions and the interpretation of the calculation results carried out with simpler models.
Go to article

Bibliography

[1] Ansys Inc, Ansys Fluent Theory Guide. Ansys Inc (2019).
[2] M. Baścik, 3D laser scanning in underground mines – practical experience. School of Underground Mining 2013. The Mineral And Energy Economy Research Institute of Polish Academy of Sciences (2013).
[3] P.Y. Chou, On velocity correlations and the solutions of the equations of turbulent fluctuations. Quarterely of Applied Mathematics (1945).
[4] N .S. Dhamakar, G.A. Blasdell, A.S. Lyrintzis, An Overview of Turbulent Inflow Boundary Conditions for large Eddy Simulations. Proc of the 22 nr AIAA Computational Fluid Dynamics Conference AIAA Paper (2015).
[5] W. Dziurzyński, Prognozowanie procesu przewietrzania kopalni głębinowej w warunkach pożaru podziemnego. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków (1998).
[6] J. Janus, PhD thesis, Modelling of flow phenomena in mine drifts using the results of laser scanning. Strata Mechanics Research Institute of Polish Academy of Sciences (2018).
[7] J. Janus, The Application of laser scanning in the process of constructing a mine drift numerical model. 24th World Mining Congress PROCEEDINGS – Underground Mining, Brazilian Mining Association, Rio de Janeiro (2016).
[8] J. Janus, The application of laser scanning in the process of construction a mine drift numerical model. Transactions of the Strata Mechanics Research Institute 18, 3 (2016).
[9] J. Janus, Assessment of the possibilities of using laser scanning for numerical models constructions. Transactions of the Strata Mechanics Research Institute 17, (1-2) (2015).
[10] J. Janus, Wpływ zapory przeciwwybuchowej wodnej na pole prędkości i warunki przewietrzania wyrobiska kopalnianego. Archives of Mining Sciences, Seria: Monografia, Nr 19 (2019).
[11] J. Janus, J. Krawczyk, An Analysis of the Mixing of Air and Methane in the Stream Produced by the Mine Injector Station – Present Results of Measurements and Modeling. The Australian Mine Ventilation Conference 2013, The Australian Institute of Mining and Metallurgy (2013).
[12] J. Janus, J. Krawczyk, Measurement and Simulation of Flow in a Section of a Mine Gallery. Energies 14, 4894 (2021). DOI: https://doi.org/10.24425/ather.2019.128295
[13] J. Janus, J. Krawczyk, The numerical simulation of a sudden inflow of methane into the end segment of a longwall with Y – type ventilation system. Archives of Mining Sciences 59, (4) (2014).
[14] A. Kidybiński, Podstawy geotechniki kopalnianej. Wydawnictwo Śląsk, Katowice (1982).
[15] J. Krawczyk, J. Janus, An example of defining boundary conditions for a flow in a mine gallery. Abstract in the XXIII Fluid Mechanics Conference Materials, Zawiercie (2018).
[16] J. Krawczyk, J. Janus, Velocity field in the area of artificially generated barrier on the mine drift floor. Przegląd Górniczy 71, (11) (2015).
[17] J. Krawczyk, Single and multiple-dimensional models of unsteady air and gas flows in underground mines. Archives of Mining Sciences, Seria: Monografia, No 2 (2007).
[18] F. Menter, Turbulence Modeling for Engineering Flows. ANSYS 2012 Inc. (2012). [19] F. Menter, Best Practice – Scale-Resolving Simulations in ANSYS CFD – Application Brief Version 2.0 (2015).
[20] J. Pokorný, L. Brumarová, P. Kučera, J. Martinka, A. Thomitzek, P. Zapletal, The effect of Air Flow Rate on Smoke Stratification in Longitudinal Tunnel Ventilation. Acta Montanistica Slovaca 24, (3) (2019).
[21] T. Ren, R. Balusu, C. Claassen, Computational Fluid Dynamics Modelling of Gas Flow Dynamics in Large Longwall Goaf Areas. 35th APCOM Symposium (2011).
[22] P. Skotniczny, Three-Dimensional Numerical Simulation of the Mass Exchange Between Longwall Headings and Goafs, in the Presence of Methane Drainage in A U-Type Ventilated Longwall. Archives of Mining Sciences 58, (3) (2013).
[23] V. Sokoła-Szewioła, J. Wiatr, Application of laser scanning method for the elaboration of digital spatial representation of the shape of underground mining excavation. Przegląd Górniczy 8 (2013).
[24] J. Szlązak, PhD thesis, Wpływ uszczelniania chodników przyścianowych na przepływ powietrza przez zroby. AGH Kraków (1980).
[25] N. Szlązak, J. Szlązak, Wentylacja wyrobisk ścianowych w kopalniach węgla kamiennego, w warunkach zagrożenia metanowego i pożarowego. Górnictwo i Geologia (2) (2019).
[26] K. Wierzbiński, Wpływ geometrii chodnika wentylacyjnego i sposobu jego likwidacji na rozkład stężenia metanu w rejonie wylotu ze ściany przewietrzanej sposobem U w świetle obliczeń numerycznych CFD. Zeszyt Naukowy Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, No 94 (2016).
[27] M.A. Wala, S. Vytla, C.D. Taylor, G. Huang, Mine face ventilation: a comparison of CFD results against benchmark experiments for the CFD code validation. Mining Engineering (2007).
[28] D.M. Worrall, E.W. Wachel, U. Ozbay, D.R. Munoz, J.W. Grubb, Computational fluid dynamic modeling of sealed longwall gob in underground coal mine – A progress report. 14th United States/North American Mine Ventilation Symposium, Calizaya & Nelson (2012).
Go to article

