Szczegóły

Tytuł artykułu

Denoising methods for improving automatic segmentation in OCT images of human eye

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences Technical Sciences

Rocznik

2017

Wolumin

65

Numer

No 1

Autorzy

Wydział PAN

Nauki Techniczne

Zakres

71-78

Data

2017

Identyfikator

DOI: 10.1515/bpasts-2017-0009 ; ISSN 2300-1917

Źródło

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2017; 65; No 1; 71-78

Referencje

Valverde (2015), Evaluation of speckle reduction with denoising filtering in optical coherence tomography for dermatology th International Symposium on Biomedical Imaging, IEEE, 12. ; Wang (2012), Adaptive speckle reduction in OCT volume data based on block - matching and filtering, IEEE Phot Technol Lett, 24, 3. ; Kudasik (2015), Methods for designing and fabrication large - size medical models for orthopaedics, Bull Pol Tech, 63, 623. ; Nason (1995), The stationary wavelet transform and some statistical applications Notes in, Lecture Statistics, 103. ; Chiu (2010), Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation, Optics express, 18, 19413, doi.org/10.1364/OE.18.019413 ; Puvanathasan (2009), Interval type - II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images, Opt Express, 17, 733, doi.org/10.1364/OE.17.000733 ; Marks (2005), Speckle reduction by I - divergence regularization in optical coherence tomography, Opt Soc Am A, 22, 2366, doi.org/10.1364/JOSAA.22.002366 ; Kraus (2012), Motion correction in optical coherence tomography volumes on a per A - scan basis using orthogonal scan patterns, Biomedical Optics Express, 3, 1182, doi.org/10.1364/BOE.3.001182 ; Mayer (2012), Wavelet denoising of multiframe optical coherence tomography data, Biomedical Optics Express, 3, 572, doi.org/10.1364/BOE.3.000572 ; Rogowska (2002), Image processing techniques for noise removal enhancement and segmentation of cartilage OCT images Physics in Medicine and, Biology, 47, 641. ; Wong (2010), General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery, Opt Express, 18, 8338, doi.org/10.1364/OE.18.008338 ; Abbirame (2014), Speckle noise reduction in spectral domain optical coherence tomography retinal images using fuzzification method on Green Computing Communication and Electrical Engineering, Int Conf, 1. ; Perona (1990), Scale - space and edge detection using anisotropic diffusion Pattern and, IEEE Trans Anal Mach Intell, 12, 629, doi.org/10.1109/34.56205 ; Wojtkowski (2010), High - speed optical coherence tomography : basics and applications, Appl Opt, 49, 61, doi.org/10.1364/AO.49.000D30 ; Abràmoff (2010), Retinal imaging and image analysis IEEE Reviews in, Biomedical Engineering, 169. ; Sonka (2016), Quantitative analysis of retinal OCT, Medical Image Analysis, 33. ; Chitchian (2009), Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual - tree complex wavelet transform, Optics, 14, 14. ; Karamata (2005), Speckle statistics in optical coherence tomography, Opt Soc Am A, 22, 593, doi.org/10.1364/JOSAA.22.000593 ; Bernardes (2010), Improved adaptive complex diffusion despeckling filter, Opt Express, 18, 24048, doi.org/10.1364/OE.18.024048 ; Ozcan (2007), Speckle reduction in optical coherence tomography images using digital filtering, Opt Soc Am A, 24, 1901, doi.org/10.1364/JOSAA.24.001901 ; Jian (2010), Three - dimensional speckle suppression in optical coherence tomography based on the curvelet transform, Optics Express, 18, 1024, doi.org/10.1364/OE.18.001024 ; Kudasik (2016), Methods of reconstructing complex multi - structural anatomical objects with RP techniques, Bull Pol Tech, 64, 315. ; Baghaie (2015), Sparse and low rank decomposition based batch image alignment for speckle reduction of retinal OCT images th International Symposium on Biomedical Imaging, IEEE, 12.
×