Authors and Affiliations

Jakub Janus
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In 2017, the Central Mining Institute (GIG), Jastrzębska Spółka Węglowa SA (JSW SA), the largest producer of coking coal in Europe, and JOY KOMATSU, the producer of mining machinery, signed a consortium. The project’s main goal was to reduce the costs of driving mine workings by reintroducing the rock bolt support. The works began in November 2019, and for the first time in the history of Polish coal mining, a Bolter Miner machine was used for the purpose. The paper presents the results of measuring the axial forces in rock bolts at the measurement base and their analysis with numerical modelling.
Go to article

Bibliography

[1] V. Artemyev, P. McInally, Improvements in Longwall Technology and Performance in Kuzbass Mines of Suek. Proceedings of the 18th Coal Operators’ Conference, Mining Engineering, University of Wollongong, 124-133 (2018).
[2] S . Banerjee, Performance evaluation of continuous miner based underground mine operation system: An OEE based approach. New Trends in Production Engineering 2, 1, 596-603 (2019). DOI: https://doi.org/10.2478/ntpe-2019-0065
[3] D . Bolstad, J. Hill, Bureau of Mines rock bolting research. Proceedings of the International Symposium on Rock Bolting, Abisko, Sweden, 313-320 (1983).
[4] F. Breinig, K. Opolony, Geplante Doppelnutzung einer Rechtankerstrecke in 1200 m Teufe im Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 159-177 (2004).
[5] T . Bush, Streckenausbau mit eisernen Ankern. Zeitschrift für das Berg – Hütten – und Salinenwesen, Berlin, 7-9 (1919).
[6] I . Canbulat, A. Wilkinson, G. Prohaska, M. Mnisi, N. Singh, An investigation into the support systems in South African collieries. Safety in Mines Research Advisory Committee, Project No SI M 020205, CSIR Division of Mining Technology, Ground Consulting (Pty) Ltd (2005).
[7] C . Cao, PhD thesis, Bolt profile configuration and load transfer capacity optimisation. School of Civil, Mining and Environmental Engineering, University of Wollongong (2012).
[8] D .R. Dolinar, S.K. Bhatt, Trends in roof bolt application. Proceedings: new technology for coal mine roof support. C. Mark, D.R. Dolinar, R.J. Tuchman, T.M. Barczak, S.P. Signer, P.F. Wopat, (Eds.) Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2000-151 (IC 9453), 43-51 (2000).
[9] R . Fletcher, Roof Bolting Equipment and Practices. Mng. Cong. J., Nov., 80-82 (1956).
[10] S .D. Flook, J.J. Leeming, Recent developments in longwall mining entry development and room and pillar systems. Gospodarka Surowcami Mineralnymi 24, 4/3, 11-23 (2008).
[11] Golder Associates UK Ltd, Initial Rockbolt Support Design. Rockbolting Trial, Budryk Colliery, Poland. Nottingham (2018).
[12] B. Hebblewhite, 25 Years of Ground Control Developments, Practices, and Issuses in Australia. 25th International Conference on Ground Control in Mining, Morgantown, WV, 111-117 (2006).
[13] H. Jalalifar, PhD thesis, A new approach in determining the load transfer mechanism in fully grouted bolts. School of Civil, Mining and Environmental Engineering, University of Wollongong (2006).
[14] H. Jurecka, Ankerausbau eine Schlüsseltechnologie für Hochleistungsstrebbetriebe in großen Teufen. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 1-17 (2001).
[15] V. Kajzar, R. Kukutsch, P. Waclawik, P. Konicek, Coal pillar deformation monitoring using terrestrial laser scanner technology in room and pillar panel – A case study from the Ostrava-Karvina Coal Field. Rock Mechanics and Rock Engineering: From the Past to the Future – Ulusay et al. (Eds.), Taylor & Francis Group, London, 951-956 (2016).
[16] H. Kang, Support technologies for deep and complex roadways in underground coal mines: a review. Int. J. Coal Sci. Technol. 1 (3), 261-277 (2014). DOI: https://doi.org/10.1007/s40789-014-0043-0
[17] H. Kang, Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China. Journal of China University of Mining & Technology 45 (6), 1071-1081 (2016).
[18] K . Kovári, The Control of Ground Response – Milestones up to the 1960s. Proc. of the AITES -ITA World Tunnel Congress, Italy, Milan, 93-119 (2001).
[19] A . Kumar, R. Singh, P. Waclawik, Numerical Modelling Based Investigation of Coal Pillar Stability for Room and Pillar Development at 900 m Depth of Cover. 37TH International Conference on Ground Control in Mining, 193-203 (2018).
[20] B. Langhanki, Planungskonzeption zur Doppelnutzung einer Rechtankerstrecke im Flöz D2/C in 1.200 m Teufe. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 217-233 (2001).
[21] J. Luo, PhD thesis, A New Rock Bolt Design Criterion and Knowlwdge-based Expert System for Stratified Roof. Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1999).
[22] T . Majcherczyk, A. Szaszenko, E. Sdżwiżkowa, Fundamentals of geomechanics. Wydawnictwo AGH, Kraków (2006).
[23] C .P. Mangelsdorf, Current Trends in Roof Truss Hardware. Proc. of 2nd Conference on Ground Control in Mining, edited by S.S. Peng, 108-112 (1982).
[24] C . Mark, Design of roof bolt systems. Proc.New Technology For Coal Mine Roof Support. U.S. Department of Health and Human Services, Pittsburgh, PA, 111-131 (2000).
[25] J. Modi, S. Bharti, R. Kant, Applicability of Continuous Miner in Room and Pillar Mining System: Higher Production and Productivity with Safety. International Conference on Deep Excavation, Energy Resource and Production (DEE P16), IIT Kharagpur, India (2017).
[26] A . Nierobisz, Rockbolting – history, present and future. Międzynarodowa Konferencja Szkoleniowa: Perspektywy stosowania obudowy kotwowej w polskich kopalniach węgla kamiennego, Jaworze, kwartalnik GIG Nr 2/1/2010, 184-203 (2010).
[27] A . Nierobisz, Development of Roof Bolting Use in Polish Coal Mines. Journal of Mining Science 47, No. 6, 751- 760 (2011).
[28] B. Neyman, R. Gocman, Guidelines for rockbolt support in workings. Biuletyn techniczno-informacyjny GIG nr 9 (1960).
[29] K. Opolony, H. Witthaus, A. Hucke, A. Studeny, Ergebnisse von numerischen Berechnungen und physikalischen Modellversuchen als Planungshilfe für eine Rechteckankerstrecke in Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 539-554 (2004).
[30] S. Peng, Coal Mine Ground Control. (3rd ed.), Syd Peng Publisher, Morgantown (2008).
[31] K. Podgórski, W. Podgórski, Rockbolt support of underground workings. Wydawnictwo Śląsk. Katowice (1969).
[32] L. Rabcewicz, Bolted support for tunnels. Mine and Quarry- Engineering, April, 153-159 (1955).
[33] E.U. Reuther, A. Heime, Verbesserte Bemessung von Ankerausbau in Abbau- und Basisstrecken. Kommission der Europäischen Gemeinschaften, technische Forschung Kohle, Forschungsvertrag Nr. 7220-AB/120, Luxemburg (1990).
[34] A. Sahebi, J. Hossein, M. Ebrahimi, Stability analysis and optimum support design of a roadway in a faulted zone during longwall face retreat – case study: Tabas Coal Mine. N. Aziz (Eds.), 10th Underground Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 88-96 (2010).
[35] R. Schach, K. Garshol, A.M. Heltzen, Rock bolting: a practical handbook. Pergamon Press (1979).
[36] A.J.S. Spearing, G. Bylapudi, K. Mondal, A.W. Bhagwat, Rock anchor corrosion potential determination in US underground coal mines. The Southern African Institute of Mining and Metallurgy 6th South African Rock Engineering Symposium SARES (2014).
[37] A.J.S. Spearing, B. Greer, M. Reilly, Improving rockbolt installations in US coal mines. The Journal of The Southern African Institute of Mining and Metallurgy, Vol. 111, 555-563 (2011).
[38] S. Tadolini, R. Mazzoni, Understanding roof bolt selection and design still remains priceless. 25th International Conference on Ground Control, July 2006. Morgantown, WV, USA , 382-389 (2006).
[39] S . Taghipoor, Application of numerical modelling to study the efficiency of roof bolting pattern in east 1 main roadway of Tabas coal mine. 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, 2-5 (2008).
[40] P. Waclawik, J. Ptacek, P. Konicek, R. Kukutsch, J. Nemcik, Stress-state monitoring of coal pillars during room and pillar extraction. Journal of Sustainable Mining 15, 49-56 (2016). DOI: https://doi.org/10.46873/2300-3960.1207
[41] P. Waclawik, R. Snuparek, R. Kukutsch, Rock Bolting at the Room and Pillar Method at Great Depths. Procedia Engineering 191, 575-582 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.220
[42] W. Weigel, Channel Iron for Roof Control. Engineering and Mining Journal, Vol. 144, May, 70-72 (1943).
[43] J. Arthur, Ground control in coal mines in Great Britain. Coal 2006: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 10-19 (2006).
Go to article

Authors and Affiliations

Wojciech Masny
1
ORCID: ORCID
Łukasz Nita
2
ORCID: ORCID
Jerzy Ficek
3

  1. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa SA, KWK „Budryk”, Poland
  3. „Geofic“ Scientific and Technical Office, Poland
Download PDF Download RIS Download Bibtex

Abstract

Tremors occur randomly in terms of time, energy as well as the location of their focus. The present state of knowledge and technology does not allow for the precise prediction of these values. Therefore, it is extremely important to correctly select a powered roof support for specific geological and mining conditions, especially in the case of areas where dynamic phenomena are often registered. This article presents information on rock burst hazard associated with the occurrence of rock mass tremors and their influence on a powered roof support. Furthermore, protection methods of a powered roof support against the negative effects of dynamic phenomena are discussed. As a result of an analysis the methodology, to determine the impact of dynamic phenomena on the powered roof support in given geological and mining conditions is presented.

Go to article

Authors and Affiliations

Wojciech Masny
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Various types of passive sonar systems are used to detect submarines. These activities are complex and demanding. Therefore, computer simulations are most often used at the design stage of these systems. For this reason, it is also necessary to simulate the acoustic ambient noise of the sea. The article proposes a new numerical model of surface and quasi-spherical sea noise and presents its statistical parameters. The results of the application of the developed noise model to analyse the received signals of the DIFAR sonobuoy are also presented.
Go to article

Bibliography

1. Barclay D.R., Buckingham M.J. (2014), On the spatial properties of ambient noise in the Tonga Trench, including effects of bathymetric shadowing, The Journal of the Acoustical Society of America, 136(5): 2497–2511, doi: 10.1121/1.4896742.
2. Buckingham M.J. (2012), Cross-correlation in bandlimited ocean ambient noise fields, The Journal of the Acoustical Society of America, 131(4): 2643–2657, doi: 10.1121/1.3688506.
3. Burdick W.S. (1984), Underwater Acoustic System Analysis, Prentice-Hall, Englewood Cliffs, NJ.
4. Cohen J. (1988), Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Lawrence Erlbaum Associates, Publishers.
5. Crocker M.J. (1998), Handbook of Acoustics, John Wiley & Sons.
6. Cron B.F., Sherman C.H. (1962), Spatial-correlation functions for various noise models, The Journal of the Acoustical Society of America, 34(11): 1732–1736, doi: 10.1121/1.1909110.
7. Cron B.F., Sherman C.H. (1965), Addendum: Spatial correlation functions for various noise models [J. Acoust. Soc. Am., 34: 1732–1736 (1962)], The Journal of the Acoustical Society of America, 38(4): 885, doi: 10.1121/1.1909826.
8. Franks L.E. (1981), Signal Theory. Revised Edition, Dowden & Culver, Inc.: Stroudsburg, PA.
9. Grelowska G., Kozaczka E., Kozaczka S., Szymczak W. (2013), Underwater noise generated by small ships in the shallow sea, Archives of Acoustics, 38(3): 351–356, doi: 10.2478/aoa-2013-0041.
10. Jagodzinski Z. (1961), Radionavigation Systems [in Polish], Wydawnictwo MON, Warszawa.
11. Klusek Z., Lisimenka A. (2004), Characteristics of underwater noise generated by single breaking wave, Hydroacoustics, 7: 107–114.
12. Klusek Z., Lisimenka A. (2016), Seasonal and diel variability of the underwater noise in the Baltic Sea, The Journal of the Acoustical Society of America, 139(4): 1537–1547, doi: 10.1121/1.4944875.
13. Kochanska I., Nissen I., Marszal J. (2018), A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel, The Journal of the Acoustical Society of America, 143(2): EL116–EL120, doi: 10.1121/1.5023834.
14. Kozaczka E., Grelowska G. (2011), Shipping low frequency noise and its propagation in shallow water, Acta Physica Polonica A, 119(6A): 1009–1012, doi: 10.12693/APhysPolA.119.1009.
15. Lyons R.G. (2004), Understanding Digital Signal Processing, 2nd ed., Prentice Hall, Inc. 16. Mallet A.L. (1975), Underwater Direction Signal Processing System, US Patent No 3,870,989.
17. Ren C., Huang Y. (2020), A spatial correlation model for broadband surface noise, The Journal of the Acoustical Society of America, 147(2): EL99–EL105, doi: 10.1121/10.0000710.
18. Rudnicki M., Marszal J., Salamon R. (2020), Impact of spatial noise correlation on bearing accuracy in DIFAR systems, Archives of Acoustics, 45(4): 709–720, doi: 10.24425/aoa.2020.135277.
19. Salamon R. (2006), Sonar systems [in Polish], Gdanskie Towarzystwo Naukowe, Gdansk, Poland.
20. Schmidt J.H., Schmidt A., Kochanska I. (2018), Multiple-Input Multiple-Output Technique for Underwater Acoustic Communication System, [In:] Proceedings of 2018 Joint Conference – Acoustics, Ustka, Poland, 2018, IEEE Xplore Digital Library, pp. 280– 283, doi: 10.1109/acoustics.2018.8502439.
21. Urick R.J. (1983), Principles of Underwater Sound, 3rd ed., Peninsula Pub.
22. Urick R.J. (1986), Ambient Noise in the Sea, 2nd ed., Peninsula Pub.
Go to article

Authors and Affiliations

Mariusz Rudnicki
1
Roman Salamon
1
Jacek Marszal
1

  1. Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Sonar Systems, Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

2-phase composites are often used for high demanding parts that can undergo impact loads. However, most of the papers on dynamic loading concerns layered composites. In our opinion, the impact loads are not considered thoroughly enough. Good examples of 2-phase composites are: (1) a WC/Co cermet or (2) a monolithic ceramic Al2O3/ZrO2. The WC/Co cermet is often modelled as having ductile elasto-plastic Co matrix and ideally elastic WC grains. It is because of very high crushing resistivity of the WC.

In this paper, we present an extension to earlier elaborated models ([44]) with the assumption of ideal elasticity of the grains. The new and general numerical model for high-velocity impact of the 2-phase composites is proposed. The idea of this novelty relies on the introduction of crushability of grains in the composite and thermo-mechanical coupling. The model allows for description of the dynamic response both composite polycrystals made of: (1) 2 different purely elastic phases (e.g. Al2O3/ZrO2) or (2) one elastic phase and the second one plastic (e.g. cermet WC/Co), or (3) 2 elasto-plastic phases with different material properties and damage processes. In particular, the analysis was limited to the cases (2) and (3), i.e. we investigated the WC/Co polycrystal that impacted a rigid wall with the initial velocity equal to 50 m/s.

Go to article

Authors and Affiliations

E. Postek
T. Sadowski
Download PDF Download RIS Download Bibtex

Abstract

Products of complex geometry, aerodynamic shape and high quality surface finishes are among the most difficult to produce by using stamping methods. When additionally materials with special properties are intended, the task of determining their technological character becomes difficult to solve without the use of physical and numerical methods of process modeling. The paper presents the results of modeling the process of producing a single tube of the jet engine tubular diffuser subassembly. This is a product representative of such a complex geometry one. The charge material for this element requires resistance to operating conditions at elevated temperature and high durability. Therefore, an Inconel type nickel superalloy was proposed for the charge material. In the solution of designing the method of producing a single diffuser tube task, the capabilities of the AutoGrid automatic strain analyzer and the FEM simulation software Eta / Dynaform 5.9 were combined. Numerical simulations of different variants of the manufacturing process of the diffuser tube were made using the Eta / Dynaform 5.9 software. The results of forming simulations became the basis for the alternative technological cycle design of this drawpiece.

Go to article

Authors and Affiliations

M. Hyrcza-Michalska
Download PDF Download RIS Download Bibtex

Abstract

The mathematical model and numerical simulations of the solidification of a cylindrical casting, which take into account the process of the mould cavity filling by liquid metal and the feeding of the casting through the conical riser during its solidification, are proposed in the paper. The interdependence of thermal and flow phenomena were taken into account because they have an essential influence on solidification process. The effect of the pouring temperature and pouring velocity of the metal on the solidification kinetics of the casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of these parameters was tried, which is important for foundry practice. The velocity fields have been obtained from the solution of Navier-Stokes equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. In the solidification modelling the changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.

Go to article

Authors and Affiliations

L. Sowa
ORCID: ORCID
T. Skrzypczak
ORCID: ORCID
P. Kwiatoń
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper reports the results of work leading to the construction of a spatial thermo-mechanical model based on the finite element method allowing the computer simulation of physical phenomena accompanying the steel sample testing at temperatures that are characteristic for the soft-reduction process. The proposed numerical model is based upon a rigid-plastic solution for the prediction of stress and strain fields, and the Fourier-Kirchhoff equation for the prediction of temperature fields. The mushy zone that forms within the sample volume is characterized by a variable density during solidification with simultaneous deformation. In this case, the incompressibilitycondition applied in the classic rigid-plastic solution becomes inadequate. Therefore, in the presented solution, a modified operator equation in the optimized power functional was applied, which takes into account local density changes at the mechanical model level (the incompressibility condition was replaced with the condition of mass conservation). The study was supplemented withexamples of numerical and experimental simulation results, indicating that the proposed model conditions, assumptions, and numerical models are correct.
Go to article

Bibliography

[1] Haga, T. & Suzuki, S.(2003). Study on high-speed twin-roll caster for aluminum alloys. Journal of Materials Processing Technology. 144(1), 895-900. DOI: 10.1016/S0924-0136(03)00400-X.
[2] Haga, T., Tkahashi, K., Ikawa, M., et al. (2004). Twin roll casting of aluminum alloy strips. Journal of Materials Processing Technology. 154(2), 42-47. DOI: 10.1016/j. jmatprotec.2004.04.018.
[3] Hojny, M. (2018). Modeling steel deformation in the semi-solid state. Switzerland: Springer.
[4] Zhang, L., Shen, H., Rong, Y., et al. (2007). Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering. 466(1-2), 71-78. DOI: 10.1016/ j.msea.2007.02.103.
[5] Kalaki, A. & Ketabchi, M. (2013). Predicting the rheological behavior of AISI D2 semi-solid steel by plastic instability approach. American Journal of Materials Engineering and Technology. 1(3), 41-45. DOI: 10.12691/materials-1-3-3.
[6] Hassas-Irani, S.B., Zarei-Hanzaki, A., Bazaz, B., Roostaei, A. (2013). Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method. Materials and Design. 46, 579-587. DOI: 10.1016/j.matdes.2012.10.041.
[7] Zhang, C., Zhao, S., Yan, G., Wang, Y. (2018). Deformation behaviour and microstructures of semi-solid A356.2 alloy prepared by radial forging process during high solid fraction compression. Journal of Engineering Manufacture. 232(3), 487, 498.
[8] Wang, J. (2016). Deformation Behavior of Semi-Solid ZCuSn10P1 Copper Alloy during Isothermal Compression. Solid State Phenomena. 256, 31-38.
[9] Shashikanth, C.H. & Davidson, M.J. (2015). Experimental and simulation studies on thixoforming of AA 2017 alloy. Mat. at High Temperatures. 32(6), 541-550. DOI: 10.1179/1878641314Y.0000000043.
[10] Bharath, K., Khanra, A.K., Davidson, M.J. (2019). Microstructural Analysis and Simulation Studies of Semi-solid Extruded Al–Cu–Mg Powder Metallurgy Alloys (pp.101-114). Advances in Materials and Metallurgy: Springer.
[11] Kang, C.G. & Yoon, J.H. (1997). A finite-element analysis on the upsetting process of semi-solid aluminum material. Journal of Materials Processing Technology. 66 (1-3), 76-84. DOI: 10.1016 / S0924-0136 (96) 02498-3.
[12] Hostos, J.C.A., et al. (2018). Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique. International Journal of Plasticity. 103, 119-142. DOI: 10.1016/j.ijplas.2018.01.005.
[13] Kopp, R., Choi, J. & Neudenberger, D. (2003). Simple compression test and simulation of an Sn–15% Pb alloy in the semi-solid state. Journal of Materials Processing Technology. 135(2), 317-323. DOI: 10.1016/S0924-0136(02)00863-4.
[14] Modigell, M., Pape, L. & Hufschmidt, M. (2004). The Rheological Behaviour of Metallic Suspensions. Steel Research International. 75(3), 506-512. DOI: 10.1002/ srin.200405803.
[15] Hufschmidt, M., Modigell, M. & Petera, J. (2004). Two-Phase Simulations as a Development Tool for Thixoforming Processes. Steel Research International. 75(3), 513-518. DOI: 10.1002/srin.200405804.
[16] Jing, Y.L., Sumio, S. & Jun, Y. (2005). Microstructural evolution and flow stress of semi-solid type 304 stainless steel. Journal of Materials Processing Technology. 161(3), 396-406. DOI: 10.1016/j.jmatprotec.2004.07.063.
[17] Jin, S.D. & Hwan, O.K. (2002). Phase-field modelling of the thermo-mechanical properties of carbon steels. Acta Materialia. 50, 2259-2268. DOI: 10.1016/S1359-6454(02)00012-5.
[18] Xiao, C., et al. (2013). Optimization Investigation on the Soft Reduction Parameters of Medium Carbon Microalloy. Materials Processing Fundamentals. Springer. 109-116. DOI: 10.1007/978-3-319-48197-5_12.
[19] Han, Z., et al. (2010). Development and Application of Dynamic Soft-reduction Control Model to Slab Continuous Casting Process. ISIJ International. 50(11), 1637-1643. DOI: 10.2355/isijinternational.50.1637.
[20] Li, Y., Li, L. & Zhang, J. (2017). Study and application of a simplified soft reduction amount model for improved internal quality of continuous casting. Steel Research International. 88(12), 1700176-1700219. DOI: 10.1002/srin.201700176.
[21] Bereczki, P., et al. (2015). Different applications of the gleeble thermal–mechanical simulator in material testing, technology optimization, and process modeling. Materials Performance and Characterization 4. No. 3, 399-420. DOI: 10.1520/ MPC20150006.
[22] Hojny, M., et al. (2019). Multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Archives of Metallurgy and Materials. 64(1), 401-412. DOI: 10.24425/amm.2019.126266.
[23] Pieja, T., et al. (2017). Numerical analysis of cooling system in warm metal forming process (pp. 261-266). Brno, Czech: Proceedings of the Metal.
[24] Hojny, M. (2013). Thermo-mechanical model of a TIG welding process for the aircraft industry. Archives of Metallurgy and Materials. 58(4), 1125-1130. DOI: 10.2478/amm-2013-0136.
[25] Hu, D. & Kovacevic, R. (2003). Sensing, modeling and control for laser-based additive manufacturing. Journal of Machine Tools & Manufacture. 43, 51-60. DOI: 10.1016/S0890-6955(02)00163-3.
[26] Ba Lan, T., et al. (2017). A new route for semi-solid steel forging. Manufacturing Technology. 66(1), 297-300. DOI: 10.1016/j.cirp.2017.04.111.
[27] Głowacki, M. (2005). The mathematical modelling of thermo-mechanical processing of steel during multi-pass shape rolling. Journal of Materials Processing Technology. 168, 336-343. DOI: 10.1016/j.jmatprotec.2004.12.007.
[28] Lliboutry, L.A. (1987). The rigid-plastic model, Mechanics of Fluids and Transport Processes (pp. 379-410). Dordrecht: Springer.
[29] Lenard, J.G., Pietrzyk, M., Cser, L. (1999). Mathematical and physical simulation of the properties of hot rolled products. Amsterdam: Elsevier.
[30] Głowacki, M. (2012). Mathematical modeling and computer simulations of metal deformation - theory and practice (pp. 229-238). Kraków: AGH. (in Polish).
[31] Jonsta. P., et al. (2015). Contribution to the thermal properties of selected steels. Metalurgija. 54(1), 187-190.
[32] Szyczgioł, N. (1997). Równania krzepnięcia w ujęciu metody elementów skończonych. Solidification of Metals and Alloys. 30, 221-232.
[33] Lewis, R.W, Roberts, P.M. (1987). Finite element simulation of solidification problems. Applied Scientific Research. 44, 61-92. DOI: 10.1007/978-94-009-3617-1_6.
Go to article

Authors and Affiliations

Marcin Hojny
Tomasz Dębiński
ORCID: ORCID
M. Głowacki
1
Trang Thi Thu Nguyen
1

  1. AGH University of Science and Technology, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

To this day, most of the papers related to hybrid joints were focused on single and double lap joints in which shear deformation and degradation was the dominant phenomenon. However, in real constructions, complex state of loads can be created by: a) torsion with shear, b) bending with shear, c) torsion with tensile.

Analytical and numerical computation for simple mechanical joints is known, however, the introduction of an adhesive layer to this joint makes the load transferred both through: (1) the adhesive and (2) mechanical fasteners. There is also an interaction between the amount and stiffness of mechanical fasteners and the strength of the adhesive layer.

The paper presents the results of numerical calculations for the bending with shear type of load for the hybrid structural joint and corresponding simple joints by: (1) pure adhesion and (2) rivets with different quantity maintaining the same cross-sectional area. A total of 9 simulations were performed for: (1) 4 types of pure rivets connections, (2) pure adhesive joint and (3) 4 kinds of hybrid joints. The surface-based cohesive behavior was used for creation of the adhesive layer, whereas the rivets were modelled by connector type fasteners, which simplify complexity of the numerical model. The use of connectors allowed for effort assessment taking into account damage in both types of connections. Application of connector elements can be useful for larger structures modelling, e.g. aircraft fuselage, where the number of mechanical joints is significant and complex load conditions occur.

Go to article

Authors and Affiliations

T. Sadowski
M. Nowicki
P. Golewski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experimental research on the fabrication of thin-walled panels with longitudinal stiffening ribs by the single point incremental sheet forming technique. The bead-stiffened panels were made of Alclad 2024-T3 aluminium alloy sheets commonly used in aircraft structures. The influence of forming parameters and tool strategy on surface quality and the possibility of obtaining stiffening ribs with the required profile and depth was tested through experimental research. Two tool path strategies, spiral with continuous sinking and multi-step z-level contouring, were considered. The results of the experiments were used to verify the finite element-based numerical simulations of the incremental forming process. It was found that the main parameter which influences the formability of test sheets is the tool path strategy; the tool path strategy with multi-step z-level contouring allowed the rib to be formed to a depth of 3.53 mm without risk of cracking. However a greater depth of rib equal of 5.56 mm was achieved with the continuous tool path. The tool path strategy was also the main parameter influencing the surface finish of the drawpiece during the single point incremental forming process.
Go to article

Authors and Affiliations

B. Krasowski
1
ORCID: ORCID
A. Kubit
2
ORCID: ORCID
T. Trzepieciński
2
ORCID: ORCID
J. Slota
3
ORCID: ORCID

  1. Carpatian State School in Krosno, Krosno, Poland
  2. Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959, Rzeszów, Poland
  3. Technical University of Košice, Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The work concerns the influence of the method of numerical modelling of the connections of the roof truss and vaults with the walls of historic masonry objects structures on the local stress distribution in the walls. At the outset, the need to search for rational modelling was justified due to the large size of the calculation models and the erroneous results obtained with oversimplification of the model. Four methods of modelling the connections between the walls and roof truss and vaults were analysed. The first method was to describe the elements of walls and foundations as solid elements, the ribs of the vaults and the roof truss as beam elements, and the vaulting webs as shell elements. The remaining methods 2–4 describe the walls as shell elements. In places where the walls join with the roof truss and vaults, fictitious/fictional elements in the form of rigid horizontally-oriented shells were used in model No. 2. In model No. 3, fictitious rigid horizontally-oriented shell elements in addition to local rigid vertically-oriented shells were used, while in model No. 4, only fictitious rigid vertically-oriented shell elements with stepwise decreasing protrusions were introduced. The best solution in terms of local stress distribution turned out to be the description of connections with fictitious shell elements in the case of model No. 4. This approach slightly increases the number of unknowns, and makes the results of stresses in the connection areas realistic in relation to full modelling with solid finite elements.
Go to article

Authors and Affiliations

Czesław Miedziałowski
1
ORCID: ORCID
Marcin Szkobodziński
2
ORCID: ORCID
Krzysztof Robert Czech
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45A, 15-351 Bialystok, Poland
  2. Energoprojekty sp. z o.o., Opolska 15, 15-549 Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this work is to present the results of numerical simulations of the landslide triggered by small excavation. In south-eastern Poland in 2019, during excavation for a gas pipeline (relatively small – maximal depth 2.7 m), a landslide was observed. Length of the landslide was about 80 m, width about 50 m, maximal depth 6.5 m. Excavation was partially buried. Observed cracks of the terrain surface were wide, up to 0.8 m. Stability of the landslide was analyzed using the proportional reduction of the soil strength parameters (c-fi reduction) algorithm with the use of ZSoil.PC Finite Element Method (FEM) system. Stability analysis of the slope before and after excavation was performed, together with analysis of the tendency of the landslide to propagate upwards. The obtained stability loss modes were compared with the results of the field observations and a good correlation was noticed. Hypothesis that a landslide was triggered by small excavation was proved (although reasonable margin of safety was obtained for state before excavation, stability factor SF = 1•60). Use of residual soil strength parameters (instead of peak ones) and activation of cut-off (no tension) condition are advised. Presented methodology is open and can be used in engineering practice.
Go to article

Authors and Affiliations

Michał Grodecki
1
ORCID: ORCID

  1. Cracow University of Technology, Civil Engineering Department, 24 Warszawska Str., 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Main goal of this paper is to present results of the numerical simulations of a real-scale gabion retaining wall tests. 4.5 m high wall was loaded and unloaded with water pressure, displacements of the crest of the wall were measured. Finite Element Method was used to simulate experiment and obtained results are compared with experimental ones. Usage of homogenized Coulomb-Mohr type continuum for gabions is proposed. Strength parameters of the model (cohesion and friction angle) are estimated on the base of large scale triaxial tests of the gabions and static tensile tests of the mesh. Influence of the “cut-off” condition on obtained results is analyzed. Elastic model for gabions is used for comparison of the results. Interface elements and truss joints between the gabions are used to simulate joints between gabions with limited strength. Good correlation between displacements obtained in experiment and numerical simulations was observed, especially in loading phase, so presented methodology of numerical modelling allows to model gabion retaining walls behavior close to the reality and could be used in engineering practice.
Go to article

Authors and Affiliations

Michał Grodecki
1
ORCID: ORCID

  1. PhD., Eng., Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 34-155 Cracow, Poland

This page uses 'cookies'. Learn more